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Dietary fibers (DFs) and their metabolites attract significant attention in research

on health and disease, attributing to their e�ects on regulating metabolism,

proliferation, inflammation, and immunity. When fermented by gut microbiota,

DFs mainly produce short-chain fatty acids (SCFAs), such as acetic acid, propionic

acid, and butyric acid. As the essential nutrients for intestinal epithelial cells,

SCFAs maintain intestinal homeostasis and play essential roles in a wide range

of biological functions. SCFAs have been found to inhibit histone deacetylase,

activate G protein-coupled receptors, and modulate the immune response,

which impacts cancer and anti-cancer treatment. Notably, while extensive

studies have illuminated the roles of SCFAs in colorectal cancer development,

progression, and treatment outcomes, limited evidence is available for other types

of cancers. This restricts our understanding of the complex mechanisms and

clinical applications of SCFAs in tumors outside the intestinal tract. In this study,

we provide a comprehensive summary of the latest evidence on the roles and

mechanisms of SCFAs, with a focus on butyric acid and propionic acid, derived

from microbial fermentation of DFs in cancer. Additionally, we recapitulate the

clinical applications of SCFAs in cancer treatments and o�er our perspectives on

the challenges, limitations, and prospects of utilizing SCFAs in cancer research

and therapy.
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Introduction

Recent research has highlighted the significant impact of dietary fibers (DFs) on human

health (1, 2) influencing the risk of chronic diseases, such as cancer, obesity, type 2 diabetes,

and cardiovascular diseases (3, 4). DFs encompass soluble and insoluble fibers, which are

a group of carbohydrates that cannot be digested or absorbed in the small intestine (3, 5).

Soluble fibers, including oligo galactose, oligofructose, inulin, β-glucan, resistant starch, and

pectin, are widely recognized as prebiotics (6). When fermented by gut microbiota, soluble

fibers mainly produce short-chain fatty acids (SCFAs), such as acetic acid, propionic acid,

and butyric acid (7).
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SCFAs, which serve as essential nutrients for colonocytes and

gut microbes, play a crucial role in maintaining intestinal and

systemic homeostasis, impacting lipid and glucose metabolism,

cell proliferation, inflammation, and immune system functionality

(7, 8). In particular, the roles of butyric acid and propionic acid

have been extensively investigated, revealing their contributions to

health and diseases, including human cancers. It is suggested that

butyric acid and propionic acid act as histone deacetylase inhibitors

(HDACIs) to epigenetic modulate gene expression, influencing cell

growth, proliferation, and apoptosis (9–12); act as ligands for G

protein-coupled receptors (GPCRs), regulating cell proliferation,

apoptosis, and immune response (11, 13); furthermore, they

exhibit anti-inflammatory and immunomodulatory effects by

regulating inflammatory factors and cytokines and promoting

the differentiation and migration of immune cells (10, 11, 14–

16).

Notably, while extensive studies have illuminated the roles

and applications of SCFAs in colorectal cancer (CRC) (17–22),

limited evidence is available for other types of cancers. This

restricts our understanding of the roles of SCFAs in tumors outside

the intestinal tract and the complex mechanisms underlying

the regulation of the tumor-immune microenvironment

(TIME). In this study, we provide a comprehensive summary

of the latest evidence on the roles and mechanisms of SCFAs,

with a focus on butyric acid and propionic acid, derived

from microbial fermentation of DFs in cancer. Additionally,

we recapitulate the clinical applications of SCFAs in cancer

treatments and offer our perspectives on the challenges,

limitations, and prospects for utilizing SCFAs in cancer research

and therapy.

The roles and mechanisms of SCFAs
in cancer

Functioning as epigenetic modificators

SCFAs as HDACIs play a crucial role in the epigenetic

regulation of gene expression, influencing cell survival,

proliferation, and differentiation (23, 24). Numerous in vitro

studies have demonstrated that SCFAs presented HDACI activities

in various cancer cell lines, including (9, 25–27) breast (28),

gastric (29), and cervical cancer (30). SCFAs have been shown

to inhibit cell proliferation, induce cell cycle arrest at G0/G1 or

G2/M phase, trigger apoptosis mediated via the mitochondrial

pathway, promote autophagy, and increase the accumulation

of reactive oxygen species (ROS). In a study of BALB/c nude

mouse model with HCT-116 cells inoculation by Ma et al. (31),

sitosterols feeding elevated diversity of gut microbiota, increased

levels of SCFAs in fecal samples, and restrained CRC cell growth.

The study further revealed that SCFAs induced tumor apoptosis

through the PI3K/Akt pathway and altered the expression levels

of apoptosis-related proteins, such as Bad, Bcl-xl, and cytochrome

C (31). Hence, SCFAs by acting as HDACI show potential as

attractive targets for developing novel therapeutic strategies, as

discussed in Section 3.

Acting as G protein-coupled receptor
ligands

SCFAs are natural ligands for the G protein-coupled receptors

(GPCRs), including GPR43 (also termed free fatty acid receptor,

FFAR2), GPR41 (also termed FFAR3), and GPR109A (13, 32). In

colon cancer cells, by combining these receptors, SCFAs inhibit

cell proliferation, induce apoptosis, and cycle arrest via the NF-

κB, MAPK, ERK1/2, PI3K, and Wnt signaling pathways (13,

32). For instance, SCFAs induced cell proliferation inhibition,

apoptosis, and invasion inhibition, mediated by GPR43 in colon

cancer cells (9, 33), HeLa cells (34), BaF3 leukemia cells (35),

and breast cancer cells (36). Propionate and butyrate are high-

affinity ligands for GPR43, dual-coupled to the pertussis-sensitive

Gαi/o and Gq protein, and reduce cAMP levels (37). Similarly,

Yonezawa found that both GPR41 and GPR43 were expressed in

breast cancer cell lines; while combining with SCFAs, they raised

intracellular concentration of Ca2+ and activated the p38 MAPK

pathway, thereby inhibiting cell proliferation (38) (Table 1). In an

intestinal cancer model, Kim et al. (40) observed that the SCFA-

GPR43 axis suppresses the Th17-driven inflammatory response

and intestinal carcinogenesis. In addition, GPR109A binds only

to butyrate and reduces cAMP through Gαi/o proteins (37).

GPR109A mediated butyrate anti-cancer activity in colon cancer

cell lines by inhibiting the activation of NF-kB, downregulating

anti-apoptotic genes, and upregulating pro-apoptotic genes (9,

41). Moreover, propionate and butyrate could activate GPR41

which was coupled through Gαi/o proteins to reduce cAMP (37),

increase the intracellular concentration of Ca2+, and inhibit the

MAPK signaling pathway to lower the invasion of breast cancer

cells (36).

Regulating TIME

SCFAs play essential roles in the host immune system, such

as influencing the differentiation of myeloid and lymphocytes

(42–44). SCFAs exert their immunomodulatory effects through

two primary mechanisms: acting as HDACIs and interacting

with GPCRs (43) (Figure 1). For example, in vitro and in

vivo investigations involving C57BL/6 mice, various gene-

deficient mouse models [Rag1(–/–), GPR41(–/–), GPR43(–/–),

IL-10(–/–)] and T cell lines (CD4 +, CD8 +) showed that

SCFAs promoted the differentiation of naive T cells into

effector cells (Th1 or Th17) or regulatory T cells (Tregs).

This regulation influences the production of IL-17, IFN-γ, and

IL-10, thereby affecting immunity or immune tolerance (45).

Additionally, SCFAs regulate the MAPK signaling pathways (ERK,

JNK, and p38) to modulate immune and endothelial cells,

leading to the suppression of inflammation and tumors (16).

SCFAs have been observed to suppress inflammatory cytokines

IL-1β, IL-2, IL-3, IL-5, IL-6, IL-8, IL-12, IL-17, IL-21, IL-

23, TNF-α, TNF-β, NOS, and COX2, while increasing the

expression of anti-inflammatory cytokines IL-10 and IL-18. This

reduction in inflammation contributes to the suppression of CRC

development (9, 11, 16, 22, 32). Furthermore, SCFAs affected

both innate and adaptive immune responses by stimulating B
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TABLE 1 SCFA receptors and related signaling pathways.

GPCR Ligands Tissue/cell expression Signaling pathways References

GPR41

(FFAR3)

Propionate butyrate Adipose tissue, colon, spleen, lymph nodes,

and bone marrow

Increase histone acetylation and involve in the

regulation of acetylation-related cellular processes;

reduce cAMP through Gαi/o;

increase in intracellular Ca2+ ;

inhibit MAPK signaling pathway

(32, 36, 38, 39)

GPR43

(FFAR2)

Propionate butyrate Immune cells, neutrophils, monocytes,

gastrointestinal epithelial cells, adipocytes,

enterocytes, and endocrine

Reduce cAMP through Gαi/o and Gαq proteins;

p38 MAPK/HSP27 pathway; inhibit the

Hippo-Yap pathway and increase E-cadherin to

inhibit invasion;

↓ Bcl-2, ↓Survivin, ↓cyclinD1/D3, ↓CDK1,

↓CDK21, ↓PCNA, ↑p21, activate caspases-3/6/7/8,

G0/G1 cell cycle arrest;

suppress Th17-driven inflammatory response and

intestinal carcinogenesis

(33, 34, 36, 38, 40)

GPR109A

(HCAR2)

Butyrate Adipocytes, immune cells (neutrophils,

dendritic cells, and macrophages), retina, and

colon

Reduce cAMP through Gαi/o proteins;

↓Bcl-2, ↓Bcl-W, ↓Bcl-xL, ↓Bfl-1, ↓ cyclin D1,

↑FAS-L, ↑FAS-R, ↑FADD, ↑TNF-R1, ↑PTEN,

↑PPARγ , ↑Foxo3A, inhibit NF-κB; activate

caspase-3/8/9

(32, 41)

FIGURE 1

Role of short-chain fatty acids (SCFAs) in inflammation and immunity. The gut microbiota ferments dietary fibers producing SCFA that exert their

e�ects through various mechanisms. SCFAs can act as histone deacetylase inhibitors (HDACIs) and activate G protein-coupled receptors (GPCRs) to

modulate cellular responses. For instance, SCFAs regulate MAPK signaling pathways (ERK, JNK, and p38) and stimulate the release of inflammatory

factors, contributing to inflammation and carcinogenesis. Additionally, SCFAs play a vital role in immune regulation by promoting the di�erentiation

of naive T cells into e�ector cells and regulatory T cells (Tregs). Moreover, SCFAs influence cytokines release, impacting intestinal homeostasis and

immunity.

cells to secrete intestinal immunoglobulin A (IgA) (13, 46, 47).

Notably, a study by Luu et al. (48) demonstrated that SCFAs

enhanced the secretion of cytokines (including IL-2, TNF-α,

and IFN-γ) by modulating CD8+ T cells, thereby improving

cancer immunotherapy.

Carcinogenic e�ects of SCFAs

While SCFAs have commonly been recognized as tumor-

suppressive metabolites, it is noteworthy that under certain

conditions, SCFAs can promote tumorigenesis (49–51). Matsushita
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et al. (52) conducted research using prostate-specific Pten knockout

mice (Pb-Creþ; Ptenfl/fl) and prostate cancer cell lines (DU145,

22Rv1) to demonstrate that SCFAs supplementation promoted

prostate carcinogenesis by increasing insulin-like growth factor-1

production. Another study reported that long-term consumption

of fiber-enriched foods in dysbiosis mice resulted in hepatocellular

carcinoma (HCC) (53). In addition, a mouse model with colon

cancer driven by mutations in the mismatch repair gene Msh2

and Apc gene showed that butyrate promoted the development

of CRC (54). Okumura et al. (55) have currently described that

the overgrowth of Porphyromonas species in an Apc114/+ mouse

model is casually related to colorectal cancer due to butyrate-

engaged senescence. Notably, scientists have long debated these

opposing observations and dubbed the phenomenon “butyrate

paradox” (51). Given the “Warburg effect” (56), it has been

widely accepted that butyrate provides energy to normal cells

to promote cell growth. In contrast, cancerous cells instead

relied on aerobic glycolysis; therefore, butyrate accumulated and

functioned as an HDACI to halt cell cycle progression. Surprisingly,

growing evidence in colon cancer cells showed that butyrate

could directly combine and change the metabolic enzymes,

leading to an anti-tumor effect without following the “Warburg

effect” (57–59). Moreover, GPR41 could decrease butyrate-induced

histone acetylation and negatively regulate butyric-induced anti-

proliferative and apoptosis (39). Thus, it would be narrow to

define butyrate or SCFAs simply as onco-metabolites or tumor-

suppressive metabolites, given their complex effects that are waiting

for exploration.

Advancements of gut
microbiota-derived SCFAs in cancer
treatment

SCFAs gained attention in the 1980s when butyrate was

reported to modulate the malignant biological behavior of cultured

colon cancer cells (60, 61). Sodium butyrate has been shown to

inhibit the growth of hepatocellular carcinoma (HCC) cells in both

in vitro using the HuH-7 human HCC cell line and in vivo utilizing

an HCC tumor-bearing mice model (62). These inhibitory effects

are likely mediated by a p21-dependent mechanism. In addition,

sodium butyrate has demonstrated the ability to hinder the G1-

S transition of human glioma cells, as evidenced by increased

expression of p21 and cyclin D1, and reduced phosphorylation of

pRb (63). It has also been found to impede cell proliferation in

the MCF-7 human breast cancer cell line, reflected by increased

expression levels of p21WAF1 and RARβ (64). Moreover, sodium

butyrate induced AMPK-mTOR-mediated autophagy and ROS-

mediated apoptosis of bladder cancer cells (T24, 5637, and SV-

HUC-1 bladder cancer cell lines) (65), induced DAPK-mediated

apoptosis in human gastric cancer cell lines (AGS, Kato III, etc.)

(66), and triggered mitochondrial-mediated apoptosis in colon

cancer cell line (Caco-2 cell line) (67). However, the translation

of SCFAs to clinical applications has been impeded by their low

concentration in peripheral blood and rapid plasma clearance (68),

which will be further discussed in Section 4. Two decades later, with

the iteration of sequencing technology, the association between gut

microbiota-derived SCFAs and their role as anti-cancer agents once

again captured scientists’ attention for SCFAs as anti-cancer agents.

The investigations of the association between SCFAs and

cancers fell into several research modes as follows:

1) In vitro studies. Nakkarach et al. (69) isolated the bacterial

strain (Escherichia coli KUB-36) from fecal samples collected

from healthy individuals which demonstrated the highest

production of SCFAs. The researchers applied the metabolites

and individual SCFA to various tumor cell lines, including

breast cancer, colorectal cancer, and leukemia. Remarkably, all

treatments exhibited inhibitory effects on tumor cell growth,

with breast cancer cells showing the greatest sensitivity to

the treatments (69). Additionally, Zheng et al. indicated that

secretions of C. butyricum induced cytotoxic effects on CRC

cells, including human CRC cell lines HCT116 and HT29, as

well as the mouse CRC cell line CT26. However, the subsequent

addition of butyrate kinase inhibitors impaired the cytotoxic

effects specifically in CT26 cells, providing strong evidence that

the anti-cancer effect of C. butyricum was mainly attributed to

the secretion of butyrate (70).

2) In vivo studies. In a recent study, it was demonstrated that

the concentration of intestinal SCFAs concentration in mice

with HCC can be increased by administering a probiotic

mixture named Prohep. Prohep, composed of Lactobacillus

rhamnosus GG, Escherichia coli Nissle 1917, and VSL#3, was

found to confer tumor suppression effect. This effect was

associated with alterations in the composition and diversity of

gut microbiota and an increase in SCFA-producing bacteria

in the group of mice treated with the probiotic mixture (71).

The intervention with Prohep appeared to be relevant to the

downregulation of IL-17, the reduction of Th17 polarization,

and the differentiation of Treg/Tr1 (72). In another study,

the effect of SCFAs on extra-intestinal tumor progression

was investigated in a mouse model of lung metastasis from

melanoma. Supplementation with VSL#3, a registered probiotic

formula consisting of eight different strains of probiotic

bacteria, resulted in an increased amount of propionate and

butyrate in plasma and fecal samples. Subsequent analysis

showed that these SCFAs significantly decreased the volume

of tumors, possibly by recruiting Th17 cells to the lung

tissue through the chemokine ligand 20/chemokine receptor 6

axis (73).

3) Multi-omics analysis. Multi-omics analyses have emerged as

novel approaches, integrating metagenomic, transcriptomic,

proteomic, metabolomic, and lipidomic analysis. These

comprehensive investigations shed further light on the host’s

response to probiotics at multiple levels (74). For instance, in

a mouse model of HCC treated with probiotics, researchers

utilized metagenomic analysis to identify altered pathways and

corresponding biological functions (71). Notably, they observed

significant changes in pathways involved in SCFAs synthesis

within tumor cells. Furthermore, applying metabolomic

analysis provides valuable insights into the modulation of

metabolite profiles following probiotic intervention (75). In a

study that combined metagenomics and metabolomics (using

gas chromatography-mass spectrometry, GC-MS), researchers

screened for phages associated with CRC promotion (mainly
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Fusobacterium nucleatum) and inhibition (mainly Clostridium

butyricum). Through gene ontology enrichment analysis,

differentially expressed genes were found to be enriched in

apoptosis and autophagy, uncovering the potential mechanism.

Additionally, GC-MS analysis of C. butyricum’s secretome

revealed that butyrate played a prominent role in the cytotoxic

effects on CRC cells (70).

While many studies regarding SCFAs in cancer management

provided valuable insights into their potential effects and

mechanisms, these preclinical studies were limited in vitro and

in vivo. It is essential to conduct well-designed clinical trials

(including double-blinded or triple-blinded studies) to further

investigate the efficacy and safety of SCFAs in human subjects.

SCFAs combined with chemotherapy and
radiotherapy

Recently, SCFAs have been studied as a sensitizer for

radiotherapy and chemotherapy. Sodium butyrate combined with

cisplatin has been described to promote apoptosis in different

tumor cells, such as gastric cancer (76) and cervical cancer

(77) in vitro and in vivo. In the tumor-bearing mouse model of

gastric cancer, butyrate plus cisplatin inhibited tumor growth via

the mitochondrial apoptosis-related pathway, surpassing other

groups with monotherapy (76). The combination of butyrate and

cisplatin has been reported in the cervical cancer model (Hela

and Siha cell lines and tumor cell-inoculation mice) that inhibited

cell migration and invasion by blocking the nuclear conversion

of β-catenin, reversing epithelial–mesenchymal transition,

upregulating the expression of E-cadherin and downregulating

matrix metalloproteinase (MMP)2, MMP7, and MMP9 (77). In

addition, Park et al. (78) investigated the effects of radiotherapy

combined with butyrate, propionate, and acetate in organoids.

Among them, butyrate showed radio-sensibilization and weak

toxicity to normal mucosa and inhibited the proliferation of

organoids. Data on the safety and efficacy of the combination in

animal studies and clinical trials are yet to come.

SCFAs combined with immunotherapy

Several studies focused on patients with different types of

cancer receiving immune checkpoint inhibition (ICI) therapy and

collected patients’ fecal samples (20, 79, 80). They suggested that

the concentration of SCFAs in fecal samples might be associated

with the efficacy of anti-programmed cell death protein 1 (PD-

1) and anti-programmed death-ligand 1 (PD-L1) immunotherapy.

These findings prompt that gut microbiota links to ICI therapeutic

efficacy through SCFAs, which show the potential to be a response

marker. Animal studies found that SCFAs had diverse effects

on different ICI therapies (81, 82). In a CRC mouse model,

researchers found that the dietary supplement of pectin increased

butyrate production in the gut, promoted T-cell infiltration, and

enhanced the anti-cancer effect of anti-PD-1 drugs in CRC mice

(81). Another mouse model CRC/fibrosarcoma reported that

butyrate restrained anti-CTLA-4 response through downregulating

CD80/CD86 on dendritic cells and Inducible costimulatory on T

cells and preventing the accumulation of tumor-specific T cells,

memory T cells, and IL-2 (82).

SCFAs in the comprehensive management
of cancer

SCFAs have therapeutic potential in treating intestinal

inflammation induced by chemotherapy or radiotherapy. They

reconstruct the intestinal epithelium barrier and regulate

intestinal immunomodulatory function (83). In addition, direct

administration of SCFA-producing bacteria (probiotics) can restore

intestinal ecology and inhibit the secretion of proinflammatory

cytokines (84). In the perioperative management of resectable

tumors, the application of SCFA-producing bacteria (probiotics)

could decrease the incidence of postoperative complications

(85, 86). For CRC patients, adding butyrate before the operation

helps to improve the integrity of the intestinal barrier (87).

SCFAs from dietary fibers supplementation
in cancer treatment

Numerous studies support the health-promoting effects of

DFs from daily food (88, 89), including the anti-tumor effect.

Pectin and inulin have been reported to enhance the immune

response to tumors in mouse models. Pectin supplementation

was associated with an improved response to immunotherapy

in mice with CRC (81). Another study suggested a potential

link between SCFAs derived from inulin fermentation and the

anti-tumor activity of ICIs (90). Nevertheless, pectin has been

shown to accelerate carcinogenesis in Apc-deficient mice (91),

while dietary inulin supplementation may induce gut microbiota-

dependent hepatocellular carcinoma (53). In addition to animal

experiments, clinical research has indicated that adequate DFs

intake can improve the prognosis of cancer patients. A cross-

section study revealed that sufficient DFs intake was associated

with significantly improved PFS and response to ICIs in melanoma

patients, compared to a combination of DFs and probiotics (92).

However, the study did not find a significant association between

DF proportions and the SCFA levels in the gut. Furthermore, SCFAs

play a critical role in the health-promoting effect of vegetarian and

Mediterranean diets, which are characterized by high DF content

(93–95). Nevertheless, the absence of relevant cohort studies makes

it uncertain whether cancer patients can benefit from these dietary

patterns. These findings highlight the need to carefully evaluate

the potential benefits of DFs in future studies, considering their

potential risks.

Challenges and limitations

Challenges as a therapeutic approach for
cancer

The anti-cancer drug usually requires a comprehensive

understanding of its pharmacology, toxicology, and high specificity
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on its target molecules. SCFAs have been found ambiguity effects on

tumor progression: suppression and promotion, which challenges

the further application of SCFAs in anti-cancer treatment. Donohoe

et al. (96) reported decreased production of butyrate and increased

butyrate nuclear accumulation in a microbiota- and butyrate-

dependent mouse model with colon tumor cells. These phenomena

were associated with enhanced apoptosis and reduced proliferation

in tumors. Another mouse model with colon cancer driven by

mutations in the mismatch repair genesMsh2 and Apc showed that

butyrate drove the hyperproliferation of Msh2-deficient epithelial

cells and promoted the development of CRC (54). Noteworthy,

tumor genetics and butyrate concentrations were considered

the key factors that led to the opposite effects of SCFAs on

carcinogenesis between these investigations mentioned above (49,

50). So far, the questions about which are the responsible mutations

and what is the cut-off concentration still need to be answered. It

indicates that researchers should be aware that SCFAs may play

more complex and comprehensive roles in cancer than we used to

understand. Thus, we urge that more efforts be put into unraveling

the spectrum of SCFAs’ biological effects on cancer.

Limitations of distribution and plasma
clearance

SCFAs serve as the primary energy source for intestinal

epithelial cells; therefore the systemic absorption of butyrate is

low (51). Their concentrations significantly differ between enteral

and abenteric environments (butyrate concentration is 29µM

in portal vein vs. 4µM in peripheral circulation) (68, 97). To

engage their anti-tumor effects, SCFAs shall maintain different

effective concentrations continuously in a patient’s circulation

given cancer types. For example, butyrate concentration in

circulation should reach at least 0.5mM to induce tumor cell

differentiation in CRC (98) and breast cancer (28), However,

butyrate at the concentration of 0.5mM did not significantly

affect the gastric cancer cell viability in vitro experiments (76).

In addition, butyrate has a rapid plasma clearance in the human

body with only a 6min half-life. Once absorbed, SCFAs are

transported to the liver via portal circulation and become the

substrate for longer-chain fatty acids (51). Researchers reported

that the peak concentration of butyrate in plasma among patients

with acute leukemia was merely 0.05mM by intravenous infusion

(99). The insufficient concentration and short half-life of SCFAs

in human circulation challenge their application. Current efforts

have been made to innovate drug administration and explore

stable derivatives:

1) Drug administration. Oral administration of solid lipid

nanoparticles (SLN) (100) is an attempt to deliver butyrate

across the intestinal barrier to target organs using a sustained-

release drug delivery system. SLN is not absorbed by the

gastrointestinal tract and cannot pass through the blood–

brain barrier. Cholesteryl-butyrate SLN has been confirmed to

increase the stability and efficacy of butyrate in a mouse glioma

model (100).

2) Stable derivatives. Researchers tried to use prodrugs of SCFAs

[Trybutirin (101), phenylbutyrate (102), and pivaloyloxymethyl

butyrate (Pivanex, AN-9) (103, 104)] and explore their effects

on tumors [leukemia (102), non-small cell lung cancer (104),

and prostate cancer (105)]. These prodrugs had not only

similar effects as butyrate in inducing apoptosis (101) and anti-

angiogenesis effects (106) but also longer half-life and higher

stable plasma concentrations (107). Notably, the doses were still

insufficient to exert consistent anti-tumor effects (108).

To sum up, exploring various local delivery methods (such as

enema, nasal spray, aerosol inhalation, intravaginal administration,

and bladder irrigation) or developing new drug delivery systems

may be the direction of future translational research.

Conclusion and future perspectives

Although astounding clinical successes in anti-cancer

treatments have been achieved, cancer remains the second leading

cause of death worldwide and dramatically affects the quality

of life of cancer survivors. In the present review, we summarize

advancements in the roles of the microbial fermentation of DFs-

derived SCFAs in cancer and recapitulate the up-to-date evidence

on the applications of SCFAs in cancer treatment. Additionally, we

notice that SCFAs present the potential to mediate a wide range of

biological effects beyond function as HDACIs, GPCRs, and TIME

modulators, resulting in both tumor suppression and promotion.

It highlighted the challenges of applying prebiotics, probiotics, and

microbial metabolites to a therapeutic modality for cancer. We

urge more effort to be put into unraveling the spectrum of SCFAs’

biological effects and their functional organizing network, which is

the prerequisite for better management of cancer.

Moreover, SCFAs might influence carcinogenesis and

inflammation similarly in other regions beyond the gut, such

as the reproductive tract, respiratory tract, and urinary tract.

A fiber-rich diet can increase the production of SCFAs by

altering the composition, diversity, and abundance of the

microbiome to promote health. Hence, we might regulate SCFAs

by prebiotics or probiotics to alter the commensal microbiome

and modulate the desirable concentration of SCFAs in particular

regions. To test these hypotheses, future investigations are

warranted to explore the associations between commensal

microbiota and its metabolites in various body sites and various

types of cancer, consequently developing novel therapeutic

approaches for improving prognosis and quality of life among

cancer patients.
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