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Background: Breast milk is the recommended source of nutrients for newborns 
and infants. Human milk oligosaccharides (HMO) are the third most abundant 
solid component in human milk and their composition varies during lactation.

Objectives: Our objective was to investigate longitudinal and cross-sectional 
changes in HMO composition and whether these changes were associated with 
infant growth up to 24  months of age. Associations with maternal characteristics 
were also investigated.

Methods: 24 HMOs were quantified in samples taken at 2  weeks (n  =  107), 6  weeks 
(n  =  97) and 3  months (n  =  76), using high performance liquid chromatography. 
Body length, weight, and head circumference were measured at 8 timepoints, 
until 24  months. Clusters of breast milk samples, reflecting different HMO profiles, 
were found through a data-driven approach. Longitudinal associations were 
investigated using functional principal component analysis (FPCA) and used to 
characterize patterns in the growth trajectories.

Results: Four clusters of samples with similar HMO composition were derived. 
Two patterns of growth were identified for length, body weight and head 
circumference via the FPCA approach, explaining more than 90% of the variance. 
The first pattern measured general growth while the second corresponded to 
an initial reduced velocity followed by an increased velocity (“higher velocity”). 
Higher velocity for weight and height was significantly associated with negative 
Lewis status. Concentrations of 3’GL, 3FL, 6’GL, DSNLT, LNFP-II, LNFP-III, LNT, 
LSTb were negatively associated with higher velocity for length.

Conclusion: We introduced novel statistical approaches to establish longitudinal 
associations between HMOs evolution and growth. Based on our approach 
we  propose that HMOs may act synergistically on children growth. A possible 
causal relationship should be further tested in pre-clinical and clinical setting.
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Introduction

Human milk oligosaccharides (HMO) are the most abundant 
solid component of human milk, after fat and lactose, with an 
estimated concentration ranging between 5 and 15 g/L (1). Although 
largely not digestible by the infant’s gut, HMOs are known to 
be  associated with a range of biological functions, such as 
gastrointestinal development (2–8), protection against infection 
(9–11) and inflammation (12) and more recently in 
neurodevelopment (13). Breastmilk composition, and in particular 
the concentration of HMOs, is known to evolve during the lactation 
period (1, 14, 15); the total concentration of HMOs has been 
observed to decrease, as well as the concentration of most of the 
individual HMOs, with the notable exception of 3FL which 
increases over time (1, 15, 16). Berger et al. (17) have speculated 
that these dynamic changes in HMO concentrations may reflect 
their involvement in biological functions beyond the first 
few months.

The concentration of HMOs in breast milk varies among 
individuals and particularly depends on the expression of α1-2-
fucosyltransferase (FUT2) and α1-3,4-fucosyltransferase (FUT3) 
genes which determine the secretor (Se) and Lewis (Le) status, 
respectively (18). 2′-fucosyllactose (2’FL) is absent in the milk of 
non-secretor women, while it is the most abundant HMO in the milk 
of secretors. While maternal genetic polymorphisms for the Se and Le 
genes explain, to a large extent, the HMO variability between mothers 
(18), additional maternal or infant factors like pre-pregnancy BMI, 
age, mode of delivery and gestational age may contribute as well to the 
interindividual variability (15).

The first objective of this exploratory work was to characterize the 
temporal and inter-individual variability of the HMO concentrations 
in a US cohort over the first 3 months of lactation. 24 HMOs were 
measured at three time points; although approximately 150 HMOs 
have been identified in the literature, it is known that the HMOs used 
in our study account for roughly 90% of the total HMO (1). 
We developed a novel data-driven approach to cluster breast milk 
samples based on the concentrations of HMOs, and tested if these 
clusters were associated to maternal factors, such as mode of delivery 
or pre-pregnancy BMI. The data-driven clustering was based on the 
abundances of all the measured HMOs, assigning samples to milk 
types sharing similar HMO profiles, and we compared the resulting 
clusters to the milk types defined by the presence/absence of specific 
HMOs (e.g., 2’FL and LNFP-I) as proxies for the Se, Le status (18). 
Van Leuween (19) observed that it may not always be  correct to 
determine the milk type based on HMOs composition at one single 
time-point, and in our analysis we also considered the intra-individual 
variability, by describing trajectories of individual HMOs within 
each cluster.

As a second objective, we  investigated the effect of HMO 
concentrations on growth parameters (head circumference, body 
weight and body length, measured at 8 time points up to 24 months of 
age). HMOs are hypothesized to affect growth through several 
mechanisms, including a possible role in functional gut maturation, 
therefore improving nutrient absorption (20). Moreover, in some 
studies, multiple HMOs (eg 2’FL, and 3FL) have been detected in the 
urine and plasma of breastfed infants, but not in formula-fed infants 
(21), suggesting the possible existence of systemic effects, yet to 
be identified (14, 16, 22–27).

The biological functions of many, if not most, HMOs remain 
unknown. Selected HMOs are increasingly added to infant formulas 
for their beneficial health benefits (6). It is therefore important to 
understand better these benefits, whether they might be supported by 
synergistic effects and what are the natural variations of the individual 
HMO concentrations over the course of lactation. This knowledge 
might help to target the HMOs that are the most relevant at critical 
windows of infant development. In turn, such investigations pose 
methodological challenges for the data analysis, that the present study 
intended to address.

Patterns of development are often non-linear, therefore linear 
mixed effect models that are often used in modelling growth 
trajectories may not describe the data accurately. Non-linear 
parametric approaches are an alternative to linear mixed models, 
however, they rely on parametric assumptions that might not 
be  realistic. In addition, the sparsity often found in real data is a 
challenge for fitting the data into those models (23). Functional data 
analysis offers a non-parametric, non-linear approach to model 
sparse, non-linear longitudinal data. The FPCA approach allows 
extracting the patterns of growth from a set of trajectories and has 
been successfully applied in many domains, including 
neurodevelopment (28) and gene expression (29, 15).

Materials and methods

Endpoints

Table 1 summarizes the timepoints available for the milk samples 
and the body measures.

Description of study population

Children for this study were selected from the observational 
breastfeeding arm of a prospective longitudinal randomized 
control trial. Results for the randomized arm were analyzed in a 
previous publication (30). Infants for the trial were recruited and 
followed over 24 months at two study sites in the United States 
(Rhode Island Hospital in Providence, RI, and Pennington 
Biomedical Research Center, in Baton Rouge, LA). Maternal 
screenings were performed during the third trimester of pregnancy 
up to and including post-delivery. Following written informed 
consent (screening visit), sociodemographic information, medical 
and family histories were collected, as well as a physical and 
neurological examination of the infant. Withdrawal from the study 
was possible at any point and with no further evaluations and any 
additional data collection. The research ethic boards at both clinical 
sites approved the protocol.

In total, 107 breast milk samples were available for analysis. The 
demographic characteristics of the mothers are summarized in 
Table 2. 61 (57%) children were female, 46 (43%) were male. Mean age 
of the mothers at recruitment ranged from 19 to 43 years, with an 
average of 32 years. Most mothers were white (70%) BMI before 
pregnancy ranged from 19.1 to 39.9, with an average of 27.2 and a 
median of 26. 72% of children were born through vaginal delivery.

Supplementary Table  1 summarizes the anthropometric 
characteristics of the breastfed children involved in the study.
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Exclusion criteria were: (i) Birth>41 weeks +6 days gestation as 
reported in medical record when available; (ii) Birth Weight < 2000 g 
or small for gestation age (birth weight less than the 10th percentile 
for the gestational age) or large for gestational age (weight, length, or 
head circumference above the 90th percentile); (iii) Any unsafe 
psychopharmacological treatment of mother using prohibited 
medications during pregnancy or lactation as assessed by medical 
interview. This included anticonvulsants, antidepressants, 
benzodiazepines, cytotoxic drugs, dopamine agonists, opioids.

Milk samples

Breast milk was sampled from mothers longitudinally at defined 
study visits, each time between 10 AM–12 PM from the right breast 
using a hospital grade electric breast pump. Mothers were asked to 
empty the right breast approximately 2 h prior to milk sampling and 
the time of milk sampling the complete breast was emptied using a 
pump (single full breast milk sampling methodology). Only a fraction 
of the collected milk was aliquoted for research and the rest was 
returned to mother to feed the baby at a later time.

Data on feeding mode and introduction of solid food were 
collected via questionnaires at baseline, 6 weeks, 3, 6, 9, and 12 months. 
Up to at least 4 months of age children received breastmilk for more 
than 90% of nutritional intake and no infant formula or solids for 
more than 10% of the nutritional intake (approximately 6 feeds 
per week).

HMO data (Table 3) were available for N = 107, 97, 76 individuals 
at 2–5 weeks, 6 weeks, 3 months (visits V0–V2), respectively. 76 
mothers had complete HMO data for all three visits.

HMOs were analyzed by ultra-high performance liquid 
chromatography with fluorescence detection (UHPLC-FLD), 
according to the method of Austin and Benet (31). We refer to Table 3 
for the full list of measured HMOs and their respective abbreviations. 
2’FL, 3FL, 3’SL, 6’SL, LNT, LNnT and LNFP-I were quantified against 
standards of analytical quality all other HMOs were quantified against 
maltotriose assuming equimolar response factors. Mother’s genotypes 
to define Secretor and Lewis status were not available.

Statistical analysis

We first calculated the sum of all HMO concentrations at each 
time point in each sample and tested for significant differences 
between visits V0 and V1, and between V1 and V2. We compared the 
Shannon diversity of the HMOs between timepoints. The Shannon 
diversity index is low when all HMOs are present in similar 
concentrations. The more unequal the abundance of HMOs, the larger 
the corresponding Shannon entropy.

In this work, we analyzed both the proportion of each HMO, 
expressed as % of the sum of the 24 measured HMOs, and their 
concentration expressed in mg/L. Since the volume of milk per feeding 
was not measured, total amounts of HMOs or other milk components 
are not known, and only relative information was available for analysis.

We applied a data-driven method to assign mothers to clusters of 
HMO composition. The number of clusters was data-driven as well. 
Basically, we  clustered together samples sharing a similar HMO 
profile. Our approach was based on network theory (32), where each T
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node of the network corresponds to a milk sample and two nodes are 
connected based on the similarity between their HMO profiles. 
We first calculated the Aitchison (33) distances between all the pairs 
of samples, all subjects and all timepoints. The resulting matrix of 

distances allows us to identify the closest neighbor to a given sample. 
The edges in the network were weighted, with weights inversely 
proportional to the distance between the samples. Therefore, two 
samples with similar HMO composition have a short distance and 
therefore will be  connected with a high weight in the network. 
We applied the leading eigenvalues method (34) to identify clusters in 
the network. These clusters correspond to groups of samples sharing 
a similar HMO composition. We applied a Kruskal-Wallis test to each 
HMO to test whether its concentration was significantly different 
between the clusters. We  also made qualitative comparisons with 
clusters of HMOs that can be derived from presence or absence of 
2’FL and LNFP-II (3, 6).

We tested for differences between HMO clusters for several 
covariates: mother’s BMI before pregnancy, BMI status, mode of 
delivery, ethnicity, and gestational age. BMI status was defined as 
‘overweight’ (OW) for a BMI ≥25 kg/m (2), ‘obese’ (OB) if BMI 
≥30 kg/m2, ‘normal weight’ (NW) otherwise. Fisher’s exact tests were 
used to test the independency between two categorical variables. 
Permutational analysis of variance (PERMANOVA) was used to test 
the equality of the overall HMO composition between groups (e.g., 
clusters). Kruskal-Wallis test was used to check the independence 
between a continuous and a categorical variable, followed by a Dunn 
post-hoc test.

We calculated all pairwise correlations between the individual 
HMOs, at each timepoint, and visualized them as a heatmap, to 
summarize and display patterns in the data. In particular, the existence 
of strong correlations between pairs of HMOs is an important 
background information when interpreting associations arising from 
the application of univariate models, and suggests a possible 
synergistic effect of several HMOs acting in combination.

All correlations reported in this study were Spearman correlations, 
and a Benjamini-Hochsberg correction for multiple testing was 
applied whenever applicable, using a false discovery rate of 5%.

Previous work (14, 16) has explored the influence of individual 
HMOs on growth, using linear mixed models with growth parameters 
as response variable and the HMO level as predictor. We propose an 
alternative approach derived from functional data analysis (22–27) to 
describe the growth trajectories and their main modes of variation; 
this approach allowed us to identify distinct growth patterns in the 
data, that could not be properly detected using linear models. These 
patterns were then investigated in association with the clusters derived 
in the first part of the analysis.

We investigated the associations between the HMO composition 
and the child’s growth over time.

We plotted the growth data separately for boys and girls, using the 
WHO reference values.1 Growth trajectories were analyzed within the 
methodological framework of functional data analysis (23). More 
specifically, we  applied Functional Principal Component Analysis 
(FPCA) to describe trajectories using a limited number of numerical 
parameters, the FPCA scores (11). FPCA models longitudinal data as 
samples from smooth curves, so that the time-varying trait of the i-th 
subject admits a Karhunen-Loeve expansion
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k
i k k( ) = ( ) + ( )

≥
∑µ ξ φ
1

,

1 https://www.who.int/tools/child-growth-standards/standards

TABLE 2 Maternal characteristics.

Ethnicity n %

White 75 70

African American, black 8 7

Mixed race 8 7

Hispanic 5 5

Asian 3 3

Latino 2 2

Other 6 5

Income n %

I prefer not to answer 23 21

200,000 USD or more 7 6

150,000–199,999 USD 10 9

110,000–149,999 USD 17 16

90,000–109,999 USD 9 8

70,000–89,999 USD 10 9

50,000–69,999 USD 10 9

30,000–49,999 USD 10 9

10,000–29,999 USD 9 8

Missing 2 2

Number of siblings n %

0 39 36

1 44 41

2 14 13

3 7 7

4 1 1

5 2 2

Body measures Mean (SD) [Min, Max]

BMI before pregnancy 27.3 (5.8) [19.1, 39.9]

Gestational age Mean (SD) [Min, Max]

Weeks 39.3 (1.11) [37.0, 41.0]

Age at recruitment Mean (SD) [Min, Max]

Years 32 (5) [19, 43]

Mode of delivery n %

Vaginal 77 72

C-section 30 28

Maternal education n %

High school not graduated (10th or 11th grade) 2 2

High school graduate 8 7

Partial college/university, not graduated 24 22

Profession training/graduate degree/master/

doctorate/MBA 30 28

Other 43 40
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TABLE 3 Overview of all HMOs measured, with chemical structure and abbreviation.

HMO Abbreviation

2'-FUCOSYLLACTOSE 2'FL

3'-GALACTOSYLLACTOSE 3'GL

3'-SIALYLLACTOSE 3'SL

3,2'-DIFUCOSYLLACTOSE DFL

3-FUCOSYLLACTOSE 3FL

6'-GALACTOSYLLACTOSE 6'GL

6'-SIALYLLACTOSE 6'SL

A-TETRASACCHARIDE A-TETRA

DIFUCOSYLLACTO-N-HEXAOSE-a DFLNHa

DISIALYLLACTO-N-TETRAOSE DSLNT

Unidentified hexasaccharide of composition Hex4 HexNAc2 unidentified Hex4 HexNAc2

LACTO-N-DIFUCOHEXAOSE-I LNDFH-I

LACTO-N-FUCOPENTAOSE-I LNFP-I

LACTO-N-FUCOPENTAOSE-II LNFP-II

LACTO-N-FUCOPENTAOSE-III LNFP-III

LACTO-N-FUCOPENTAOSE-V LNFP-V

LACTO-N-HEXAOSE LNH

(Continued)
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where µ t( ) represents the average trajectory and the ξi k,  are the 
FPCA scores. The sum in the above formula can be truncated to a 
fixed number of terms, and the fraction of variance explained will 
depend on how many terms are kept in the sum. We applied FPCA 
separately to the length, weight, and head circumference data.

For our applications, based on the percentage of variation 
explained, we  selected the first 2 scores as descriptors for the 
trajectories, FPCA1 and FPCA2. We therefore effectively achieve a 
dimensionality reduction, where a trajectory, a priori defined by 8 
time points, can be effectively described by just 2 parameters.

We then tested whether the FPCA scores were associated with the 
HMO clusters, with the single HMO concentrations or with the 
maternal baseline characteristics.

We then further investigated which of the HMOs concentrations 
were associated with higher velocity, by running linear models 
adjusted for clustering and with an interaction term between cluster 
and HMO concentration:

 FPCA Intercept HMO cluster cluster HMO2 = + + + ∗  (1)

where HMO stands for the HMO concentration in mg/L, cluster 
is a categorical variable 1–4 and the last term accounts for 
the interaction.

It is expected that the body length, weight, and head circumference 
are correlated, therefore we report the correlations between the FPCA 
scores associated to the various growth measures (length, weight, 
head circumference).

All analyses were performed with R, version 4.0.2. Network 
analysis was performed with the package igraph (v 1.3.0) and 
functional PCA was performed using the package fdapace 
(v 0.5.8).

Results

Description of HMO composition over the 
lactation period/time

The total measured HMO concentration decreased over the first 
3 months of lactation from 9182 (2013) mg/L, at V0, to 7,887 mg/L 
(1813) at V1 and 6,248 mg/L (1322) (mean (SD)) at V2.

Consistently with previous findings (15) we observed a decrease 
of almost all HMOs with time of lactation (Supplementary Table 2). 
A noticeable exception to this decreasing pattern was 3FL, which 
increased from 704 mg/L (538 mg/L) at V0 to 1,118 mg/L 
(698 mg/L) at V2.

Mothers can be deemed as secretors/non-secretors based on the 
presence/absence of α-1-2-linked fucosylated HMOs (2’FL and 
LNFPI). In secretor mothers, 2’FL was the most abundant HMO, 
representing up to 58% of the total measured HMO 
(Supplementary Table 2).

The Shannon diversity at V2 was lower than at V1 (Wilcoxon test, 
p < 0.01), and lower than at V0 (Wilcoxon test, p < 0.01). This is 
reflected in the fact that the cumulative proportion of the two most 

TABLE 3 (Continued)

HMO Abbreviation

LACTO-N-NEODIFUCOHEXAOSE LNnDFH

LACTO-N-NEOFUCOPENTAOSE-V LNnFP-V

LACTO-N-NEOTETRAOSE LNnT

LACTO-N-TETRAOSE LNT

MONOFUCOSYLLACTO-N-HEXAOSE-III MFLNH-III

SIALYLLACTO-N-TETRAOSE-B LSTb

SIALYLLACTO-N-TETRAOSE-C LSTc
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abundant HMOs, 2’FL and 3FL, increased from 29% at V0 to 34% at 
V1 and increased to 41% at V2. There was no significant difference in 
diversity between V0 and V1.

Pairwise correlations between the concentrations of individual 
HMOs are reported in the supplementary materials 
(Supplementary Figures  1–3): significant correlations ranged 
between −0.9 (2’FL and LNFP-V at V0) and 0.9 (3FL and LNFP-II 
at V1). In general, we observed very strong positive correlations 
between 2’FL, DFNLHa, LNFP-I, between 3FL and LNFP-II, and 
between DSLNT, LSTb, LNFP-V, LNT at all timepoints. Also, Hex4 
HexNAc2 was positively correlated (Spearman ρ = 0.7 at V0) with 
LNnT, and 6’SL with LSTc (ρ = 0.7 at V0, V1, ρ = 0.8 at V2). 2’FL and 
LNFP-II were not significantly correlated with LNH, 3’GL, 6’GL, 
6’SL, LSTc. LNFP-I was significantly and negatively correlated with 
3FL (ρ = −0.8 at V0), LNFP-V (ρ = −0.5 at V0), LNFP-II (ρ = −0.5 at 
V0), LNnFP-V (ρ = −0.4 at V0), LNFP-III (ρ = −0.3 at V0). In most 
cases, these correlations and their statistical significance were similar 
across visits. Other HMOs, like A-Tetrasaccharide or 6’GL, were 
weakly correlated, or not significantly correlated with the 
other HMOs.

We calculated the pairwise Aitchison distances between all 
samples, resulting in a 276 × 276 matrix. Figure  1 compares the 
distances between samples from the same donors and samples from 
different donors. As expected, the intra-individual distances 
between samples were significantly smaller than the inter-
individual distances.

We then defined a weighted network with the samples as nodes 
and edges weighted by the inverse of their distance. Each node 
corresponds to a subject at a given timepoint. The resulting weighted 
network was partitioned, producing four clusters of sizes 97(35%), 89 
(32%), 62 (22%), 28 (10%), consisting of samples sharing a similar 
HMO composition.

The average value of each HMO at each timepoint and in each 
cluster was plotted, as concentrations in mg/L (Figure 2). Overall, it 
appeared that several HMOs (e.g., 3FL, 2’FL, LNFP-I, LNFP-II) had 
well separated, non-overlapping, trajectories in the different clusters, 
while for other HMOs (e.g., 6’SL, LSTc, LSTb) the trajectories were 
overlapping or even crossing. The concentrations of 6’SL decreased in 
all clusters, from an average of 468 mg/L at V0 to 119 mg/L at V2 in 
cluster 1, from 489 mg/L to 147 mg/L in cluster 2, from 535 mg/L to 
155 mg/L in cluster 3 and from 588 mg/L to 203 mg/L in cluster 4. In 

Figure 3, we looked at the temporal consistency of clustering: whether 
the milk samples remained in the same cluster across visits. All 
subjects belonging to cluster, 3 or 4 at the first visit, remain in the same 
cluster afterwards. Some of the subjects starting in cluster 2 switched 
to cluster 1 afterwards.

Cluster 1 was characterized as having the highest concentrations 
of A-TETRA, DFL, LNDFH-I and LNnFP-V and second highest 
proportions of 3FL, LNFP-II (Figure 2). It also had the lowest levels 
of MFLNH-III. Cluster 2 was characterized by the highest 
concentrations of LNnT and LNH, and second highest 
concentrations of 2’FL, A-TETRA and LNDFH-I. Also, the 
concentration of 3FL in this cluster was roughly stable across visits. 
Cluster 3 was characterized by highest concentrations of 3FL, 
LNFP-II, LNFP-V, LNT, MFLN-III, and lowest concentrations of 
2’FL, LNDFH-I, LNFP-I, LNnT. 2’FL was actually absent in this 
group, which then corresponds to the non-secretor group. LNFP-I 
was also absent in this cluster. Cluster 4 is characterized by highest 
concentrations of 2’FL, DFLNHa, LNFP-I, and lowest concentrations 
of 3FL, LNDF-I, LNFP-II, LNFP-V. Moreover, LNDFH-I and 
LNFP-II were absent in this cluster. Clusters 3 and 4 had significantly 
smaller Shannon diversity at all time points compared to clusters 1 
and 2, cluster 4 had a significantly lower diversity than cluster 2 at 
visits V0 and V1, and cluster 2 had lower diversity than cluster 1 at 
visit V1.

A majority of HMOs had significantly different concentrations 
between the clusters, at least one timepoint, with the exception of 
3’GL, 6’GL, 6’SL, LNnDFH, LSTc (Figure 4).

The total measured HMO concentration varied between the 
clusters and was consistently the lowest in cluster 3 (Figure 5).

Association with maternal and baseline 
characteristics

HMO clustering was not associated with mother’s age at 
recruitment, pre-pregnancy body mass index (ppBMI) or 
gestational age.

We further tested the impact of BMI status on HMO 
concentrations, First, total HMO concentration and Shannon diversity 
index were not different between overweight (OW), obese (OB) and 
normal weight (NW) groups, at any visit. We  then compared the 
average trajectories for each of the HMOs between the BMI groups 
regardless of clusters, using functional ANOVA (23): tests were 
significant only for 6’GL (p = 0.04), LNH (p = 0.04), LSTc (p = 0.04) 
(Supplementary Figure 4). We also tested if HMO concentrations were 
different between vaginal delivery and C-section. Specifically, the 
concentration of LNnT and Hex4 HexNAc2 (2) at 3 months was 
affected by birth mode and lower in the group of mothers who 
delivered through C-section (Table 4).

Association with growth

Children in this study showed a normal development for length 
and weight (see Supplementary Figures 5–8).

Although the differences did not reach statistical significance, 
children from mothers in cluster 3 (non-secretors) were on average 
1 cm shorter than the rest.

FIGURE 1

Comparison of distances between samples. Inter-individual distances 
were calculated between different mothers, and intra-individual 
distances between samples from the same mother but at different 
time points.

https://doi.org/10.3389/fnut.2023.1239349
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Mainardi et al. 10.3389/fnut.2023.1239349

Frontiers in Nutrition 08 frontiersin.org

Length
When applied to the trajectories of body length, FPCA resulted in 

97% of the variance explained by the first two scores, the first score 
FPCA1 explained 93% of the variance, and was positively correlated 
with the length z-scores at all time points (Figure 6). The second score 
(FPCA2) explained 4% of the variance; it was negatively correlated 
with length at early timepoints, and positively correlated at V7, so 
positive values of FPCA2 correspond to trajectories having a slow 
growth before V3 months and an increase at V6 and V7 (Figure 7). 
We will refer to FPCA1 as ‘general growth’ and to FPCA2 as ‘higher 
velocity’. See Figure 8 for an illustration of these patterns.

General growth was higher for boys (T test, p < 0.01), indicating 
that in girls most trajectories of length were below the trajectories for 
boys. Higher velocity rates were not significantly different between 
males and females.

Clusters of HMOs at V2 were significantly associated with higher 
velocity (FPCA2 score), but not with general growth (FPCA1 score), 
with cluster 4 having significantly higher values than cluster 1 
(Figure  9). The same trend was observed at V0 and V1, albeit 
not significant.

Concentrations of 3’GL, 3FL, 6’GL, DSNLT, LNFP-II, LNFP-III, 
LNT, LSTb were negatively associated with higher velocity 

FIGURE 2

Each dot represents the average concentration of each HMO, in each cluster and for each time point. Several clustering variables show consistent 
temporal patterns: for example, LNFP-V is consistently highest in cluster 4, while 3FL is consistently highest in cluster 3 (non-secretors). 
V0  =  2–5  weeks, V1  =  6  weeks, V2  =  3  months. For other HMOs, like 6’GL, LSTc and DSLNT, the concentration is similar between the clusters. Several 
HMO concentrations exhibit a non-linear trend, with an increase between the first and second visit and a decrease between the second and third visit.
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(Supplementary Table  3). For 3FL, this negative association was 
consistent across the time of lactation (V0, V1, V2).

Weight
For the weight, the first score FPCA1 explained 91% of the variance, 

and was highly correlated with the weight z-scores (ρ = 0.58 at V0, 0.72 
at V1, 078 at V2, 0.84 at V3, 0.9 at V4, 0.9 at V5, 0.93 at V6, 0.9 at V7, all 
significant). The second score FPCA2 explained 7% of the variance, and 
Spearman correlation coefficients with z-scores were − 0.5 at V0, −0.57 
at V1, −0.59 at V2, −0.53 at V3, −0.37 at V4, all significant (p < 0.01); 
correlations at V5-V6 were not significant. At V7, there was a significant 
positive correlation between FPCA2 and the z-score (ρ = 0.21); higher 
values of FPCA2 correspond to weight trajectories that are below the 
average before 9 months and above the average afterwards. FPCA1 was 
positively and significantly correlated with growth velocity at V2, 
3 months (ρ = 0.48); at later time points FPCA1 and velocity were not 
significantly correlated. FPCA2 was significantly positively correlated 
with velocity at V4, 9 months (ρ = 0.49) and V5, 12 months (ρ = 0.57).

As in the case of length, clusters of HMOs at V2 were significantly 
associated to higher velocity for weight, as measured by FPCA2 
(Kruskal-Wallis, p = 0.02, average values were − 0.7 for clusters 1,2, 
−0.2 for cluster 3, 2.7 for cluster 4). A post-hoc Dunn comparison test 
resulted in significantly higher values in cluster 4 compared to the 
other clusters.

General growth (FPCA1) was higher for boys (T test, p = 0.02) 
with a mean value of 2.02 kg, versus a mean value of −1.73 for girls. 
FPCA2 was higher for girls (T test, p = 0.04), with a mean value of 
0.33 kg, versus a mean value of −0.57 for boys.

Head circumference
For the head circumference, the first score FPCA1 explained 93% 

of the variance, and the second score FPCA2 explained 4% of the 
variance. Again, we can interpret FPCA1 as a measure of general 
growth and FPCA2 as a measure of higher velocity. FPCA scores for 
head circumference trajectories were not significantly associated with 
the HMO clustering.

FIGURE 3

Temporal consistency of clustering: each row corresponds to a mother, the heatmap describes whether the milk samples remained in the same cluster 
between visits. Grey cells are missing values. All subjects belonging to cluster, 3 or 4 at the first visit, remain in the same cluster afterwards. Some of the 
subjects starting in cluster 2 (green) switch to cluster 1 (orange) afterwards.
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Discussion

Our analysis aimed to explore the temporal and interindividual 
variability of the HMOs during the first 3 months of lactation, and to 
investigate the potential effect on growth. Since several groups of 
HMOs are highly correlated, multivariate methods may help to 
understand their interactions, and their cumulative effects. In this 
exploratory analysis, we  proposed a modelling methodology to 
overcome some of the difficulties that occur when analyzing such data, 
in particular to address at the same time the non-linearity of growth 
patterns and their potential association with multi-dimensional, 
highly correlated HMO concentrations.

We applied a data-driven algorithm to assign mothers to clusters 
sharing similar HMO profiles. The significance of this clustering is 
that it is based on the concentrations of a panel of 24 HMOs, and takes 
into account their mutual correlations. The clustering algorithm 
produced 4 clusters, distinct from the 4 milk types that are usually 
defined based on fucosyltransferase (FUT2 and FUT3) 
polymorphisms. However, the two partitions overlap: for example, our 
clusters 1 and 2 were composed of samples from mothers belonging 
to the (FUT2+, FUT3+) group and they differed in their respective 
concentrations of several fucosylated HMOs, including 3FL (higher 
in cluster 1), LNnT (higher in cluster 2), DFL (higher in cluster 1). 
Therefore, clusters 1 and 2 split the (FUT2+, FUT3+) group in two 
subgroups, with distinct levels of several of the most abundant HMOs; 
this might reflect differences in FUT enzymatic activity with FUT3 
having potentially a stronger activity in cluster 1 compared to cluster 
2. Cluster 3 corresponded to the (FUT2−, FUT3+) type. Cluster 4 was 
analog to the milk group  3 (FUT2+, FUT3−) with the highest 
concentrations of 2’FL, DFLNHa, LNFP-I, and lowest concentrations 
of 3FL, LNDF-I, LNFP-II, LNFP-V.

Previous studies (15) reported that 3FL, LNFP-II and LNnFP-V 
had their highest concentration in the (FUT2−, FUT3+) group, 

similarly to what we observed in our cluster 3. Likewise, 2’FL, LNFP-I 
and DFLNHa were highest in the (FUT2+, FUT3−) group, 
corresponding to our cluster 4. These dynamics can be explained by 
the substrate and enzyme availability as well as the competition 
between FUT2 and FUT3 enzymes. Cluster 1 had a lower FUT2 
activity compared to FUT3. The opposite is true for Cluster 2. When 
both enzymes are necessary to synthesize an HMO like in the case of 
LNDFH-I, more is synthesized in the cluster with a presumably 
stronger FUT2.

In general, the intra-individual variability was significantly lower 
compared to inter-individual variability. While subjects were 
consistently clustered in clusters 3 and 4, independently of the time of 
lactation, some subjects switched from cluster 2 to 1. This might 
be explained by a difference in gene regulation and enzyme activity 
over time, in clusters 1 and 2 with the same Se and Le status, which 
may follow different patterns of change for each HMO. This means 
that the overall breastmilk composition, while remaining in the 
(FUT2+, FUT3+) group, can vary over the lactation period, with some 
HMOs decreasing more rapidly than others, changing the ratios 
between HMOs. We therefore suggest that it may be important to 
distinguish these subgroups in a statistical analysis, as these different 
rates of change might have a biological relevance.

When HMOs were expressed as % of total measured HMO, 
comparing Figure 2 with Supplementary Figure 9, patterns look very 
similar for several HMOs, including 3FL and LNFP-I, but differences 
appear for 3’SL and other HMOs. This highlights the fact that the 
concentration of a specific HMO can increase over time while 
decreasing as % of total measured HMO.

Only a few studies to date have investigated variations in the 
HMO composition in relation to maternal age (35), but the results are 
in general not conclusive. Our clusters of HMO composition were not 
associated with maternal characteristics such as age and maternal 
ethnicity. The same lack of association was observed for the levels of 

FIGURE 4

Dark cells correspond to significant difference between the clusters (kruskal test). On the left, HMOs are expressed in relative concentrations (as % of 
total HMO), on the right, they are expressed in mg/L.
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2’FL and LNFP-II and, a fortiori, for the clustering based on the FUT2, 
FUT3 levels.

A negative association of 3’SL with ppBMI had been reported by 
Saben et  al. (36), who suggested that HMO sialylation may 
be  negatively associated with maternal adiposity. According to 
Samuel et  al. overweight women from a European cohort had 
significantly higher concentrations of 3′SL, 6′GL and DSLNT (at day 
2), 6′SL (at day 17) and LNFP-V (at 3 and 4 months), while lower 

concentrations of LNnT (at day 2), LNT (at 1 and 3 months) and 
LNFP-V (at 2 months) compared to normal weight women (p < 0.05 
for all). Other studies reported non-significant associations between 
HMO concentrations and ppBMI (37). We observed in our data that 
6’GL, LNH and LSTc were consistently higher in the overweight 
group. To the best of our knowledge, associations of LNH and LSTc 
concentrations with ppBMI have not been reported before.

Samuel et al. reported lower concentrations of 2’FL, 3’SL and 6’GL 
at 2 days, among women delivering through C-section (15). Although 
we observed the same trend for these HMOs all time points, it was not 
significant, possibly because this association might be stronger at a 
very early stage of lactation.

It was proposed that HMO composition might affect child growth 
by altering the composition of the gut microbiome (38). Our results 
suggest a possible association of the Lewis negative status with a 
specific longitudinal growth pattern, as discussed below.

Higher HMO diversity and evenness at 1 month have been 
associated to lower total and percentage fat mass at 1mo (39). In 
Lagström et al. (40), the concentration of LNnT (at 3 months) was 
inversely associated and that of 2’FL (3 months) was directly 

FIGURE 5

Sum of measured HMO concentrations, at each visit, split by cluster. Cluster 3, corresponding to non-secretors, had the lowest total concentration of 
HMOs.

TABLE 4 Concentrations of Hex4 HexNAc2 and LNnT at 3  months are 
lower in the C-section group.

HMO

C-section
Mean 

concentration 
(mg/L)

Vaginal 
delivery

Mean 
concentration 

(mg/L)

Adjusted 
p value

Hex4 

HexNAc2

11.2 16.7 0.048

LNnT 85.6 116.0 0.039
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FIGURE 6

FPCA1 score is positively correlated with the z-scores for length (cm). Correlations: 0.54 (V0  =  2–5 wk), 0.70 (V1  =  6 wk), 0.73 (V2  =  3 mo), 0.82 (V3  =  6 
mo), 0.81 (V4  =  9 mo), 0.88 (V5  =  12 mo), 0.88 (V6  =  18 mo), 0.78 (V7  =  24 mo). All p-values <0.01.

FIGURE 7

Correlations between FPCA2 scores and length (cm). Correlations: –0.79 (V0), –0.56 (V1), −0,37(V2), −0.05 (V3), −0.13 (V4), −0.12 (V5), 0.3 (V6), 0.35 
(V7). Correlations were significant only at V0-V2 and V6-V7.
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associated with child length and weight z-scores in a model adjusted 
for maternal pre-pregnancy BMI, mode of delivery, birthweight 
z-score, sex and time. In an exploratory study, Sprenger et al. (16) 
found that FUT2 related alterations of breast milk HMOs 
composition as assessed through 2’FL concentrations, did not 
impact growth of breastfed infants during the first 4 months of life. 
However, they reported a non-statistically significant trend, with 
males from mothers with low 2’FL milk appearing to have a slightly 
higher BMI at 1 month, which was not seen any more at 4 months of 
age when they rather had a smaller BMI and body weight gain. Our 
approach suggests a complex, dynamic association between growth 
and HMO composition, illustrated by diverging trajectories starting 
from 3 months. However, these associations did not address the 
question of how changes in growth trajectories could be associated 
with early exposure to higher concentrations of HMO. Therefore, 
we  analyzed the trajectories of length, weight, and head 
circumference over a period ranging from 2–5 weeks to 24 months, 
applying a data-driven approach derived from functional data 
analysis (23, 28, 29). In our study, each trajectory could be accurately 
described by two numbers (FPCA1, FPCA2), the first describing 
general growth (higher scores correspond to trajectories above the 
average at all time points), and the second describing a pattern of 
increased velocity at 12–18 months. These two scores jointly describe 
accurately the shape of the individual trajectories and can 

be  therefore taken as a space of coordinates describing the 
growth trajectories.

Children fed with breast milk of cluster 4 (high in 2’FL, DFNHA, 
LNFP-I, LNDFH-I, low in 3FL) at 3 months, experienced a slight 
growth spurt after 12 months, compared to children fed with breast 
milk of cluster 1 (high in DFSL, LNDF-I). Since cluster 1 belongs to 
the (FUT2+, FUT3+) group and cluster 4 belongs to the (FUT2+, 
FUT3−) group, this can be interpreted as a possible association of the 
Lewis negative status with this particular longitudinal growth pattern. 
This supports the possibility that HMO concentrations should 
be  looked at in combination when assessing associations with 
development, and that the non-linear patterns in the developmental 
trajectories must be appropriately modelled.

To the best of our knowledge, this is the first study to investigate 
the longitudinal association between clusters of HMO composition 
and child’s physical development. Among the limitations, 
we acknowledge the modest sample size and the limited age range 
0–24 months, limiting the interpretation of the growth patterns to 
early growth.

Using longitudinal data, we  introduced novel methodological 
approaches, like network analysis of compositional data and functional 
PCA, to address the multivariate nature of the data. This approach 
may help to reveal complex longitudinal patterns, and can help future 
studies in the field.

FIGURE 8

Average trajectories for length. Trajectories were split in 4 groups, based on median FPCA scores. A shared letter indicates a non-significant difference 
at the corresponding time point. For example, the ‘Low FPCA1l/high FPCA2’ is significantly lower than the ‘Hi FPCA1/low FPCA2’ at V0, V1, V2, V3, but 
not at V7.
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