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During the last decade, scientific interest in and consumer attention to sourdough 
fermentation in bread making has increased. On the one hand, this technology 
may favorably impact product quality, including flavor and shelf-life of bakery 
products; on the other hand, some cereal components, especially in wheat 
and rye, which are known to cause adverse reactions in a small subset of the 
population, can be partially modified or degraded. The latter potentially reduces 
their harmful effects, but depends strongly on the composition of sourdough 
microbiota, processing conditions and the resulting acidification. Tolerability, 
nutritional composition, potential health effects and consumer acceptance of 
sourdough bread are often suggested to be superior compared to yeast-leavened 
bread. However, the advantages of sourdough fermentation claimed in many 
publications rely mostly on data from chemical and in vitro analyzes, which raises 
questions about the actual impact on human nutrition. This review focuses on 
grain components, which may cause adverse effects in humans and the effect 
of sourdough microbiota on their structure, quantity and biological properties. 
Furthermore, presumed benefits of secondary metabolites and reduction of 
contaminants are discussed. The benefits claimed deriving from in vitro and 
in vivo experiments will be  evaluated across a broader spectrum in terms of 
clinically relevant effects on human health. Accordingly, this critical review aims 
to contribute to a better understanding of the extent to which sourdough bread 
may result in measurable health benefits in humans.
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Introduction

The application of sourdough fermentation for bakery products is increasing, especially in 
large-scale bread production. The microbiota of sourdough consists of lactic acid bacteria and 
yeasts, which is responsible for specific flavor and quality of the final products, including delayed 
staling and prevention of microbial spoilage. In addition, it is widely claimed that sourdough 
fermentation improves the nutritional profile of bread and reduces the content of components 
that may cause gastrointestinal complaints in susceptible individuals. These claims are 
predominantly based on in vitro studies that document the degradation of (potentially) harmful 
or anti-nutritive factors, or an altered digestibility of macronutrients and micronutrients (1–3). 
Effects on health inferred from in vitro observations, however, were not confirmed by 
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randomized clinical trials. Probably other factors than sourdough 
fermentation per se, such as type of grain, flour coarseness and product 
structure play a determining role. Alternatively, effects of sourdough 
bread when measured in vivo may be too small to result in significant 
changes (4–7). A recent meta-analysis of studies investigating the 
effect of sourdough fermentation on the glycemic index (GI) of bread 
provided no convincing evidence of positive effects of sourdough 
bread on either reducing GI or improving glucose homeostasis (8).

To date, the limited and inconclusive clinical data on health 
benefits of sourdough bread also prevented the approval of health 
claims by regulatory agencies including the European Food Safety 
Agency (EFSA). Despite apparently favorable data, EFSA has not 
approved any of the requested sourdough benefit claims so far. For 
example, a health claim related to the reduction of post-prandial 
glycemic responses by high fiber rye sourdough bread was not 
approved because the supporting studies demonstrated a reduced 
glycemic response relative to glucose solutions but not to comparable 
bread produced without sourdough (9). Here we aim to review the 
current state of science and the potential difficulties that may underlie 
the discrepancy between assumed benefits of sourdough fermentation 
and the apparently insufficient substantiation of these benefits in 
clinical trials.

Much of the data presented in dossiers submitted to EFSA for 
approval of health claims are based on the study of ‘isolated factors’ in 
vitro, ex  vivo and in animals. For a correct interpretation of data 
obtained from the variety of nutrition studies, one needs to understand 
all aspects of the food being tested. In the case of bread, the choice of 
the grain type, region and year of harvest, the degree of milling (fine 
or coarse), type of flour (wholemeal or refined flour) and the way the 
dough is being processed (conditions of the fermentation and baking 
process) influence its composition in terms of contents of nutrients 
and compounds that may cause intolerances in some individuals. 
Differences in these parameters may, in turn, affect digestion and 
absorption in the human body, exposure to cells and organs, and 
ultimately health. In this light, one may question what data from 
laboratory experiments mean with respect to the situation in which 
humans consume the tested food as part of their daily meals 
containing many other components.

When it is claimed that sourdough bread in comparison to 
straight dough bread with baker’s yeast as sole fermentation organism 
results in a ‘better nutritional profile’ or makes a bread ‘better 
digestible’, it is of crucial importance to define what these terms stand 
for. Dependent of the factor of measure (time or quantity) ‘better 
digestibility’ can relate to less time required for a component to 
be  completely digested or that quantitatively more of the food is 
digested and consequently less undigested matter passes into the 
colon. Further, does a ‘better nutritional profile’ mean that the 
components that may cause adverse reactions are themselves reduced 
or that anti-nutritive factors are reduced; or does it mean that more 
nutrients are present. Further, the question arises if such changes 
really lead to measurable health benefits, which is the ultimate proof 
for claim approval. Depending on what we define as ‘digestibility’, the 
parameters to be studied can be very different, which will influence 
the conclusions regarding health benefits.

For components, which may cause adverse reactions, the 
degradation of anti-nutritive factors during sourdough fermentation 
or during proofing of straight dough bread can be quantified. This 
includes phytate, lectins, amylase-trypsin inhibitors (ATIs), rapidly 

fermentable non-absorbed carbohydrates (FODMAPs), and gluten 
(10–16). Similarly, one can measure the content of specific nutrients 
that have been synthesized by the fermentation medium or released 
from the food matrix in sourdough bread compared to straight dough 
bread, like vitamins, phenolic compounds and minerals. However, 
results from chemical analyzes or in vitro assays pointing to possible 
benefits for health are often not confirmed in vivo. Thus, a critical 
question arises: does enhanced digestion rate and quantity, or a 
favorable content of certain components, as measured in vitro, have a 
significant effect on human health in terms of measured 
clinical endpoints?

Animal vs. in vitro gastrointestinal models

To use in vitro and animal data as potentially valid for the 
prediction of the human in vivo situation, the consumption, 
gastrointestinal, hormonal and metabolic factors need to be at least 
‘very similar’ to the human situation. Although frequently utilized, 
rats and mice have major differences. In contrast, swine have a 
digestive system that is similar to that of humans. This allows blood 
samples to be taken and calculations to be made on the distribution 
of nutrients throughout the body as well as their uptake by various 
organs. Data from the multiple cannulated swine model correlate well 
with human in vivo data (17–19). A significant drawback is the 
required surgery and high degree of specialization required, which 
makes its frequent use for multiple food testing impossible. To 
overcome these limitations, in vitro gastrointestinal models have been 
developed for rapid screening of potential digestibility and prediction 
of responses that are expected to occur in vivo, such as GI.

In this respect, a mechanical continuous digestion model, which 
includes the compartments of the stomach, duodenum, jejunum and 
ileum (TIM-1) and colon (TIM-2), has been developed (20). The TIM 
models have been improved over the last decade and it has been 
demonstrated that they produce valid test–retest data (21) as well as a 
high correlation when compared to both human and multi-cannulated 
pig data. In addition, the INFOGEST consortium has developed and 
validated a more straightforward statistical model (22–27).

Despite these promising developments, differences in the set-up 
and procedures of in vitro studies (e.g., duration of oral processing, 
type of enzymes used, exposure to the food sample) make direct 
quantitative comparisons of data across studies difficult. Furthermore, 
in vitro studies generally result in data on the nutrient content within 
the test digestion system. However, bio-accessibility is not the same as 
bio-availability and the two terms are often used interchangeably 
(Figure 1).

In the in vitro dynamic model, small molecules derived from 
digestion can pass through a microdialysis membrane. The rate and 
quantity of passage are often used as estimates of potential absorption 
in the human body. However, the in vitro model lacks the cells of the 
intestinal epithelium that may either consume or convert such 
molecules to other compounds. For example, small peptides are 
readily degraded by enterocyte proteases and extremely small 
quantities may pass into the blood. There they become subjected to 
hydrolysis by proteases, resulting in very short half-lives and 
concentrations too low to induce a biological effect (29–31). 
Accordingly, the presence of peptides in an in vitro digest has little 
relevance for their in vivo absorption and postabsorption bioactivity. 
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As a result, before drawing appropriate conclusions about in vivo in 
humans, in vitro data must be critically examined.

Adverse reaction to grain components

There are three main types of adverse reactions to grains, 
commonly known as: (1) celiac disease (CD), (2) wheat allergy, and 
(3) non-celiac wheat sensitivity (NCWS). Patients suffering from 
irritable bowel syndrome (IBS) show symptoms that strongly overlap 
with NCWS. Further, NCWS and IBS strongly overlap with fructose 
malabsorption (32). These disorders, except IBS, are summarized as 
gluten-related disorders (GRD) (33). An overview about components 
causing the mentioned disorders is given in Figure 2.

Celiac disease

CD is an autoimmune disorder that is triggered by consuming 
gluten-containing grains produced from wheat, rye, barley, and 
triticale. Undigested gluten peptides may pass the luminal side of the 
intestinal epithelium and enter the lamina propria via the transcellular 
or paracellular route. Subsequently, the enzyme tissue transglutaminase 
(tTG) deaminates the peptides, and dendritic cells recognize specific 

amino acid sequences on the surface of the antigen (called epitopes), 
resulting in binding to antigen-presenting cells and the initiation of 
immune and inflammatory responses (46).

Globally, approximately 1% of the population is diagnosed with 
CD, but regional prevalence may vary (47). Intestinal biopsy specimen 
analysis revealed that 0.7% (0.5–0.9%) of the population worldwide 
was positive. However, the pooled global CD prevalence was 1.4% 
(1.1–1.7%) (48). The Saharawi population in Sahara, Africa, had the 
highest CD prevalence in the world (5.6%) (49). It is well known that 
many people go undiagnosed due to unclear symptoms, which is also 
known as silent CD (50). CD is more prevalent in women than in men 
(60–40%). Dermatitis herpetiformis (DH) affects 10–15% of CD 
patients and is characterized by herpetiform clusters of pruritic, 
urticated papules and vesicles on the skin. Individuals suffering from 
CD have intestinal lining damage with the disappearance of the villi, 
resulting in a flattened surface and nutrient absorption limitations that 
cause deficiencies. The only remedy is a lifelong adherence to a strict 
gluten-free diet.

The role of oats in CD is still under discussion. Storage proteins in 
oat seeds differ from those in wheat, barley, and rye (51), and avenins, 
the oat prolamins, are significantly lower than in wheat and other 
gluten-containing cereals. Oats contain epitopes with the potential to 
trigger CD (52), albeit in low concentrations (53), as well as immune-
reactivity (45). Some studies found differences in the immunological 
responses of different oat varieties (53, 54). Recent evidence suggests 
that oats cultivated and harvested under controlled conditions, 
avoiding gluten contamination, are safe for CD patients (55–57). 
Others, however, argue that the amount of oats consumed by people 
with CD should be  limited for safety reasons (58). Nonetheless, 
gluten-free oat-based products can only be  labeled gluten-free 
according to Commission Regulation (EC) 41/2009, if the gluten 
content is less than 20 ppm. Gluten contamination in the food chain 
is a significant challenge for the food industry, frequently leading to 
intake levels well above the legal limit (59–66). Further, the low 
fructan content in oats will potentially reduce fermentation-induced 
gas formation by microbiota in the colon, reducing the risk of 
intestinal symptoms in people with NCWS and IBS, while the high 
nutritional value of oats can help compensate for deficits that are often 
inherent in gluten-free diets. Other gluten-free flour alternatives such 
as amaranth, quinoa, rice, maize and potato are popular raw materials, 
with very low immunogenic potential and immune reactivity (45, 67). 
The gluten-free pseudocereal buckwheat, however, is known as a 
potentially highly allergenic grain (67, 68).

Wheat allergy

Wheat allergy is an allergic reaction to proteins found in wheat. 
This affects 0.2–1% of the population and appears to be more common 
in children than in adults (69). More than 80% of children outgrow 
their wheat allergy by the age of 8 years, and 96% before the age of 
16 years (70). Accordingly, the number of adults affected by wheat 
allergy (0.25%) is much lower (71). Wheat allergy can be divided into 
several sub-categories such as baker’s asthma, contact urticaria, and 
wheat-dependent exercise-induced anaphylaxis (WDEIA). The 
prevalence of asthma (1–10%) and rhinitis (18–29%) is high among 
bakers who continuously inhale flour dust. For this reason, this is 
referred to as baker’s asthma and bakers associated rhinitis (69). 

FIGURE 1

Definitions of the terms “food digestion,” “nutrient bioavailability” and 
“nutrient bioaccessibility.” *For detailed review see Dima et al. (4) and 
Fernandez-Garcia et al. (28).
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Wheat-induced chronic urticaria was estimated to affect 0.5–5% of 
adults (72). WDEIA is a rare severe type of allergy, induced by the 
combination of wheat and exercise stress, but additional triggers may 
also be involved (97). WDEIA has a very low prevalence in children 
(0.017%) (98). and there are no reliable figures for its prevalence in 
adults (99). Noticeably, all food allergies, including wheat allergy, are 
more common in women than in men (100).

Non-celiac wheat sensitivity

NCWS is described as an unspecific immune-based reaction 
(sensitivity) following the consumption of wheat. There has been 
much discussion about the prevalence of patient-self reporting 
NCWS. It is assumed that the global prevalence is around 10% of 
the population, with high variations among different countries 
(82). The major reason for this is that self-reported symptoms may, 
to a large extent, be due to belief, which is strongly influenced by 
the effects of social media news as well as socio-economic factors. 
For example, four recently published studies from South America 
(Brazil, Chile, El  Salvador and Paraguay) with similar criteria 
based on a self-administered questionnaire and more than 1,000 
participants each revealed quite low prevalence of around 0.5% 

(101), 0.98% (102), and 1.71% (103) respectively, to moderate 
values of 5.2% (102). In contrast, two studies from Australia 
showed a prevalence of 13.9 and 14.9%, respectively (104, 105). 
Effects of geographic region and economic development status 
were confirmed by the review of (106) (Table 1), showing higher 
prevalence for industrial countries compared to countries with 
emerging economies. European studies show similar results. In 
England and the Netherlands, self-reported NCWS prevalence’s of 
13 and 6.2% were observed (107, 108). Many of the self-reporting 
individuals appear non-reactive to gluten when tested in a 
controlled situation (109). studied in an IBS subcohort, who 
complained of gastrointestinal symptoms after the consumption 
of gluten-containing foods. 6.6% of these patients were diagnosed 
to suffer from CD and 0.5% from wheat allergy. The remaining 
people were all put on a 6-month strictly gluten-free (GF) diet, 
followed by a reintroduction of gluten-containing grains into their 
diet. Despite their self-diagnosis of being gluten-sensitive, only 
6.88% of this IBS subcohort (approximately 1% of the general 
population) appeared to have verifiable symptoms, and 86% 
showed no specific reaction to gluten at all after reintroduction 
into the diet. Accordingly, it was concluded that self-perceived 
gluten-related symptoms are rarely indicative of the true presence 
of symptoms due to gluten consumption. Diagnosis and 

FIGURE 2

Proteins and other components and their involvement in wheat allergy (WA), Celiac Disease (CD), Non-Celiac Wheat Sensitivity (NCWS) and Irritable 
Bowle Sydrome (IBS) (34–45).
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discrimination of NCWS and IBS are challenging due to 
overlapping symptoms and the absence of clear biomarkers 
(110–112).

Irritable bowel syndrome

According to the World Gastroenterology Organization Global 
Guidelines (113), IBS is a functional bowel disorder in which 
abdominal pain or discomfort is associated with defecation and/or 
a change in bowel habit. IBS represents the most commonly 
diagnosed functional gastrointestinal disorder with an estimated 
global prevalence of about 1  in 10, ranging from 7 to 21%. A 
recently published systematic review and meta-analysis reported a 
global prevalence of 9.2% based on 53 studies from 38 countries and 
comprising 395,385 participants using the Rome III criteria, which 
are used to diagnose and classify IBS (114–117). Typical symptoms, 
such as bloating, abdominal discomfort, diarrhea, and constipation, 
overlap significantly with those of CD and NCWS (110, 118).

The recently established Rome IV criteria, classifies IBS patients 
into specific subgroups based on their predominant bowel habits: (1) 
IBS with predominant constipation (IBS-C), (2) IBS with predominant 
diarrhea (IBS-D), (3) IBS with mixed bowel habits (IBS-M), or (4) 
unspecified/unsubtyped (IBS) (115). Because IBS is not a well-defined 
disease, but rather a cluster of symptoms caused by multiple 
pathologies, accurate diagnosis is difficult, and prevalence estimates 
are often based on self-diagnosis. Because there is still no standardized 
test or biomarker for diagnosis, an examination of the detailed patient 
history is essential for an appropriate diagnosis. Within its complexity, 
it is often impossible to define exact triggers of IBS. Most patients 
assume that their symptoms are caused by specific foods, in particular 
foods rich in rapidly fermentable carbohydrates such as fruits, 
vegetables, pulses and grains (119). In addition, IBS and fructose 

malabsorption appear to overlap (120) (121). suggested that more than 
50% of patients with IBS might have an atypical food allergy, despite 
negative skin tests and serologic analysis of immunoglobulin E. People 
suffering from IBS or NCWS may benefit from a significant reduction 
in grain-based foods containing gluten and FODMAPs (80, 81, 122).

Components causing adverse 
reactions

Cereals consist mainly of carbohydrates, proteins and lipids, and 
are also a good source of fiber, minerals and antioxidants. While these 
components are the foundation of most people’s diet, wheat 
consumption may also induce adverse reactions in a small subset of 
the population. Several wheat components have been identified as 
potential allergens or triggers of CD and NCWS. Due to the presence 
of gluten proteins, even rye, barley and triticale have to be excluded 
from the diet. Many of these components have complex structures that 
are resistant to digestion and relatively stable to heat and acid exposure. 
Among the variety of grain components that cause wheat-related 
diseases, proteins are most frequently associated with wheat sensitivity. 
Wheat contains at least 114 allergenic proteins1 encoded by all three 
genomes (A, B and D). However, the contribution of individual 
components to wheat-related diseases has mostly been assessed only 
in in vitro or in animal models using isolated protein fractions, which 
often contain other unidentified components and/or do not reflect 
adulterations by processing (e.g., heat, hydrolysis by fermentation). In 
addition to proteins, so called FODMAPs (fermentable oligo-, di-, 
monosaccharides and polyols) are potential triggers of IBS and maybe 

1 www.allergome.org

TABLE 1 Overview about functional gastrointestinal disorders caused by grain components.

Celiac disease Wheat allergy* Non-celiac wheat 
sensitivity

IBS

Prevalence ~1% 0.2–1% ~10% 7–21%

Pathogenesis Autoimmune IgE-induced
Unspecific, partially immune-

based

Diverse and not clear (low-

grade inflammation and 

immunological alterations)

Marker

IgA anti-EMA, IgA anti-tTG, 

IgG anti-DGP, IgA anti-

gliadin

Specific IgE antibodies
No biomarker, IgA/IgG anti-

gliadin in 50% of cases
No biomarker

Genetic preposition
More than 95% DQ2-DQ8 

HLA positive

About 50% DQ2-DQ8 HLA 

positive
DQ2-DQ8 HLA negative Not clear

In/uptake Oral
Oral, respiratory & 

percutaneous
Oral Oral

Source/trigger
Peptides from gliadins and 

glutelins

Depending on type of allergy 

gliadins, glutelins and/or 

non-gluten proteins (e.g., 

ATIs)

ATIs, possibly gluten and 

FODMAPs, predominately 

fructans

FODMAPs, ATIs and gluten are 

potential triggers

Therapy Gluten-free diet Wheat-free diet
Wheat-free or strong reduction 

of wheat in diet

Gluten-free and low FODMAP 

diet

*WDEIA (wheat-dependent exercise-induced anaphylaxis), contact-urticaria and baker’s asthma are summarized under wheat allergy (10, 34, 47, 69, 73–82).
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even of NCWS (6, 80, 118, 123, 124). Further, a FODMAPs-rich diet 
is likely to exacerbate symptoms in NCWS (118).

Today, a gluten-free diet is considered the most commonly used 
therapy. An international threshold of 20 ppm gluten in food is 
generally considered to be safe for individuals suffering from CD and 
regulatory bodies have adopted this level for allowing food to 
be labeled “gluten free.” However, in severe cases of CD lower levels 
can result in adverse reactions. In addition, it has been shown that 
foods labeled to be gluten free may contain significantly more than 
20 ppm due to contamination in the food chain (60, 66, 125, 126). 
Furthermore, gluten free-labeled foods may also contain significant 
amounts of FODMAPs and cause problems in patients who believe to 
be sensitive to gluten but in fact are sensitive to the effects of rapid 
carbohydrate fermentation and related intestinal discomfort (127).

Prolamin proteins

With the exception of oats and rice, the main storage proteins of 
all cereal grains are prolamins. This term is based on the fact that 
prolamins are high in proline and glutamine. During gastrointestinal 
digestion, the enzymes present in the human intestine only partially 
digest the proline-rich sections (128), which can easily trigger adverse 
reactions in predisposed individuals (122). Almost all food allergens 
are proteins that tend to be resistant to degradation by heat, proteases, 
or acid hydrolysis. Thus, a large number of wheat allergens can 
be found among the group of prolamins (41, 129). Gluten proteins and 
ATIs have been identified as components involved in CD and 
NCWS. Gluten peptides, which remain undigested, contain repeated 
amino acid sequences, also referred to as CD-active epitopes, which 
are recognized by immune cells and induce a cascade of immune and 
inflammatory responses when exposed to the gut epithelium. Among 
them is 33-mer, an α2-gliadin peptide that is highly resistant to 
proteolysis (130) and is often described as a very potent contributor 
to gluten immunotoxicity (131). The number, type, and distribution 
of epitopes may influence the potency of the inflammatory and 
immune responses involved in the etiology of CD (132).

Non-prolamin proteins

In addition to prolamins, cereals and cereal-based products 
contain a variety of other ingredients that may cause adverse physical 
reactions in sensitive people. Data from in vitro and animal studies 
suggest that non-prolamin proteins such as ATIs, serpins, lectins and 
others, also play or may play a role in triggering adverse gastrointestinal 
and extraintestinal reactions (40, 133, 134). With respect to wheat 
allergy, ATIs and non-specific lipid transfer proteins (nsLTPs) can 
sensitize susceptible atopic patients after ingestion or inhalation (37, 
41, 129, 135–139). Similar to prolamins, the clinical relevance of ATIs 
and nsLTPs is attributed to their resistance to proteolysis and acid or 
heat exposure. In vitro studies revealed that, in addition to the well-
recognized immune reaction to prolamins, CD is also associated with 
a humoral immune response directed against serpins (serine protease 
inhibitors), purinins, ATIs, globulins, farinins and lectins, also known 
as wheat germ agglutinin (40, 43, 44, 140). However, lectins are not 
heat stable and lose their adverse biological effects as a result of heat 
exposure, such as cooking or baking (140).

ATIs are thought to be  involved in the etiology of NCWS by 
mediating intestinal inflammation via binding to the toll-like receptor 
4 (TLR4) (45, 134). ATIs have attracted great research interest due to 
their suspected contribution to baker’s asthma (a respiratory form of 
wheat allergy), CD, and NCWS, as extensively reviewed by Geisslitz 
et al. (10). Although non-prolamin proteins make up a small proportion 
of cereal proteins, several of these proteins were suggested to 
be  involved in adverse reactions and may contaminate protein 
preparations used for clinical trials, leading to erroneous conclusions 
about cause-effect relationships. There have been no studies to date, in 
which wheat-sensitive people have been tested in vivo for their response 
to individual non-prolamin components or combinations thereof.

FODMAPs

In addition to cereal proteins, wheat contains fructans that are 
indigestible carbohydrates. They are classified as FODMAPs, 
which include oligosaccharides (including fructans and raffinose-
family oligosaccharides), disaccharides (lactose), monosaccharides 
(fructose), and polyols (e.g., sorbitol and mannitol). Lactose is 
conditionally digestible in humans, as approximately 70% of 
human adults are lactase-non-persistent, which means lactose is 
a non-digestible disaccharide due to the lack of brush border 
β-galactosidase. Approximately 15% of the population are 
fructose-malabsorbers, meaning that ingested fructose is not 
completely absorbed in the small intestine or is absorbed only 
completely when glucose is also present at the same time. In these 
individuals, unabsorbed fructose (excess of fructose in respect to 
glucose) is classified as FODMAPs (141). Although fructans of 
grammian type, they have both β(2–1) and β(2–6) fructosyl 
linkages and a rather complex, branched structure, are considered 
to be  the most prevalent FODMAPs in monocot grains (142); 
other FODMAPs, particularly raffinose, are present in smaller 
amounts and mannitol is additionally produced during sourdough 
fermentation. Fermentable carbohydrates are beneficial to most 
people’s intestinal health because they are converted to health-
beneficial short chain fatty acids, while also improving peristalsis 
and defecation. However, whether FODMAPs ingestion is 
beneficial or harmful is dose and individual dependent. A quantity 
of >15 g of FODMAPs per day results in quantitative effects on 
osmosis induced liquid accumulation in the terminal small 
intestine and on fermentation in the terminal cecum and colon, 
which may cause bloating, flatulence and abdominal discomfort 
in susceptible people. Patients suffering from IBS appear to 
develop central sensitization, manifesting as pain hypersensitivity 
(143), a reason why they may experience symptoms at lower doses 
of FODMAPs compared to non-sensitized individuals. It is 
estimated that cereal-based products may account for up to 70% 
of the daily fructan intake in the United States (144), with intakes 
varying across populations depending on the amount of bread and 
other grain-based foods consumed (145). Depending on other 
foods consumed that contribute to the FODMAPs intake (such as 
fruits, vegetables, pulses, artificially sweetened soft drinks, and 
apple juice), the contribution of grain fructans may be minimal to 
significant (141, 146–148). Low-fructan meals may help to reduce 
intestinal gas formation and alleviate symptoms in IBS patients 
(149–157).
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Sourdough and microbial 
communities

Sourdough fermentation

In baking applications, sourdough is used for different 
technological reasons. Only few countries, mainly in the European 
Union, established a legal definition of sourdough and the approach 
to the definition of sourdough varies among different countries. 
France, Spain and the Netherlands define sourdough by specifying a 
maximum level of baker’s yeast addition and a minimum level of 
acidity as defined by either pH, total titratable activity or acetic acid 
concentration. Austria, the Czech  Republic and Germany define 
sourdough as a dough with metabolically active lactic acid bacteria 
(158). An overview of the different use of sourdough in baking 
applications is presented in Table 2. Owing to the different use and 
definition of sourdough in baking application, the term “sourdough 
bread” includes fermentations that use diverse microbes and subject 
a different proportion of the flour to fermentation. With type 
I  sourdoughs, sourdoughs that are used as sole leavening agent, 
20–30% of the flour are fermented for more than 6 h and the time for 
proofing generally exceeds 2 h. With type II sourdoughs, sourdoughs 
that are used for dough acidification and/or for improved bread 
quality, usually 10–20% of the flour is fermented in the sourdough 

fermentation but sourdough microbes have a lower metabolic activity 
in the bread dough when compared to type I sourdoughs. Type III 
sourdoughs, dried sourdoughs without viable and metabolically active 
microbes, are added at a level of 3–5%. Here, only a small portion of 
the flour is fermented with lactic acid bacteria and metabolic activity 
in the bread dough is attributable only to baker’s yeast. Freeze dried 
starter cultures are commercially available but do not show appreciable 
metabolic activity in the bread dough unless they are propagated (159).

Microorganisms in sourdough

Currently, reliable data on the composition of more than 1,000 
sourdoughs that have been used in bakeries or at the household 
level are available (160). Collectively, these data provide a 
comprehensive overview on microorganisms in sourdough. The 
geographical location has no impact on microbial communities in 
sourdoughs. The type of flour also has remarkably little influence 
on microbial communities in sourdough as long as whole flours or 
extracted flours from wheat and rye are used. In flour from other 
grains, the lack of maltogenic amylases and/or the presence of 
phenolic acids with antimicrobial activity selects against some 
sourdough microbes, particularly Fructilactobacillus sanfranciscensis 
(161, 162).

TABLE 2 Use of sourdough in baking and microorganisms in sourdoughs.

Type 0 
sourdoughs 
(levain, poolish 
or sponge 
dough)

Type I 
sourdoughs

Type I 
sourdoughs

Type II 
sourdoughs

Dried 
sourdoughs

Starter 
cultures

Technological aim 

of fermentation

Improved flavor, 

reduced addition of 

baker’s yeast

Leavening agent in 

bakeries

Leavening agent in 

households

Acidification and 

improved flavor in 

(industrial) baking

Spray-dried or 

drum-dried 

sourdough without 

active microbes

Acidification or 

flavor

Inoculum Baker’s yeast Back-slopped Back-slopped Back-slopped
Back-slopped or 

defined strains

Freeze dried 

defined strains

# of fermentation 

cycles per day
n/a 2–4

0.1–0.3 (refrigerated 

storage)
0.2–1 n/a n/a

proofing time 

addition baker’s 

yeast

1–2 h 0.5–2% 2–3 h 0–0.5% 2–3 h 0–0.5% 1–2 h 0.5–4% 1–2 h 1–4% Variable

% of flour in 

sourdough
10 to >20% 20–30% 20–30% 10–20% 1–5% Variable

Key bacterium
Lactiplantibacillus 

plantarum

Fructilactobacillus 

sanfranciscensis
Fl. sanfranciscensis

Limosilactobacillus pontis 

Lactobacillus amylophilus

Depending on 

inoculum

Depending on 

inoculum
Other bacteria

Latilactobacillus sakei 

Pediococcus sp.

L. plantarum 

Levilactobacillus sp. 

Companilactobacillus sp. 

Leuconostoc mesenteroides

L. plantarum 

Levilactobacillus sp. 

Compani-other 

lactobacilli Pediococcus 

sp.

L. panis, L. reuteri,  

L. fermentum; L. crispatus, 

L. acidophilus

Key yeast
Saccharomyces 

cerevisiae
Kazachstania humilis S. cerevisiae none None None

Other yeasts -
S. cerevisiae  

K. exigua
K. humilis S. cerevisiae
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Overall, more than 100 species of lactic acid bacteria, by far 
predominantly species in the Lactobacillaceae (89) and several 
dozen yeast species have been isolated from sourdoughs. The genera 
Fructilactobacillus, Lactobacillus, Limosilactobacillus and 
Lactiplantibacillus dominate most sourdoughs. 
Companilactobacillus, Lacticaseibacillus, Latilactobacillus, 
Pediococcus, Levilactobacillus, Lentilactobacillus, 
Furfurilactobacillus, Weissella and Leuconostoc are frequently 
isolated. Species of other genera are not found in sourdoughs or 
were isolated in laboratory sourdoughs only. Generally, sourdough 
microbes include two to six major representative species, which 
represent stable associations of heterofermentative and 
homofermentative Lactobacillaceae with the former typically more 
abundant. Despite the apparent diversity of sourdough microbiota, 
several types of sourdough have a globally uniform microbial 
composition that converges at the genus or even species level. The 
composition of the microbial consortia depends on the fermentation 
conditions, which, in turn, are dictated by the technological aim of 
the fermentation (Table 2).

To use sourdough as sole leavening agent, sourdough microbes 
are maintained at their peak metabolic activity by frequent back-
slopping. In bakeries, the process of frequent back-slopping is 
interrupted only on 1 day per week (163, 164). This fermentation 
scheme selects for those organisms that grow fastest in wheat or 
rye doughs and microbial consortia in type I  sourdoughs are 
globally uniform at the species level. A vast majority of type 
I sourdoughs includes Fructilactobacillus sanfranciscensis as main 
bacterial representative and Kazachstania humilis as the main 
representative of yeasts. Other bacterial species that are frequently 
isolated include Lactiplantibacillus plantarum, Levilactobacillus 
species, Companilactobacillus species, Weissella species and 
Leuconostoc species (160). Extensive baking by farmer-bakers, i.e., 
four or fewer baking days per week, may result in selection of 
Kazachstania species other than K. humilis (165). Amateur bakers 
at the household level include more extensive interruptions of the 
continuous back-slopping process and use only 5–10 back-
slopping cycles per month. The microbial consortia in these 
sourdoughs depends on the diverse fermentation conditions of the 
individual bakers. Lactobacilli other than Fl. sanfranciscensis are 
likely to predominate and S. cerevisiae is the most prevalent yeast 
(Table 2) (164). Acetic acid bacteria were also shown to occur in 
sourdough (166). As strict aerobes, their growth is restricted to the 
surface and their contribution decreases with increasing scale of 
the fermentation, corresponding to a smaller surface to 
volume ratio.

Most installations for industrial type II sourdough fermentations 
are found in Central, Northern and Eastern Europe where rye bread 
is common. In rye baking, dough acidification is essential to inhibit 
flour amylases, and to solubilize arabinoxylans, while leavening is 
achieved by addition of baker’s yeast (159). High levels of acidity are 
often achieved by fermentation at more than 30° C and long 
fermentation times; these conditions select for Limosilactobacillus and 
Lactobacillus species with Lm. panis and L. amylovorus being among 
the most frequent species (Table 2) (163, 167). Yeasts may or may not 
be present and, if present, S. cerevisiae is the most frequent organism 
(Table 2) (163, 168–170).

Freeze dried cultures are available as starter cultures (Table 2) but 
exhibit sufficient metabolic activity only after back-slopping and are 

therefore not widely used (Table 2). Dried sourdoughs are produced 
by ingredient suppliers for use in bakeries, which are either obtained 
by spray-or drum-drying with supersaturated steam (up to 130° C) 
(158, 171). Different producers of dried sourdoughs use either back-
slopped sourdoughs that resemble type II sourdoughs, or inoculate 
the sourdoughs with defined strains. Dried sourdoughs are used at an 
inclusion level of 3–5% based on flour and, because sourdough 
microbes are killed during drying, they exhibit no metabolic activity 
in the bread dough. Nevertheless, aroma and shelf-life of bread are 
improved by key flavor compounds and lactic acid from dried 
sourdoughs (172).

Reduction of potentially harmful 
components by sourdough fermentation

The allergenic, immunogenic and inflammatory potential of 
wheat components is primarily due to their structure. Most processing 
procedures, including sourdough fermentation, have the potential to 
alter the quantity and structure of wheat components, which may 
affect the way these components are presented to the intestinal 
epithelium and immune system. Food processing affects wheat 
allergenicity (173); however, preclinical validations and human 
clinical studies are currently lacking. Although there is no validated 
strategy for producing cereal-based sourdough-fermented foods with 
lower levels of allergens and triggers of CD and NCWS, experimental 
sourdoughs have shown reductions that potentially may reduce 
adverse reactions (10, 13, 174–176).

Protease activity and changes in protein 
digestion

An extensive review of proteolytic aspects of grains, flours and 
fermentation media was provided by Gänzle et al. (175). In short, 
grains contain endogenous proteases (aspartic proteinases, 
carboxypeptidases, and cysteine proteinases) which are active at lower 
pH values and are important during the germination of the grain 
(seed) for the formation of amino acids required for the growth and 
development of the crop (177, 178). These enzymes are activated by 
the acidic conditions of dough making. Lactobacilli in sourdough 
express intracellular protease activity (175), which induces significant 
degradation of peptides, including toxic gluten epitopes, resulting in 
an almost linear increase in amino acids with fermentation time (179–
184). This increase in free amino acids in sourdough contributes to 
the improved flavor and taste effects of baking sourdough bread (183). 
Only type I and type II exhibit significant proteolysis; in other types, 
either the dough pH never falls below 4.5, i.e., the pH below which 
cereal proteases are activated, or the proportion of flour fermented 
with sourdough is too low to affect the overall composition of 
the bread.

In addition to proteolytic activity, reducing power generated by 
sourdough microbes impacts protein stability and proteolytic 
degradation (Figure 3). Heterofermentative lactobacilli accumulate 
reduced glutathione, or produce other low-molecular weight thiols 
that interact with glutathione to reduce intra- and intermolecular 
disulfide bonds (185). Thus, gluten proteins depolymerize (175) and 
impacts bread volume (186, 187). The glutathione reductase of Fl. 
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sanfranciscensis has been found to enhance the degradation of wheat 
germ agglutinin and allergenic ovotransferrin in sourdoughs (188, 
189). The reduction of disulfide bonds to thiol groups decreases the 
resistance to proteases and potentially alleviates adverse events such 
as inflammation, immune and allergic responses that are dependent 
on proteins with an intact tertiary structure, either for activity or for 
passage through the intestinal tract. The reduction of intramolecular 
thiol groups during the breadmaking process, however, has been 
documented only for type I sourdoughs.

Following food consumption, protein digestion takes place via the 
combined action of stomach acid and gastrointestinal enzymes 
(pepsin, trypsin, chymotrypsin), in combination with brush border 
peptidases. Post-consumption, specific food-derived proteins and 
peptides may resist degradation due to the lack of specific 
gastrointestinal enzymes required for their complete degradation. 
Grain proteins that are particularly high in disulfide bonds and/or 
proline, such as gluten proteins, are examples. The human 
gastrointestinal tract lacks the proline-specific peptidases required to 
cut the post-proline bonds in the gluten peptide chains (190), resulting 
in incomplete digestion and leaving proline-rich gluten fragments 
intact. These fragments induce immune responses and inflammation, 
causing CD. They are often referred to as toxic gluten peptides 
(epitopes) that can be recognized by the immune system. A reduction 
of gluten epitope levels in food by proline-specific peptidases during 
food processing, may help reduce adverse reactions. Many lactobacilli 
as well as fungi, including Aspergillus oryzae, express proline-specific 
peptidases that cleave peptide bonds adjacent to proline (191–195). 

However, sourdough products available on the market are generally 
not processed in this way, and there is no data to support the claim 
that sourdough breads reduce the risks of developing celiac disease.

Conversion of FODMAPs

Sourdough fermentation alone or in combination with yeast 
leavening is an effective approach to reduce FODMAP levels in wheat 
bread. The major FODMAPs in wheat flour are fructo-oligosaccharides 
with a degree of polymerization of 3 to 10, which are present at 1–3% 
and 3–5% in wheat and rye, respectively, and raffinose, which is 
present at 0.2–0.7% (95, 196, 197). An overview of enzymes that 
degrade or generate FODMAPs in breadmaking is presented in 
Table 3. Studies revealed that lactobacilli or yeasts with extracellular 
fructanases show the most extensive degradation, with a reduction of 
the fructan content in wheat flour by up to 95% during the 
breadmaking process. A sourdough that includes lactobacilli 
expressing the exceptional extracellular fructanase FruA, however, is 
maintained only by one bakery as reported by (85). Yeasts with 
extracellular fructanase activity have been used experimentally but 
not in commercial bread making (84). Fructan hydrolysis by 
extracellular fructanases generates fructose, which is included in the 
FODMAP definition when present in excess of glucose, which is not 
the case in bread after prolonged fermentation and baking (11, 198). 
Baker’s yeast converts up to 2.5% fructose to ethanol and carbon 
dioxide in the bread making process (85, 199). Yeast invertase is 

FIGURE 3

Mechanism of wheat protein degradation by sourdough fermentation. Modified from Gänzle et al. (175) with illustrations from https://www.ebi.ac.uk/
pdbe/entry/pdb/1bip/protein/1.
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known to hydrolyze fructo-oligosaccharides but the specificity on 
oligosaccharides other than sucrose is highly strain-specific (11, 87) 
and it remains unknown whether yeasts that were domesticated in 
sourdough fermentations efficiently degrade fructans (200). 
Intracellular fructanase activity is present in many homofermentative 
lactobacilli but intracellular enzymes are active on oligosaccharides 
only after cell lysis (90). Sucrose phosphorylase, which is present in 
most lactobacilli and the main route of sucrose conversion in 
heterofermentative lactobacilli, is not active with fructo-
oligosaccharides other than sucrose (91, 201). Heterofermentative 
lactobacilli convert fructose to mannitol but the mannitol 
concentrations in sourdough bread are generally below 0.3 g/kg and 
may be further reduced by homofermentative lactobacilli that utilize 
mannitol as carbon source (95). Raffinose is metabolized by 
levansucrase or sucrose-phosphorylase activity of lactobacilli in 
conjunction with α-galactosidase (92). Raffinose levels in wheat flour 
are reduced by more than 50% independent of the fermentation 
organisms (85, 202).

FODMAPs reduction of less than 50 to more than 95% have been 
reported. In yeast leavened bread, the extent of fructan degradation is 
mainly dependent on the fermentation time and the invertase activity 
of the baker’s yeast. Extended proofing times were shown to suffice to 
degrade a substantial part of wheat fructans. Sourdough bread is more 
commonly fermented with extended proofing times and the strain-
specific capacity of sourdough lactobacilli for fructan hydrolysis 
additionally degrades FODMAPs (84, 85, 87, 196, 202, 203).

In conclusion, reducing FODMAPs through sourdough 
fermentation can help alleviate gastrointestinal distress in sensitive 
individuals. FODMAP levels in processed cereal products can 
be compared to cut-off values established by Varney et al. (141), which 
forms the foundation for classifying foods as being “low FODMAPs 
products.” Laatikainen et al. (6) investigated the effects of sourdough 
bread on IBS symptoms. Flatulence, abdominal pain, cramps, and 
stomach rumbling were all reduced after consuming low-FODMAPs 
rye sourdough bread. A subsequent study confirmed the degradation 
of ATIs and FODMAPs during sourdough fermentation, but 
sourdough bread was not better tolerated than straight dough bread 
(7). Furthermore, comparison of a regular rye sourdough with a 
specific sourdough containing unique lactobacilli that efficiently 
metabolize fructans showed no significant improvement of symptoms 
(124). Thus, the clinical relevance of sourdough bread for FODMAP-
sensitive individuals remains unclear and the effects may be more 
dependent on the composition of the overall diet.

Reduction of anti-nutritive 
compounds and contaminants

Degradation of phytate, wheat germ 
agglutinin and amylase trypsin inhibitors

In many plant tissues, including grains, phytate or phytic acid 
(inositol-6-phosphate), stores phosphorus and minerals. High levels 
of phytate in cereals reduce mineral bioavailability in the small 
intestine because phytate chelates minerals such as Zn2+, Fe2+, Mg2+, 
Ca2+, Mn2+ and Cu2+. Furthermore, by binding amino acids, peptides, 
and enzymes, phytate may also influence amino acid and carbohydrate 
metabolism (204).

During sourdough fermentation, the dough is acidified to a pH 
less than 5.0, which solubilizes phytate salts of Fe2+, Mg2+ and Ca2+ 
while maintaining the activity of cereal phytases close to their optima 
(205–208). Improved bioacessibility after sourdough fermentation was 
confirmed by in vitro experiments (209). Consumption of sourdough 
bread increased mineral absorption in rats when compared to a diet 
based on yeast-fermented bread (210). The exact impact of sourdough 
on mineral absorption in humans can differ depending on a variety of 
factors, including the type of grain used, the fermentation time, and 
individual differences in gut physiology. However, low mineral intakes 
are common both in non-industrialized as well as industrialized 
countries; these individuals may benefit from improved bioavailability, 
as low Fe intake and/or bioavailability is a major risk factor for 
developing anemia (211, 212).

Wheat germ agglutinin, as present in raw cereal materials, is a 
lectin with the potential to reduce nutrient absorption and cause 
digestive problems (189, 213). Sourdough fermentation was reported 
to reduce WGA levels in dough, with the extent of degradation 

TABLE 3 Enzymes of sourdough microorganisms with activity on 
FODMAPs in wheat and rye.

Enzyme Organism Extend of 
FODMAP 
conversion

Extracellular 

fructanase

Strain specific in L. 

crispatus, L. amylovorus, 

and L. paracasei; 

Kluyveromyces lactis

Rapid hydrolysis of all 

fructans; the enzyme in 

L. paracasei is repressed 

by glucose and unlikely 

to be active in 

sourdough1,2,3,4

Extracellular invertase
S. cerevisiae, other yeasts 

including K. humilis

Activity and substrate 

specificity strain-

dependent in S. 

cerevisiae5,6 and 

unknown in K. humilis

Intracellular fructanase
Most homofermentative 

lactobacilli

Active only after cell 

lysis or on di-, tri-and 

tetrasaccharides that are 

transported to the 

cytoplasm7,8

Intracellular sucrose 

phosphorylase
Most lactobacilli Active on sucrose only9

Levansucrase or 

sucrose phosphorylase 

and α-galactosidase

Most sourdough 

lactobacilli but not Fl. 

sanfranciscensis.

Hydrolysis of raffinose, 

stachyose and 

verbascose10

Mannitol 

dehydrogenase

Most heterofermentative 

lactobacilli but not 

Weissella spp.

Highly specific 

conversion of fructose to 

mannitol11,12

Mannitol-1-phosphate 

dehydrogenase

Many homofermentative 

lactobacilli, exceptional in 

heterofermentative 

lactobacilli

Utilization of mannitol 

as carbon source12,13

1Loponen et al. (83), 2Struyf et al. (84), 3Li et al. (85), 4Goh et al. (86), 5Laurent et al. (87), 
6Nilsson et al. (88), 7Zheng et al. (89), 8Ganzle and Follador (90), 9Teixeira et al. (91), 
10Teixeira et al. (92), 11Gänzle (93), 12Qiao (94), 13Loponen and Ganzle (95).
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determined by thiol metabolism and redox potential rather than 
proteolytic activity (189). WGA reductions in the dough may also 
reduce adverse effects of lectin exposure in the intestine. Although this 
may be the case only for unprocessed flour or cereals, experimental 
studies have shown that heat exposure of more than 90° C, such as 
taking place during baking inactivates WGA leading to loss of 
bioactivity, as reviewed by (140).

ATIs are relatively heat and acid stable as well as digestion 
resistant. As a result, they remain largely intact during food processing 
and during gastrointestinal transit (10). ATIs have the ability to inhibit 
digestive enzymes as well as induce innate immune responses and 
inflammation, which is why they are suspected to play a significant 
role in the etiology of CD and NCWS (10, 214). Several studies 
documented the fate of ATIs during sourdough fermentation. 
However, these studies have only investigated the degradation 
resulting from fermentation in dough samples and not in the baked 
bread. Additionally, extraction protocols that do not account for 
denatured or aggregated proteins in bread were frequently used (14, 
15, 175, 189) or model systems with protein fractions were examined 
(12). Therefore, data of effects of the consumption of ATIs by humans, 
as present in heat-processed cereal foods, analyzed appropriately, are 
required for drawing valid conclusions (215).

Reduction of acrylamide and mycotoxin 
levels

According to Council Regulation (EEC) No 315/93 acrylamide 
belongs to the group of contaminants and is a carcinogenic chemical 
hazard in foods formed during heat induced Maillard reaction (216). 
The concentration of acrylamide in baked foods such as bread is 
mainly affected by the presence of precursors such as reducing sugars 
and asparagine, as well as their ratio, which is mainly determined by 
flour quality such as type and degree of milling, and by fermentation 
conditions (217). Furthermore, thermal processing conditions 
(temperature, and time) and the water content influence acrylamide 
formation (218). Thiol groups reduced acrylamide formation during 
baking (219). A lower pH also resulted in lower acrylamide levels after 
addition of low or moderate amounts of dried sourdough for bread 
making (220).

Lower concentrations of acrylamide were observed in wholegrain 
sourdough breads compared to bread fermented with yeast only. The 
range of acrylamide contents in sourdough bread indicated a strain 
specific behavior. Significant relationships were also detected between 
pH, TTA and lactic acid, whereas no correlation was found between 
the amount of reducing sugars and amino acids (221). Other studies 
also reported a decrease of about 25–59% and strain specific effects. 
Pediococcus pentosaceus had the highest potential to reduce acrylamide 
levels (222). Other studies found lower acrylamide levels in sourdough 
fermentation as well, but observed a significant correlation with the 
amount of reducing sugars (223, 224). Contrary to the previously 
mentioned publications, Fredriksson et al. (217) found that sourdough 
fermentation did not diminish free asparagine and had an adverse 
impact of its utilization by yeast, which results in increased acrylamide 
levels. However, the fermentation reduced the acrylamide content 
significantly, which is commonly much longer in the case of 
sourdough fermentation. In short, conclusive evidence on mechanisms 
or metabolic activities of sourdough microbes that reduce acrylamide 

formation during baking remains elusive but, despite the increase of 
the concentration of asparagine during fermentation, sourdough 
fermentation decreases rather than increases acrylamide formation in 
bread production (217, 218, 221, 222). A reduced pH and an increased 
concentration of thiols may be  main factors for the reduction of 
acrylamide levels but the impact on health and the cause of its 
reduction remains questionable.

The usage of raw materials and flours contaminated with fungal 
toxins is not possible from a legal point of view, irrespective of the 
reduction of mycotoxin concentrations by fermentation. 
COMMISION REGULATION (EC) No 1881/2006 established 
maximum levels for main mycotoxins in foodstuffs, including cereals 
and bakery products, which prohibits their usage even if the 
concentration of mycotoxins is strongly reduced by processing. 
Nevertheless, a few research groups examined potential mycotoxin 
degradation by sourdough fermentation, which was highlighted in 
two recently published reviews (225, 226). Results indicated 
degradation of mycotoxins in different intensities by sourdough 
fermentation, depending on applied microbiota and conditions. 
Although shown results of several studies revealed a high potential of 
sourdough fermentation for limiting mycotoxins exposure in bread 
consumption, the role of LAB might not be the predominant reason 
for lower mycotoxin levels. A study applying yeast fermentation only 
for bread making already showed a significant reduction in three 
fungal toxins spiked in wheat flour (227). Furthermore, the baking 
process and the induced heat impact had a strong effect on the 
mycotoxin contents, as mycotoxins were diminished in a higher extent 
in the crust than in the crumb of breads (228).

However, data about degradation products and its possible health 
hazards are missing. Adsorption mechanism of cells walls may 
be responsible for lower mycotoxins levels. Thus, release of adsorbed 
toxins during human digestion cannot be excluded. Detoxification of 
mycotoxins other than patulin by sourdough fermentation is not 
supported by reliable studies on metabolic pathways or enzymatic 
activities of sourdough microbes with activity on mycotoxins, or by in 
vivo studies, and is therefore unlikely to be relevant (225–227, 229–
234). Milling strategies seem to be  more suitable for mitigating 
mycotoxin exposure as they could be applied for flour production 
from a legal point of view (235).

Sourdough fermentation as a tool to 
obtain nutritional and health benefits

Bioactive peptides and amino acid 
derivatives

Long-term fermentation with a reduction of the pH to less than 
4.5 results in a significant degradation of proteins with a corresponding 
increase of amino acids and peptides. If sourdough fermentation 
generating reducing power is combined with addition of fungal 
proteases, a virtually complete degradation of proteins to amino acids 
and peptides can be achieved (192, 236). Some of the peptides that are 
released from wheat proteins during sourdough fermentation and 
detected in sourdough or sourdough bread were proposed to have 
biological activity (236–242).

In order to exert systemic biological effects, intact food peptides 
must be absorbed in sufficient quantities and remain intact in blood 
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or biofluids for sufficient time to have measurable biological activity 
(Figure 4). Bioactive gluten peptides were indeed shown to pass the 
disordered intestinal epithelium in CD patients by paracellular 
transport into blood after consumption of wheat protein (244). 
Untreated CD patients, however, have an inflamed, damaged 
intestinal barrier, allowing even macromolecules including intact 
proteins, peptides and bacteria to pass paracellularly from the 
intestinal lumen into blood (245–248). The presence of large peptides 
in blood under such specific pathophysiological circumstances does 
not prove that these are also absorbed under normal physiological 
conditions, during which most dietary peptides are rapidly 
hydrolysed by pancreatic enzymes and brush border peptidases. Few 
tri-and tetrapeptides that are rich in proline and thus resist 
degradation by brush border peptidases have been shown to 
translocate to the blood plasma; however, their concentration in 
plasma is less than 0.1% of the active concentration and the half-life 
of different peptides was determined as less than 15 min (29, 30, 
249–251).

Despite the fact that dietary bioactive peptides do not pass into the 
bloodstream in biologically relevant concentrations, health benefits of 
few groups of bioactive peptides were consistently demonstrated in 
clinical trials. The ACE inhibitory peptides IPP and VPP reduced the 
systolic blood pressure in moderately hypertensive patients (252–255). 
Likewise, milk protein hydrolysates reduced the postprandial glucose 
response both when administered as a single dose, or over a period of 
several weeks (256–258). In both cases, the clinical outcomes likely 

relate to luminal or local (gastro-intestinal) effects rather than 
translocation of peptides to the blood. The biological effect of ACE 
inhibitory peptides was hypothesized to interact with the intestinal 
renin–angiotensin system, which regulates the passage of Na and fluid 
across the gut wall (30). A reduced postprandial glucose response may 
also be attributable to luminal effects, either to the inhibition of starch 
digestive enzymes by dietary peptides (259), or to interaction of dietary 
peptides with intestinal receptors that modulate the endocrine response 
and insulin secretion (260, 261).

Observations from animal and in vitro laboratory research, have 
led to the suggestion that the presence of gluten exorphins, peptides 
with 4–8 amino acids that have opioid activity, stimulates weight gain 
and decrease resting energy expenditure, resulting in weight gain, 
however, a critical assessment found no reliable evidence in support 
of this claim (262).

In summary, clinical evidence for health beneficial properties 
of bioactive peptides in sourdough bread is not available. When 
using a fermentation protocol that was optimized for proteolysis by 
including rye malt, fungal proteases and extended fermentation 
times, the angiotensin-converting enzyme inhibitors IPP and VPP 
were shown to be  present in sourdough bread and sourdough 
steamed bread in clinically relevant concentrations (242). Whether 
their presence elicits a relevant physiological response, either alone 
or in conjunction with γ-aminobutyrate (GABA) or γ-glutamyl 
peptides, remains to be  documented in future studies (192, 
236, 263).

FIGURE 4

Potential pathways of amino acid and peptide absorption in the small intestine. (1) paracellular through widened tight junctions, (2) passive diffusion 
through the enterocyte, (3) endocytosis, followed by carrier transport or suggested peptide cargo*-permeability, (4) Transport carrier mediated passage 
*It is unlikely that peptides will passively diffuse across the cell membrane, but altering their physical properties (such as conformational flexibility and 
polarity), has been proposed to improve their permeability, also referred to as peptide cargo (243). Open dots represent amino acids, open dot-chains 
represent digestible peptides, closed dot-chains represent proteolysis resistant gluten peptides. Modified from Brouns and Shewry (202).
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Effects of sourdough and yeast 
fermentation on starch digestion and 
blood glucose response

The effects of an undesired high and long elevated blood glucose 
drive a wide range of health-related factors (264, 265). GI is a measure 
of the potential of carbohydrates to raise the level of blood glucose and 
is determined by ingesting a food portion containing a calculated 
amount of 50 g of available carbohydrates followed by measuring the 
area under the blood glucose-response-curve above baseline (Table 4) 
(266). Influencing factors include the overall macronutrient 
composition, processing, matrix characteristics, and the content of 
active enzyme inhibitors (as illustrated in Figure 5).

Human GI testing must follow strict ethical guidelines, is time-
consuming, and costly. Hence, in vitro digestion has been used to 
predict responses in humans. Data obtained from in vitro digestion of 
bread predicted in vivo GI values relatively well (268), which is in 
consistence with findings of others (269). However, when looking at 
absolute figures of the digestion rate (glucose release) or glycemia, 
there may be differences. Vangsøe et al. (270) showed that the in vitro 
digestion method ranked the tested diets in a similar relative manner 
as in vivo. The rate of glucose release in vitro, however, was much 
faster than the portal glucose appearance in vivo. In swine, the data on 
the in vitro release of glucose from starch correlated with portal 
glucose appearance rates only after correction for gastric emptying 
rate (271). Hence, the effects of gastric emptying have to be considered. 
Therefore, data from in vitro digestion and predicted GI should 
be considered as only indicative of what may be expected in vivo in 
humans. Different in vitro studies on different types of bread raise 
questions about the validity of benefit claims communicated in 
marketing. In fact, Korem et  al. (5) found no significant effect of 
glycemic response after consumption of sourdough fermentation 
bread vs. yeast fermented bread in a crossover trial. While bread 

consumption did affect clinical parameters, the glycemic response to 
the different bread types varied greatly among the participants.

Effects of dietary fiber in kernels and flour 
on glycemic effects

The content and type of dietary fiber in the food matrix are known 
to influence the gastrointestinal transit, intestinal viscosity, and the 
rate and magnitude of macronutrient digestion and absorption. With 
respect to starch, this may result in a reduction of the blood glucose 
response (272). Hence, it is often suggested that wholemeal based 
breads result in a lower GI compared to white flour-based breads, low 
in fiber, which are based on observations that dietary fiber enriched 
sourdough-bread resulted in lower GI (< 55) values (273–276).

However, fibers of different cereals differ significantly in 
composition. Oat fiber consist of about 30% soluble and 70% 
insoluble fiber types, mainly cellulose, arabinoxylan, β-glucan, 
xyloglucan and fructan. The soluble fibers express viscous properties 
that are beneficial for slowing the glucose absorption rate in the 
intestine. This part of the fiber is also well fermentable and impacts 
on microbial production of short chain fatty acids, which are known 
to modulate metabolism and insulin sensitivity, in favor of overweight 
and diabetes risks reduction (277–280). A systematic review and 
meta-analysis addressing the effects of dietary fiber and whole grains 
in diabetes management concluded that higher-fiber diets are an 
important component of diabetes management (281). It appeared, 
however, that these effects were independent of the type of dietary 
fiber. In addition, the impact of fiber on health outcomes depends on 
the presence of other phytochemicals that are present in whole 
grains, particularly phenolic compounds (282). Because of these 
beneficial effects, adding fiber to the dough has become an important 
target of study. Owing to the beneficial impact of sourdough 
fermentation on the technological functionality of fiber-rich 
ingredients, whole grain sourdough bread is an optimal format for 
further studies.

The fate of resistant starch in sourdough 
fermented dough and bread

As a result of food processing, a fraction of digestible starch may 
be transformed into resistant starch, causing a decrease in the glycemic 
potential. The resistant starch fraction comes on top of a fraction of 
starch in bread that remains undigested during transit in the 
gastrointestinal tract (usually 3–5% of total starch) and passes on to 
the colon. These fractions will be completely fermented and will serve 
as an important substrate for the colonic formation of butyrate, which 
has been linked to gastrointestinal health and disease reduction 
(283, 284).

Available data show mixed outcomes in terms of the dough stage. 
De Angelis et al. (275) reported a fermentation-induced increase in 
resistant starch, whereas Liljeberg et al. (285) found no difference. 
Furthermore, Hefni et al. (268) observed no change in resistant starch 
content during dough formation but an approximately 3-fold increase 
during the subsequent step from proofed loaf to bread. A recent study 
used X-ray diffraction and FTIR to determine the crystallinity of 
starch from white breads fermented with yeast only or sourdough. 

TABLE 4 Glycemic index value of bread and some other carbohydrate 
sources, as tested vs. glucose as reference-control.

Source/food Glycemic index (GI)

Glucose 100

Bread: French baguette, wheat 95

Bread: Sourdough, whole grain, rye 53

Bread: White wheat flour, mean of 16 

studies

75

Bread: Whole grain rye, mean of 4 

studies

58

Bread: Whole grain wheat, mean of 10 

studies

74

Pasta Macaroni, white boiled, mean of 

3 studies

50

Pasta Spaghetti, white boiled, mean of 

8 studies

41

Potato boiled, mean of 7 studies 53

Rice, white, mean of 8 studies 53

Sweet potato 61

Atkinson et al. (96) and University of Sidney (accessed 2020) online searchable data GI, 
International Tables of Glycemic Index and Glycemic Load Values.
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Results indicated higher total crystallinity in sourdough bread due to 
the formation of resistant starch. To eliminate confounding factors, 
breads were baked identically and the temperature was set for storage 
experiments (286). Da Ros et al. (287) compared straight dough and 
sourdough bread baked under the same conditions and reported a 
higher resistant starch content in sourdough bread. Higher levels of 
RS in sourdough products were confirmed also by several other 
studies, but quantitatively the increases were low and not shown to 
result in measurable health effects (275, 288–290).

Data on different sourdough additions in tef bread making 
revealed a clear trend; resistant starch content increased significantly, 
whereas slowly and rapidly digestible starch decreased with increased 
sourdough addition to the bread recipe. However, after 5 days of 
storage, resistant starch values for all recipes were no longer different 
(291). In contrast, a single study discovered the lowest level of resistant 
starch in sourdough bread, with lactic acid having only a marginal 
effect on resistant starch content when compared to yeast-fermented 
control bread (292).

In summary, all studies with exception of Amaral et  al. (292) 
showed a distinct but small increase in resistant starch in sourdough 
bread. Confounding factors such as different baking procedures can 
be  excluded because the cited literature applied identical baking 
conditions (time and temperature) when comparing straight dough 
and sourdough bread (286). Nonetheless, the storage time may have a 
significant impact on the resistant starch content (291). The increase 
in resistant starch may be caused by the presence of acids, which 

promoted starch retrogradation after heat application during the 
baking step. However, the degree of gelatinization, porosity and other 
compounds may also have an impact (3).

Effect of fermentation on glycemic 
responses and role of induced bio-acids

Several studies reported a lower GI (3, 275, 285, 293, 294) and an 
improved insulin response (295) of sourdough bread. Several 
underlying mechanisms such as the previously discussed resistant 
starch content, have been proposed (see above). Furthermore, organic 
acids added to food have been shown to reduce post-ingestion 
glycemic response and have the potential to reduce the gastric 
emptying rate and increase meal-induced satiation (285, 296–299). 
However, using paracetamol adsorption (300) or the 13\u00B0C-
octanoic acid breath-test (301) as a marker of gastric emptying, 
showed no differences in the rate of gastric emptying after ingesting 
breads made with different ferments. Polese et al. (302) observed that 
sourdough croissants have a faster gastric emptying when compared 
to croissants fermented with baker’s yeast only. In contrast, Rizzello 
et al. (303) showed that gastric emptying after consuming sourdough 
bread was faster compared to straight dough bread.

In addition to lower blood glucose responses, sourdough bread 
consumption was linked to lower insulin levels. For example, Juntunen 
et  al. (295) supplied standardized amounts of sourdough (40% 

FIGURE 5

Factors that play a role in gastrointestinal meal transit, digestion, and absorption of nutrients. Adapted from Brouns (267).

https://doi.org/10.3389/fnut.2023.1230043
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


D’Amico et al. 10.3389/fnut.2023.1230043

Frontiers in Nutrition 15 frontiersin.org

pre-dough) rye bread to provide 50 g of bioavailable starch and 
measured blood and insulin responses in 19 healthy postmenopausal 
women. The rye breads were made from wholemeal or white rye flour, 
with varying amounts of added fiber, and they were compared to 
white wheat bread as a control. The insulin responses were lower in 
the rye breads. Further, blood glucose responses did not differ between 
the sourdough rye breads and the control wheat bread, but less insulin 
was required to regulate blood sugar regardless of bran content. In an 
additional in vitro digestion test, the authors observed that starch 
hydrolysis was slower in all rye breads than in the white wheat control, 
and that the structure of the continuous matrix and starch granules 
differed between the rye and white wheat control breads (295). Apart 
from bio-acid effects, differences in matrix, starch granule structure, 
and resistant starch content may explain variations in blood glucose 
and insulin levels (304–307).

Although it is often suggested that sourdough bread results in a 
lower glycemic response than yeast fermented bread, data appear to 
be conflicting. This may result from improper control conditions, in 
which other variables than only sourdough vs. yeast dough making 
differ, such as comparing a rye sourdough bread with a yeast wheat 
bread. In such a comparison also grain type used, flour characteristics, 
fiber content and bread structure will impact on the glycemic response. 
Arora et al. (2) compiled data from 22 studies with in vivo challenges, 
and concluded that the average GI of sourdough bread was significantly 
lower compared to straight dough bread. However, none of these 22 
study sources were cited making a critical evaluation of the study 
conditions and inclusion criteria for combining the results impossible. 
A recent systematic review and critical analysis of nutritional benefits 
of sourdough, by Ribet et al. (8), concluded that 50% of medical studies 
addressing the effects of sourdough fermentation in GI showed no 
effect, which leaves us to follow the conclusion that an effect of 
sourdough fermentation on GI is not substantiated.

Summary and conclusion

The definition of the term “sourdough” as a dough fermented with 
lactic acid bacteria in addition to yeasts is widely accepted in the 
scientific literature but there is no established and internationally 
recognized legal definition of sourdough bread. Descriptions and 
regulatory definitions differ among countries (158). In the world of 
artisanal bakers all have their own favorable ‘mother-sourdough’. 
Apart from commonalities, such as a high level of lactic acid bacteria 
and higher levels of activity, sourdoughs differ in composition with 
respect to microbiota subclasses, enzymes and metabolic activity, and 
the proportion of the flour that is fermented. Most research addressing 
the effects of sourdough fermentation on compositional changes, used 
experimental sourdoughs and fermentation conditions, usually 
leading to significant acidification of the dough to levels of pH < 4.5. 
Addition of specific microbiota or enzymes (e.g., isolated specific 
strains of lactobacilli or specific fungal enzymes) leads to a reduction 
of antinutritive or inflammatory compounds in the dough. However, 
results from small scale experiments can therefore not be generalized 
to sourdough breads that are commonly sold. In this respect, analysis 
of bread samples purchased in the market showed that most of these 
had pH levels of >5.0, substantially above desired levels of pH < 4.5 to 
obtain desired changes in composition (158). During several decades 

of research, compositional changes often suggested to be beneficial for 
health, such as phytate reduction and increased level of unbound 
minerals, decrease in FODMAPs and gluten immunogenic peptides, 
generation of bioactive peptides and increase in free amino acids, etc., 
in dough and bread, have been reported. Despite these observations, 
significant health effects on well-defined clinical endpoints such as 
diabetes risk reduction, improved weight management, reduction of 
gluten intolerances and improved bone mineral density as a result of 
sourdough bread consumption have not been clearly shown. 
Accordingly, there appears to be  a clear discrepancy between 
observations in vitro/vivo tests with experimental sourdoughs and 
supporting data on health effects from human clinical studies. Because 
of this situation, health authorities such as EFSA (EU) or FDA (United 
States) have thus so far not approved the use of any sourdough health 
benefit claim.

Overall, we conclude that although a broad range of sourdough 
related health benefits are praised in publications, social media and 
by bakers, a sound evidence base for measurable effects on health 
related clinical endpoints has not been established. Our conclusions 
align with those of Ribet et  al. (8), who pointed to conflicting 
evidence and inconsistent results or beneficial effects that appeared 
not to be significant. Both, sourdough fermentation and prolonged 
yeast fermentation result in a significant degradation of FODMAPs 
(range 50–85%) and inclusion of specific microbiota can induce 
almost complete degradation. Such reductions help mitigate gas 
formation related intestinal discomfort in IBS patients (8). In 
combination with raw materials delivering low amounts of harmful 
proteins, suitable products for patients with wheat related disorders 
can be produced by sourdough fermentation, e.g., products from oat 
for CD or einkorn for NCWS. Nevertheless, this conclusion has to 
be  proven by in vivo tests and clinical studies. Sourdough 
fermentation might promote gut microbiota and health as well. 
However, a recent review pointed out eminent knowledge gaps which 
limits developments of a personalized nutrition (308). Although this 
review revealed that sourdough fermentation alone did not result in 
a direct and measurable health benefit, the sum of changes in 
structure of ingredients and metabolic products might have indirectly 
positive effects for human nutrition and wellbeing of consumers. 
Furthermore, increased shelf life of sourdough bread and reduced 
susceptibility for spoilage contribute to food safety.

Future sourdough studies should implement appropriate 
controls, with the only differing variable being the fermentation 
process (e.g., comparison of wholemeal wheat sourdough vs. 
wholemeal yeast bread) with identical ingredient recipes. Such 
studies should also include appropriate analysis of circulating target 
compounds in the intestine and in required biofluids in vivo. The 
latter is particularly important for determining the effects of potential 
bioactive peptides. To generalize effects of experimental sourdoughs 
to those sold in the market, they should have similar composition 
and processing.

We remain with consistent and reliable evidence that sourdough 
fermentation improves the sensory and textural quality of bread. 
Moreover, Sourdough fermentation particularly allows replacement 
of hyper-palatable baked goods, which are high in sugar, fat, and salt 
and were shown to increase the ad libitum food intake, with more 
wholesome recipes (309, 310). This beneficial impact on bread quality 
also relates to superior whole-grain or fiber-enriched products and 
Thus supports a healthy nutrition and lifestyle.
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