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The multifaceted role of vitamin C in human health intrudes several biochemical 
functions that are but not limited to antioxidant activity, homoeostasis, amino 
acid synthesis, collagen synthesis, osteogenesis, neurotransmitter production 
and several yet to be explored functions. In absence of an innate biosynthetic 
pathway, humans are obligated to attain vitamin C from dietary sources to 
maintain its optimal serum level (28  μmol/L). However, a significant amount of 
naturally occurring vitamin C may deteriorate due to food processing, storage 
and distribution before reaching to the human gastrointestinal tract, thus limiting 
or mitigating its disease combating activity. Literature acknowledges the growing 
prevalence of vitamin C deficiency across the globe irrespective of geographic, 
economic and population variations. Several tools have been tested to address 
vitamin C deficiency, which are primarily diet diversification, biofortification, 
supplementation and food fortification. These strategies inherit their own 
advantages and limitations. Opportunely, nanotechnology promises an array of 
delivery systems providing encapsulation, protection and delivery of susceptible 
compounds against environmental factors. Lack of clear understanding of the 
suitability of the delivery system for vitamin C encapsulation and fortification; 
growing prevalence of its deficiency, it is a need of the hour to develop and design 
vitamin C fortified food ensuring homogeneous distribution, improved stability 
and enhanced bioavailability. This article is intended to review the importance of 
vitamin C in human health, its recommended daily allowance, its dietary sources, 
factors donating to its stability and degradation. The emphasis also given to 
review the strategies adopted to address vitamin c deficiency, delivery systems 
adopted for vitamin C encapsulation and fortification.
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FIGURE 1

Number of publications with keywords “vitamin C”, “vitamin C and fortification” or “vitamin C and fortification and encapsulation” and “vitamin C and 
fortification and nanoparticles.”

1. Introduction

Vitamin C (ascorbic acid) has been well documented for its 
antioxidant activity and other biological activities (1). Humans 
cannot synthesize this essential nutrient and so must obtain it from 
their diet (2, 3). Vitamin C deficiency has been linked to several 
diseases in humans (4, 5), most notably scurvy, which are related to 
its key role in numerous biochemical functions, including collagen 
synthesis, amino acid synthesis, blood pressure control, atherogenesis, 
homoeostasis, neurotransmitter production, and osteogenesis (5–7). 
In addition to its role as a vitamin, ascorbic acid has also been shown 
to exhibit various nutraceutical functions, including anticancer 
effects. There have been an increasing number of publications on 
vitamin C over the past few decades, with many of them focusing on 
food fortification (Figure 1). The World Health Organization (WHO) 
states that food fortification is one of the most effective, safe, and 
economical ways of addressing nutrient deficiencies (8). However, the 
inclusion of vitamin C in functional foods and beverages is often 
challenging due to its chemical instability and low 
bioavailability (9–12).

Consequently, many researchers have focused on developing 
strategies to overcome these challenges (13–17). This review will begin 
by discussing the physicochemical attributes, biosynthesis, food 
sources, recommended dietary allowance, and available fortification 
strategies for vitamin C. Then the challenges associated with food 
fortification are discussed, and the important role of colloidal delivery 
systems in encapsulating, protecting, and delivering vitamin C is 
highlighted. The knowledge presented in this article may facilitate the 
development of more efficacious strategies for fortifying foods and 
beverages with this important micronutrient.

1.1. History

The connection between vitamin C deficiency and scurvy can 
be  traced back to 1700 BC when the Ebers Papyrus defined the 
characteristic features of scurvy. There is also evidence of the role of 
food deficiencies in the writings of several ancient scholars, including 

Hippocrates in Greece (460 BC), Susrutrain India (400 BC), and 
Chang Chi in China (200AD). From the sixteenth to eighteenth 
centuries, there was a growing understanding that dietary deficiencies 
were causing diseases in sailors (18). Eventually, this led to the first 
scientific publication on the subject, “A Treatise of Scurvy”, by James 
Lind in 1753, where he emphasizes the importance of lemons, oranges, 
and fresh green vegetables in the prevention of scurvy (19). Almost, 
two centuries later, Albert Szent-Gyorgyi published his observations 
on the extraction of vitamin C (a “sugar-like crystal”) in the 
Biochemical Journal under the title “Observation on the function of 
peroxidase systems and the chemistry of the adrenal cortex: 
Description of a new carbohydrate derivate” (20). Later, 
W. M. Haworth elucidated the structure of these sugar-like crystals 
and named it hexuronic acid. Then, King and Waugh (21) extracted 
these sugar-like crystals from lemon juice and named it ascorbic acid, 
which was described in their article “The chemical nature of vitamin 
C” (21). Albert Szent-Gyorgyi was eventually granted the Nobel prize 
in Physiology or Medicine for his research on vitamin C (22).

1.2. Molecular and physicochemical 
properties

Vitamin C is a low molecular weight carbohydrate with an enediol 
structure (Figure 2), which makes it a natural electron donor. The 
enediol structure also makes it susceptible to chemical degradation 
when exposed to changes in environmental conditions, such as pH, 
temperature, humidity, salt, and radiation (23). Several vitamin C 
analogs with differing physicochemical characteristics have also been 
synthesized (Figure 2). Researchers have classified these vitamin C 
analogs depending on their water-solubility and ability to raise 
vitamin C serum levels. Based on their physicochemical 
characteristics, these analogs can be categorized into:

 (i) Hydrophilic ascorbic acid: This group includes l-ascorbic acid 
2-glucoside, magnesium l-ascorbic acid 6-phosphate, and 
l-Ascorbic acid 6-phosphate
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 (ii) Hydrophobic ascorbic acid: This group includes tetra-
isopalmitoyl ascorbic acid and l-ascorbyl 6-palmitate (10).

Based on their ability to increase blood serum levels of vitamin C 
they can also be  categorized into two groups according to their 
potency (10):

 (i) Strong potency: This group includes l-ascorbate 2-phosphate, 
6-bromo-6-deoxy-l-ascorbic acid, l-ascorbate 2-triphosphate, 
and ascorbic acid 2-O-α-glucoside;

 (ii) Weak potency: This group includes l-ascorbate-O-methyl ether, 
l-ascorbyl-2-sulfate, and l-ascorbyl palmitate.

1.3. Biosynthesis

Some animal species and green plants can naturally synthesize 
vitamin C through the innate glucuronic acid biochemical pathway 
(24). During evolution, however, humans appear to have lost a key 
enzyme (l-gulono-1,4 lactone oxidase) within the ascorbic acid 
biosynthesis pathway (25–27). Consequently, they must obtain this 
vitamin from their diet.

Dietary vitamin C is usually present in two different forms: 
ascorbic acid (reduced form) and dehydroascorbic acid (oxidized 
form). Initially, researchers speculated that vitamin C was only 
absorbed by the human body through passive diffusion due to its 
highly hydrophilic nature. Later, however, researchers identified a 

sodium-dependent vitamin C transporter responsible for the 
absorption of ascorbic acid (28). While other researchers found that 
the absorption of dehydroascorbic acid was mainly through glucose 
transporter isoforms GLUT1 and GLUT3 (29).

Researchers also observed a shift in the absorption mode 
depending on the vitamin C levels in dietary sources. For instance, at 
higher concentrations the uptake of vitamin C occurs mainly by 
passive diffusion while at lower concentrations it mainly follows 
carrier-mediated active transport (30). However, the precise 
threshold at which this transition occurs is still a matter of 
investigation. The absorption efficiency of vitamin C within the 
human gastrointestinal tract (GIT) is also dose-dependent, i.e., at 
lower vitamin C doses (<180 mg/day) it has been reported to be up 
to 80–90% but at higher doses it is reported to be  considerably 
lower (30).

2. Dietary sources

Due to the lack of a vitamin C biosynthetic pathway, humans 
rely on dietary sources to maintain an optimal vitamin C serum 
level. Fruits and vegetables are the major sources of vitamin C in the 
human diet (around 90%), with the remainder coming from animal 
sources (4). Several studies have reported the vitamin C content of 
different food types (Figure 3) including milk (31, 32), apple (33), 
banana (34), cherry (35), grapes (36), guava (37), lemons (38), 
melon (39), orange (35), peach (40), raspberry (41), rosehip (42), 
strawberry (43), tangerine (44), asparagus (45), broccoli (46), 
cabbage (47), carrot (48), celery (49), collards (50), kale (45), onions 
(51), and pepper (45). Vitamin C may also be consumed in the form 
of dietary supplements, such as capsules or tablets.

3. Stability in foods

Vitamin C is a chemically active molecule that may undergo 
appreciable degradation in foods during processing, storage, and 
distribution (12). This degradation is mainly due to the hydrolytic 
opening of the lactone ring, thus resulting in the formation of a 
biologically inactive compound 2,3-deketogluconic acid (12). This 
degradation reaction is accelerated when the vitamin C is exposed to 
oxygen, transition metals, heat, and alkaline conditions (Table 1). For 
example, a significant proportion of vitamin C has been reported to 
be lost during the storage of potatoes, cabbages, and apples (64). The 
degree of loss depends on food matrix type and environmental 
conditions (stress). For example, boiling of potatoes was reported to 
cause a 40% loss in vitamin C content (2). Among the cooking 
methods steam seem to be most detrimental method for vitamin C. In 
contrast, some food processing operations stabilize vitamin C by 
inactivating enzymes (such as oxidases) that might promote its 
oxidation (2).

4. Vitamin C bioavailability

The biological efficacy of a vitamin depends on the quantity 
absorbed and utilized by the body rather than the amount consumed. 
The proportion of a vitamin absorbed in its active state is referred to 

FIGURE 2

Vitamin C and its analogs.
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as its bioavailability (2). The bioavailability of vitamin C depends on 
an array of factors, including the dose consumed, the composition and 
structure of the food matrix, the environmental conditions 
experienced during processing, storage, and distribution, and passage 
through the gastrointestinal tract (Figure  4 and Table  2). The 
bioavailability of vitamin C in foods is often considered to 

be equivalent to that of the purified form when the dose lies within the 
required nutritional range (15–200 mg) (2). However, it tends to fall 
by more than 50% when higher amounts (e.g., >1000 mg) are ingested 
(2). The conversion of ascorbic acid to dehydroascorbic acid in foods 
or the gastrointestinal tract can also reduce the bioactivity of vitamin 
C. A range of chemically synthesized ascorbic analogs have been 

FIGURE 3

Vitamin content in different food items.

FIGURE 4

Factor influencing vitamin C bioaccessibility/bioavailability in GIT.
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Table 1 Vitamin C retention in fortified foods during their storage.

Food categories Food commodity Storage conditions Storage time 
(days)

Vitamin C 
retention

References

Milk Fortified milk 25°C/3-layered packaging material 30 1 (12)

25°C/6-layered packaging material 30 49

25°C/6-layered packaging material 120 25

Fortified milk 4°C 5 90.6 (52)

Evaporated milk 23°C 365 75 (53)

Cereal based food Bread 25°C, polyethylene bags 7 15 (54)

Fiber fortified bread 25°C/moisture 45% 7 3 (55)

Bread without fiber 25°/moisture 37% 7 14

Bread fortified with l-ascorbate 
2-monophosphate and reduced Iron

25°C 6 52 (56)

Bread fortified with ascorbic acid and reduced 
Iron

25°C 6 18

Ready-to-eat cereals 23°C 365 71 (53)

Ready-to-eat cereals Room temperature 360 60 (57)

Cereals 40°C 90 (58)

22°C 180

Bran flakes 25°C/7% moisture 30 95 (56)

40°C/11% moisture 30 20

Fruit beverages Strawberry drink 4–6°C 90 67.7 (59)

Yellow passion fruit juice 37°C 14 0 (60)

Blood orange juice 4.5°C 49 25.1 (61)

Powder fruit drinks 21°C 1 84 (62)

Dry fruit drink mix 23°C 365 94 (53)

Apple juice 23°C 365 68 (53)

Cranberry juice 23°C 365 81

Grapefruit juice 23°C 365 81

Pineapple juice 23°C 365 78

Grape drink 23°C 365 76

Orange drink 23°C 365 80

Vegetable beverages Tomato juice 23°C 365 80 (53)

Vegetable juice 68 0.44 23°C 365 68 (53)

Carbonated drinks Carbonated beverages 23°C 365 60 (53)

Cola beverages Cola drinks fortified with ascorbic acid 15°C 365 83.1 (53)

Cola drinks fortified with L-ascorbate 
2-monophosphate

15°C 365 97

Cola drinks fortified with L-ascorbate 
2-polyphosphate

15°C 365 97.7

Cola drinks fortified with ascorbic acid 25° 365 70

Cola drinks fortified with L-ascorbate 
2-monophosphate

25° 365 90

Cola drinks fortified with L-ascorbate 
2-polyphosphate

25° 365 95.4

Cola drinks fortified with ascorbic acid 35°C 365 63.8

Cola drinks fortified with L-ascorbate 
2-monophosphate

35°C 365 68.4

Cola drinks fortified with L-ascorbate 
2-polyphosphate

35°C 365 93.8

(Continued)
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developed to improve the chemical stability and bioavailability of 
vitamin C, including ascorbate 2-sulfate, ascorbate 2-monophosphate, 
and ascorbate 2-triphosphate (2).

5. Vitamin C deficiency

5.1. Indicators for vitamin C deficiency

The vitamin C status of a person or population may be established 
by diet-based assessments or analytical measurements. Diet-based 
assessments rely on analysis of food consumption patterns and 
frequencies. In this approach, subjects typically complete 
questionnaires related to their daily food consumption and then their 
vitamin C intake can be calculated from food databases. Analytical 
methods rely on measurement of the vitamin C levels in the serum of 
individuals, which can be achieved using various analytical methods 

including liquid chromatography and mass spectrometry. Plasma/
serum vitamin C level is recognized as a biomarker for vitamin C 
status: <11 μmol/L (deficient), ≥11–28 μmol/L (suboptimal), and 
>28 μmol/L (sufficient) (4).

5.2. Vitamin C deficiency across the globe

Despite improvements in the human diet over the past century, 
there are still high levels of vitamin C deficiency in some populations 
around the world (Figure 5) (73–76). For example, the EPIC-Norfolk 
survey conducted a vitamin C assessment of a relatively large sample 
size (22,400 participants) and observed a higher vitamin C deficiency 
in males than females (77, 78). This difference in vitamin deficiency 
status between male and female population is mainly governed by life 
style (smoking), low consumption of vitamin C supplements. 
Researchers have also reported significant differences in vitamin C 

Food categories Food commodity Storage conditions Storage time 
(days)

Vitamin C 
retention

References

Coffee product Cocoa powder 23°C 365 97 (53)

Fruit/vegetable flakes Dried apple chips 7°C, RH 45% 270 80.4 (63)

18°C, RH 90% 270 63.1

Potato flakes fortified with ascorbic acid 25°C 129 18 (64)

Potato flakes fortified with L-ascorbate 

2-monophosphate,

25°C 129 88

Potato flakes fortified with L-ascorbate 

2-polyphosphate

25°C 129 84

TABLE 1 (Continued)

FIGURE 5

Vitamin C serum level across the globe.
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TABLE 2 Bioaccessibility of vitamin C in different supplement and food matrices.

Food/supplements Bioaccessibility In vitro digestion applied Major factor governing bioavailability Reference

Dietary supplements 49–99%  • Saliva

 • Gastric

 • Duodenal juice

 • Bile juice

Encapsulation and other components (65)

Infant formula 0.1–44%  • Saliva

 • Gastric

 • Duodenal juice

 • Bile juice

Encapsulation and other components (65)

Fortified foods 0.3–1.4%  • Saliva

 • Gastric

 • Duodenal juice

 • Bile juice

Encapsulation and other components (65)

Fruit juice 51–83%  • Gastric

 • Small intestine

pH of gastric and small intestine juice (66)

Broccoli inflorescences 93%  • Gastric

 • Small intestine

pH of gastric and small intestine juice (67)

Pomegranate juice 71%  • Gastric

 • Small intestine

pH of gastric and small intestine juice (68)

Fruit juice-soymilk 20.5–23.2%  • Gastric

 • Small intestine

Vitamin C binding protein, other vitamins and metal ions (69)

milk 10.9–13.1%  • Gastric

 • Small intestine

Vitamin C binding protein, other vitamins and metal ions (69)

water (11.1–14.2%)  • Gastric

 • Small intestine

Vitamin C binding protein, other vitamins and metal ions (69)

Fruit beverages 16.3–56.0%  • Gastric

 • Small intestine

Milk protein (70)

Fruit beverages-whole milk 70.17%  • Gastric

 • Small intestine

Emulsification by milk addition (71)

Fruit beverages -skim milk 62.41%  • Gastric

 • Small intestine

Emulsification by milk addition (71)

Fruit beverages-soy milk 12.58%  • Gastric

 • Small intestine

Emulsification by milk addition (71)

Orange segments 54%  • Gastric

 • Small intestine

NA (72)

homogenized orange segments 38%  • Gastric

 • Small intestine

Homogenization (72)
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status for different populations e.g., a lower level of vitamin C 
deficiency in the overall British population (14%) than in the Scottish 
one (20%) (79, 80). European and American populations also 
significantly vary in their vitamin C status (80). The prevalence of 
vitamin C deficiency is more pronounced in some other countries. For 
instance, its prevalence was widespread (up to 60%) in the female 
population in Quinto, Ecuador and similar observations have been 
made in other South American and African populations (81–89). In 
Asia, vitamin C status also significantly varied between and within 
countries. For example, low vitamin C status was recorded in the 
Indian population as compared to the Chinese population, with this 
difference being more prominent in the female population (90–92). 
This discrepancy in vitamin C status among different populations is 
mainly attributed to differences in the types of foods that are available 
and commonly consumed (4).

5.3. Health concerns related to vitamin C 
deficiency

Various factors contribute to the vitamin C requirements and 
status of individuals, including geographical, demographic, diet, 
socioeconomic environmental, and health factors (4, 93) (Table 3). 
Due to its many roles in human health; suboptimal vitamin C levels 
lead to a variety of undesirable health effects, including oxidative 
stress, malfunction of key biochemical pathways, and inhibition of the 
synthesis of key biological components, which can lead to diseases, 
such as scurvy. Moreover, studies have highlighted the important role 
of vitamin C in the prevention of cardiometabolic disorders, diabetes, 
and cancer (144, 145). Vitamin C also plays role in hormone regulation, 
neurotransmitter production, immunological functions, connective 
tissue development, and several other important biological functions 
(2, 6, 146, 147).

5.4. Recommended dietary allowance

The daily requirement of vitamin C depends somewhat on the 
gender, age, health status, and lifestyle of individuals (Table  4). 
However, the Institute of Medicine advises 75 mg/day (female) and 
90 mg/day (adult men) as the recommended dietary allowance (RDA) 

(146, 148–152). The RDA is the amount of vitamin C that should 
be  consumed daily to maintain good health [Dietary Reference 
Intakes: Thiamin R and Choline (153); IOM and FNB (128, 154)]. The 
Institute of Medicine also recommends the intake of35  mg of 
additional vitamin C for habitual smokers over the general population 
(2, 155).

5.5. Vitamin C intake and the current 
supply

Food consumption patterns vary according to geography, 
demography, socioeconomic status, and dietary preferences. 
Researchers have reported that a significant proportion of vitamin C 
in the diet comes from fruit juices, vegetables, whole fruits, and dried 
fruits (Figure  6) and that vitamin C consumption has declined 
between 1999 and 2018 (148). In many populations, the current 
supply of vitamin C is sufficient to meet the RDA but, in some 
populations, this is not the case. As a result, strategies need to 
be  developed to address potential vitamin C deficiencies in 
these populations.

6. Strategies adopted to address 
vitamin C deficiency

In general, there are several approaches to addressing vitamin 
deficiency: (i) diet; (ii) biofortification; (iii) food fortification; and (iv) 
dietary supplements (15–17). In this section, several of these 
approaches are discussed in the context of vitamin C.

6.1. Diet

Diet-based approaches involve the addition of vitamin C-rich 
food items to the diet, such as lemons, oranges, kiwi, and other fruits 
and vegetables (156–158). However, this strategy depends on the 
affordability and availability of these items, as well as typical eating 
patterns in the target populations (10, 15, 17). The inclusion of vitamin 
C-rich food items that have a high bioavailability is crucial for the 
success of this approach (10). Educating the target population about 
health concerns linked with vitamin C deficiency, as well as the 
sources of affordable vitamin C-rich foods are also important.

6.2. Supplementation

Dietary supplements are also a successful means of ensuring that 
people have sufficient levels of vitamins and minerals in their diet to 
prevent health problems (159, 160). Supplements are typically 
available as capsules, tablets, or powders containing vitamin C alone 
or in combination with other nutrients (161). These formulations are 
designed to contain levels of vitamin C or its analogs that help ensure 
people meet the RDA. They must be carefully formulated to ensure 
the vitamins remain stable during storage and after ingestion. The 
major limitation of supplementation is that they are not affordable or 
desirable for many people.

FIGURE 6

Major contributor of vitamin C in human diet.
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TABLE 3 Factors affecting vitamin C status in human.

Class of factors Factors Major contributors Inference References

Diet dependent factors Dose intake Fruit and vegetables  • Vitamin C status depends on ingested amount

 • Sugar and fat decrease the vitamin C intake

(80–82, 92, 94–99)

Staple foods Cereals and starchy tubers rains  • Stable food-based diet decreases the vitamin C intake as they are poor in 

vitamin C content

(100, 101)

Cooking practices Washing, drying, boiling and steaming  • Washing allow leaching of vitamin C

 • Prolong drying, heating and steaming cause vitamin C degradation

(102–106)

Supplement consumed High dose containing formulation  • Users have improved vitamin C status than deficient (78, 96, 97, 99, 107, 108)

Socioeconomic factor Socioeconomic status Cost of food  • Population with low economic status are note able to afford vitamin rich 

food items

(78, 79, 82, 89, 92, 97, 99, 109–112)

Education and social class Awareness  • Population with lower education and manual occupation are deficient in 

vitamin C

(78, 80, 96, 98, 110)

Institutionalization Low dietary intake  • Institutionalized population (prisoners, priests and boarding school 

children) are vitamin C deficiency due to low intake of vitamin C 

rich food

(79, 113)

Environmental factors Geography Altitude and latitude  • Consumption pattern depends on local food which varies with geography (79, 89, 92, 97, 98, 114–116)

Season Variation in agricultural crops  • Seasonal variation has major impact of type of crops as well as their 

vitamin C content

(90–92, 108)

Climate Extreme weather  • Draught and frost cause damage of crops thus limiting food diversity (117)

Pollution Smoke and particulate maters  • Population cause depletion of vitamin C and cause oxidative stress (118–121)

Demography Gender Fat vs body weight ratio  • Male has low vitamin C status than female due to low

 • The difference becomes less prominent in some low- and middle-income 

population

(78, 81, 91, 92, 96–99, 103, 107, 108, 110, 111, 114, 116, 

122–124)

Age Diet preference  • Children and elderly person have high vitamin C status due to low fat: 

body weight ratio

(78–80, 92, 96, 99, 107, 114, 125, 126)

Race Genetic variation  • South Asian people and African-Caribbean has low vitamin C status 

that Caucasians

 • Indians have low vitamin C status than Chinese

 • Disparity could be due to variation in consumption pattern

 • Difference in vitamin C status become more significant in female 

populations

(99, 103, 108, 127)

(Continued)
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6.3. Biofortification

Biofortification approaches rely on increasing the micronutrient 
levels in agricultural staple crops using selective breeding, crop 
management, and/or genetic engineering approaches. Researchers 
have already used these approaches to increase the vitamin C levels in 
various kinds of fruits and vegetables, including strawberries, 
tomatoes, and potatoes (Table  5). For instance, researchers 
overexpressed the GDP-l-galactose phosphorylase (GGPor VTC2) 
gene in transgenic tomatoes to enhance their vitamin C content by 
3- to 6-fold (163). Similarly, genes have been inserted into corn to 
increase its vitamin C content appreciably (165). Another study 
reported a 2-fold increase in the overexpression of the GDP-l-
galactose phosphorylase gene in strawberries, leading to an increase 
in their vitamin C level (163).

6.4. Food fortification

Food fortification is an effective, safe, and affordable approach to 
meeting the nutritional requirements of certain populations (170). The 
efficacy of vitamin fortification is enhanced when it can be integrated 
into an existing food supply network (15, 17). However, it is important 
to select appropriate food types for fortification with vitamin 
C. Knowledge of the vitamin C requirements and status of the target 
population is required. Information about the dietary patterns of this 
population is also required to establish the most common types and 
amounts of foods and beverages consumed. An understanding of the 
physicochemical properties of vitamin C and its analogs is also 
required, such as its stability, solubility, and interaction characteristics. 
Then, effective methods of incorporating vitamin C into these products 
in a stable and bioavailable form, without adversely impacting their 
organoleptic attributes or affordability, are required (171, 172). Vitamin 
C is a water-soluble molecule that can often be simply dissolved into 
aqueous solutions and food matrices. However, it may physically 
interact with other components or chemically degrade, which can 
reduce its efficacy or decrease food quality attributes. Consequently, 
fortification must be carried out carefully.

Various food matrices have already been fortified with vitamin C, 
however, significant losses can occur during storage, processing, and 
distribution (Tables 1, 6). The extent of these losses depends on food 
matrix effects and the environmental conditions the foods are exposed 
to (189–207). For instance, thermal processing and trace metals can 
promote rapid degradation of vitamin C (40, 46, 104, 106), thereby 
reducing its potentially beneficial health effects. These challenges can 
often be overcome using suitable encapsulation techniques (Figure 7 
and Supplementary Table S1).

7. Encapsulation technologies and 
delivery systems

Encapsulation technologies are being used to improve the matrix 
compatibility, stability, and bioavailability of vitamins in fortified 
foods (15, 17, 171). A wide range of these technologies are available 
[Table  7 and Figure  8; (9, 11, 245, 246). At present, however, a 
universal encapsulation technology has not been developed that is 
applicable to all food products. Instead, they usually must be designed C
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for the specific application, taking into account food matrix effects, 
and the nature of the processing, storage, and distribution conditions 
the food product will experience throughout its lifetime. Additionally, 
the knowledge of the performance of different vitamin C encapsulation 
technologies is still limited. For the sake of convenience, some of the 
most common encapsulation technologies developed for this purpose 
are classified into three groups based on the major ingredients used to 
fabricate them: polymer-, lipid-, and amphiphile-based systems 
(Supplementary Table S1). Nevertheless, some of these encapsulation 
technologies do combine two or more of these ingredients together.

7.1. Polymer-based delivery systems

Researchers have exploited the scaffolding ability of natural or 
synthetic polymers to fabricate polymer-based delivery systems 
compatible with vitamin C encapsulation. This class of delivery 
system includes nanofibers, inclusion complexes, capsules, and 
particles (Table 8). These delivery systems can be assembled using a 
range of ingredients and fabrication methods, including simple 
mixing, electrostatic complexation, antisolvent precipitation, 
injection-gelation, spray drying, freeze drying, cold setting, ionic 
gelation, and electrospinning, which are discussed in detail elsewhere 
(279–282).

7.1.1. Microfibers/nanofibers
Microfibers or nanofibers can be  prepared using one or more 

natural or synthetic polymers (283, 284). Typically, a microfiber has a 
diameter above a few hundred nanometers whereas a nanofiber had a 
diameter below this value, but there is no clear cut off. A range of 
fabrication techniques have been used to create polymer fibers 
including centrifugal spinning and electrospinning, with the latter 
being most explored for encapsulation applications (285–291). The 
functional properties of electrospun fibers can be controlled by varying 
their composition, dimensions, and surface properties, which is useful 
for controlling the dispersibility, stability, and release behaviors of 
encapsulated vitamins (292–296). The use of polymer fibers for vitamin 
C encapsulation is still in its infancy, with few published studies in this 
area. One group developed vitamin C-loaded polyvinyl alcohol/β–
cyclodextrin nanofibers suitable for applications in cosmetics, personal-
care products, and topical drug delivery (297). Fish oil/gelatin 

nanofibers produced by electrospinning have also been used to 
encapsulate vitamin C (298).

7.1.2. Molecular inclusion complexes
Generally, polymeric molecular inclusion complexes are produced 

from polymers and other host molecules capable of binding guest 
molecules. Cyclodextrins are the most widely used substances to 
encapsulate bioactive compounds. They have a cavity that can 
accommodate guest molecules due to the formation of a helix by 
α(1,4)-linked glucose chains (299). Vitamin C can be incorporated 
into this cavity (300). Molecule inclusion complexes can be prepared 
using various methods, including solvent evaporation, isoelectric 
precipitation, mixing, and freeze-drying (301–306). The structural 
and physicochemical properties of vitamin C-loaded β-cyclodextrin 
molecular inclusion complexes formulated using different approaches 
(co-precipitation, kneading, and freeze-drying) have been 
characterized (263). Other researchers have also reported that 
β-cyclodextrin can be used to encapsulate vitamin C (264).

7.1.3. Polymer capsules and particles
Polymer capsules consist of polymeric shells surrounding fluid 

cores, whereas the whole of polymer particles consist of a polymer 
network. For the sake of clarity, these will both be referred to as polymer 
particles, unless otherwise stated. Polymer particles may be assembled 
from synthetic and/or natural polymers. In the food industry, proteins 
and polysaccharides are typically used for this purpose. Typically, 
microcapsules/microparticles have diameters more than a few hundred 
nanometers, whereas nanocapsules/nanoparticles have smaller 
dimensions. Polymer particles can be  formed by various methods, 
including injection-gelation, coacervation, spray-drying, freeze-drying, 
solvent displacement, templating, and molding (307–312). A few studies 
have demonstrated the potential of polymer particles for vitamin C 
encapsulation. For instance, vitamin C was encapsulated in gelatin-
based microparticles prepared using the coacervation method to 
improve its stability and control its release (226). Similarly, casein 
hydrolysate/soy protein/pectin particles have been used to improve 
vitamin C stability (265). Furthermore, polymer microparticles were 
fabricated using coacervation for co-encapsulation of vitamin C and 
quercetin (262). Some researchers have investigated the effects of 
different fabrication methods on the release of vitamin C from polymer 
microparticles (236). The retention and release behavior of vitamin C in 

TABLE 4 Recommended dietary allowance for vitamin C.

Age group (year) Recommended dietary allowances Tolerable upper intake

Female Male Physical status 
(Pregnancy/

lactation)

Female Male

0–0.6 40 40 NA NA NA

<1 50 50 NA NA NA

1-3 15 15 NA 400 400

4-8 25 25 NA 650 650

9-13 45 45 NA 1200 1200

14-18 65 75 80/115 1800 1800

19+ 75 90 85/120 2000 2000

Habitual smokers 35 mg additional
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gelatin-caseinate microparticles has also been studied (239). Studies 
have shown that vitamin C is released from gelatin-pectin microparticles 
under simulated gastrointestinal conditions (267). Alginate-based 
microparticles have been shown to retain vitamin C throughout 30 days 
of storage (269). Some researchers have examined the impact of 
introducing encapsulated vitamin C into food products. For instance 
vitamin C-loaded microparticles have been incorporated into bakery 
products (215). In this case, encapsulation was shown to increase the 
stability of the vitamin.

Several different kinds of food-grade polymer particles are 
summarized in Table  8. Chitosan is often used to assemble these 
systems because it is a cationic polysaccharide that can bind anionic 
vitamin C. For instance, vitamin C-chitosan nanoparticles have been 
shown to improve the bioavailability of the vitamin (276). In another 
study, researchers developed vitamin C-loaded nanoparticles using 
the ionic gelation method to improve vitamin C stability against heat 
processing (271). Encapsulation of vitamin C in chitosan-based 
nanoparticles has also been shown to improve it stability during 

FIGURE 7

Delivery system adopted for vitamin C encapsulation.
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storage (273) and to prolong its release under gastric fluid conditions 
(275). Vitam

in C w
as also encapsulated in starch-derived nanoparticles 

to im
prove its stability and bioavailability (277). Typically, the 

com
position, dim

ensions, structure, surface properties, and pore size 
of polym

er particles m
ust be m

anipulated to control the retention, 
release, and stability of vitam

in C
.

7.2
. A

m
p

h
ip

h
ile

-b
ase

d
 d

e
live

ry syste
m

s

A
m

phiphilic-based delivery system
s are typically assem

bled from
 

am
phiphilic ingredients, such as phospholipids and surfactants. Th

ese 
am

phiphilic substances tend to assem
ble into a colloidal structure like 

m
icelles, m

icroem
ulsions, or liposom

es due to the hydrophobic effect.

7.2
.1. Lip

o
so

m
e

s
Liposom

es typically consist of phospholipid bilayers organized 
into one or m

ore concentric shells. A
s a result, they have both 

hydrophilic dom
ains (polar head groups and inner core) and 

lipophilic dom
ains (non-polar tail groups). A

 variety of preparation 
m

ethods have been developed to fabricate liposom
es (313–317). 

Liposom
es w

ith diam
eters below

 a few
 hundred nanom

eters are often 
referred to as nanoliposom

es. Several studies have show
n that 

vitam
in C

 can be encapsulated in liposom
es (231, 233). For instance, 

researchers have show
n that encapsulation of vitam

in C
 in liposom

es 
assem

bled from
 phosphatidylcholine, tocopherol, and cholesterol 

could im
prove its stability (231). Sim

ilarly, loading vitam
in C

 into 
liposom

es assem
bled from

 soybean phosphatidylcholine w
as show

n 
to im

prove its resistance to oxidation and to prem
ature release during 

digestion (247). Vitam
in C

 has been co-encapsulated w
ith vitam

in A
 

and m
ethionine in liposom

es (248). Vitam
in C

 has been loaded into 
liposom

es fabricated using a film
 hydration-sonication technique, 

w
hich im

proved its stability (252). Som
e researchers have reported 

that vitam
in C

-loaded liposom
es can be incorporated into m

ilk 
products (233).

7.2
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m
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s
C

onventional m
icelles and oil-in-w

ater m
icroem

ulsions consists 
of sm

all colloidal particles assem
bled from

 surfactants, w
here the 

non-polar tails are the interior, and the polar heads are exposed to the 
surrounding w

ater (318–320). C
onversely, in reverse m

icelles and 
w

ater-in-oil (W
/O

) m
icroem

ulsions the polar heads are in the interior 
and the non-polar tails are exposed to the surrounding oil. Th

ese 
kinds of association colloids are therm

odynam
ically stable system

s 
under specific com

positional and environm
ental conditions (321). 

C
onsequently, they can often be form

ed by sim
ply m

ixing the different 
com

ponents together. Th
e particle size of these system

s is typically 
very low

 (<50 nm
), w

hich m
eans that are optically transparent and 

highly resistant to gravitational separation (322). A
 variety of 

fabrication 
m

ethods 
are 

available 
for 

encapsulating 
bioactive 

substances w
ithin association colloids, including solvent evaporation 

and spontaneous em
ulsification (319, 322–327). It is often diffi

cult to 
encapsulate and retain vitam

in C into m
icelles and oil in w

ater (O
/W

) 
m

icroem
ulsions because of its hydrophilic nature. H

ow
ever, it can 

be trapped w
ithin the internal w

ater dom
ain of reverse m

icelles or 
W

/O
 m

icroem
ulsions w

hen the continuous phase is oil. O
nly a few

 
studies have so far been conducted on the use of association colloids 
for vitam

in C
 encapsulation and delivery. For instance, vitam

in C
 has 

TABLE 5 Transgenic biofortified pants with improved vitamin C content.

Fortified crop/plants Gene used Target gene/pathway Process Vitamin C content Reference

Strawberry GDP-l-galactose phosphorylase NADPH-dependent D-galacturonate

reductase

Overexpression 2-fold increase (162)

GDP-l-galactose phosphorylase l-galactose pathway gene Overexpression 2-fold increase (163)

Tomato GDP-l-galactose phosphorylase Smirnoff-wheeler pathway Overexpression 3–6-fold increase (163)

Potato GDP-l-galactose phosphorylase Smirnoff-wheeler pathway Overexpression 3-fold increase (163)

l-gulono-γ-lactone oxidase Dehydroascorbate reductase 141% increase (164)

Corn Dehydroascorbate reductase (dhar) Smirnoff-wheeler pathway Overexpression 6-fold increase (165)

Dehydroascorbate reductase (dhar) Smirnoff-wheeler pathway Overexpression 2–4-fold increase (166)

lettuce Ggulono lactone oxidase L-Ascrobic acid pathway Overexpression 7-fold increase (167)

Tobacco GDP-mannose pyrophosphorylase Smirnoff-wheeler pathway Overexpression 2-folds increase (168)

Arabidopsis GDP-galactose phosphorylase Smirnoff-wheeler pathway Overexpression 7-folds increase (169)
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TABLE 6 Vitamin C fortified products and its challenges.

Food matrix Vitamin C fortificant Enhanced functionalities of fortified food Major limiting factors Reference

Liquor chocolate Dehydrogenated ascorbic acid  • Improved antioxidant properties  • Poor stability

 • Sour taste

(173)

Sausage l-ascorbic acid  • Improved antioxidant properties  • Poor stability

 • Sour taste

(174)

Milk l-ascorbic acid  • Improved antioxidant properties  • Poor stability

 • Sour taste

(175)

Edible coating l-ascorbic acid  • Improved antioxidant properties

 • Antibacterial properties

 • Poor stability

 • Sour taste

(176)

Mao fruit juice l-ascorbic acid  • Improved antioxidant properties

 • High iron content

 • Poor stability

 • Sour taste

(177)

Fortification formulation l-ascorbic acid  • Improved antioxidant properties  • Poor stability (178)

Meat patties l-ascorbic acid  • Improved antioxidant properties  • Poor stability

 • Sour taste

(179)

Fish feed l-ascorbic acid sodium  • Improved antioxidant properties

 • Cost effective

 • Poor stability than ascorbic acid

 • After baking Sodium ascorbate exhibits 

anti-nutritional effect on protein

(180)

Dry fermented sausages l-ascorbic acid sodium  • Improved antioxidant properties

 • Cost effective

 • Poor stability than ascorbic acid (181)

Black rice baking products 2-o-d-glucopyranosyl-l-ascorbic acid  • Anti-oxidation  • High cost

 • Low yield

(182)

Beef patties 2-O-d-glucopyranosyl-l-ascorbic acid  • Anti-oxidation for fat

 • High stability

 • High cost

 • Low yield

(183)

Patent formulation for food 

fortification

2-O-d-glucopyranosyl-l-ascorbic acid  • Improved antioxidant properties  • High cost

 • Low yield

(184)

Maize starch l-ascorbic acid palmitic acid ester  • Improved antioxidant properties  • Poor thermal stability

 • Low chemically stability

(185)

Bakery product l-ascorbic acid palmitic acid ester  • Improved antioxidant properties

 • High heme iron and calcium content

 • Poor thermal stability

 • Low chemically stability

(186)

Milk formula l-ascorbic acid palmitic acid ester  • Improved antioxidant properties  • Poor thermal stability

 • Low chemically stability

(187)

Oil l-ascorbic acid palmitic acid ester  • Prevent lipid oxidation  • Poor thermal stability

 • Low chemically stability

 • Heat labile

(188)
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TABLE 7 Encapsulation technique adopted for vitamin C encapsulation.

Encapsulation 
techniques

Wall material Particle characterization Potential application References

Particle size Encapsulation 
efficiency

Release behaviors Stability/Morphology/

Spray drying Casein 5.8 –14.8 Fast release Stable at low pH/Irregular and porous Food and infant formula (208)

Sodium alginate and 

chitosan, modified 

chitosan

3 μm 41.8–55.6% Sustained release Rough surface: Microparticle derived with 

chitosan

Rough surface: Microparticle derived with 

modified chitosan

Pharmaceutical and food (209)

Chitosan and 

tripolyphosphate

4.1–7.3 58.3–68.7 Fast release Spherical smooth surface microparticle Pharmaceutical and food (210)

Chitosan 6.1–9.0 45.5–58.30 Fast release Spherical smooth surface microparticle Pharmaceutical (211)

Pea protein isolates, 

cowpea protein isolates

1.23–8.37 High vitamin C retention (65–69.30%)/

Irregular shape

Food application (212)

Gum Arabic and 

modified starch

1087–1245 μm Shown controlled release of

AA during invitro digestion

Offered high vitamin C retention during 

storage period (9 weeks)

Pharmaceutical and food (213)

Taro starch 14.5–18.7 μm 20.9 ± 0.30% High retention 80% after 6 weeks storage Nutraceutical supplements (214)

Arabic gum 9.3 > 97 Microparticle offered 17% high retention 

than that of free vitamin C

Encapsulation of bioactive for bakery 

products

(215)

Eudragit® RL, L and RS. >95 Slow release Pharmaceutical (216)

Maltodextrin and 

starch

4.75–7.6 100 High vitamin C retention (81–85%) after 

60 days at room temperate

Irregular and porous

Pharmaceuticals (217)

Maltodextrin and gum 

Arabic

>95 High retention after 300 days Encapsulation of bioactive for bakery 

products

(218)

Pea protein and 

sodium-

carboxymethylcellulose

1.83–8.21 >84 Fast release Pea protein microparticle: Quite irregular, 

shriveled and rough sodium-

carboxymethylcellulose homogeneous and 

smooth

Food and Pharmaceuticals (219)

Starch, gum Arabic and 

gelatin

8.0–20.5 10.30 High vitamin C stability at ambient 

condition/Polyhedric microcapsules

(220)

Sodium Alginate and 

Gum Arabic

2.88–14.09 μm >90% Spherical regular shape/Stable at higher 

temperature (188°C)

Nutraceutical supplements and food 

fortification

(221)

(Continued)
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Encapsulation 
techniques

Wall material Particle characterization Potential application References

Particle size Encapsulation 
efficiency

Release behaviors Stability/Morphology/

Spray chilling/spray 

cooling

Hydrogenated vegetable 

fat and stearic acid

31 2 μm 97.8 Microparticle have shown 13% high retention 

than that of free vitamin C

Suitable for bakery products (222)

Oleic acid (OA) and 

lauric acid (LA)

18–67 μm 89 − 98 Slow release in aqueous 

medium

Microparticle were present in agglomerates Nutraceutical supplements and food 

fortification

(223)

Palm oil and 

hydrogenated palm oil

98–181 μm 80.22 − 93.51 slow controlled

released behavior

Crystalline microparticle Nutraceutical supplements and food 

fortification

(224)

Palm oil and 

hydrogenated palm oil

84.63 ± 1.20 μm 74.25–83.07% vitamin C retention after 

45 days

Nutraceutical supplements and food 

fortification

(225)

Complex 

coacervation

Gum Arabic and gelatin 52–84 98 Controlled release under 

defined conditions

32–44% vitamin C retention after 34 days 

storage

Nutraceutical supplements and food 

fortification

(226)

Supercritical fluid 

(SC-CO2) assisted 

encapsulation

Vitamin E and 

liposomes

0.911 32.97 High emulsion stability under cold storage 

for 20 days

Nutraceutical supplements and food 

fortification

(227)

Microchannel 

emulsification

Soybean oil 15–18 High bioavailability Narrow size distribution Nutraceutical supplements and food 

fortification

(228)

Microfluidic 

technique

Chitosan and Na2CO3/

palm fat

195-343 73.4–96.6 High Vitamin C retention (56–99%) at 4 °C

High Vitamin C retention (46–98%) at 20 °C

fortified

food products

(229)

Fluidized bed coating Ethylcellulose/

Polymethacrylate/waxy 

coating material

>315 Microparticle having Al-

stearate showed the best release 

profile

Agglomeration of microparticle Pharmaceutical (230)

Liposome Cholesterol, DL-α-

tocopherol and 

phosphatidylcholine

53–55 Controlled release behavior Multilamellar microparticles Infant food

formulations

(231)

Milk-based 

phospholipids

1.0 10 High retention under cold condition/resistant 

to pH variation/ unilamellar microparticle

Food applications (232)

DL-α-tocopherol, egg 

phosphatidylcholine 

and cholesterol

0.2–1.0 59 Stable against pasteurization Milk fortification (233)

Melt extrusion Maltodextrin 500–1000 Sustained release High vitamin C retention (70%)/Crystalline Bakery products (234)

Maltodextrin 500–1000 96 Sustained release High retention/Large particle size Food fortification (235)

Fructo-oligosaccharide 300–1000 Sustained release Provide high stability to encapsulated vitamin 

C/crystalline

Fortification of low moisture containing 

foods

(11)

Melt dispersion Carnauba wax ∼50 <100 Small size capsules/Porous microparticles Food fortification (236)

TABLE 7 (Continued)

(Continued)
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Encapsulation 
techniques

Wall material Particle characterization Potential application References

Particle size Encapsulation 
efficiency

Release behaviors Stability/Morphology/

Emulsion solvent 

evaporation

Ethylcellulose Tough and flexible microparticle/less porous 

microparticles

Food fortification (236)

Arabic gum and 

maltodextrin

55–107 Controlled release Crystalline Food formulations (237)

Pickering emulsions Modified cellulose and 

chitosan

620 nm 90.3 Controlled release Susceptible to degradation/Pickering 

emulsion

Pharmaceuticals (238)

Emulsions and 

coacervation

Gelatin and sodium 

caseinate system

65-97 Controlled release Irregular and porous microparticles Pharmaceutical/

nutraceutical

(239)

Spray coating Polyacylglycerol 

monostearate

80.7–94.2 Slow release (9.2% after 12 d) in 

beverages

Improve retention oxidation and moisture Beverage/ Milk fortification (240)

Medium-chain 

triacylglycerol

2-5 88.9–95.0 Higher degree of release High protection against oxidation Beverage/Milk fortification (241)

Co-crystallization Lactose and sucrose 2–30 >90 Low drug loading capacity/high stability/

crystalline

Food fortification (242)

Immobilization/

dispersion

Sodium alginate and 

hydrated zinc oxide

359 Sustained release

(∼90% release after 6 h)

Enhanced stability/gel like structure Food fortification (243)

Cross-Linking and 

Coacervation

Chitosan and alginate 2.6 Controlled release in 

GIT

Stable against pH/acidic condition Pharmaceuticals (244)

TABLE 7 (Continued)
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TABLE 8 Nanodelivery system adopted for vitamin C encapsulation.

Class of 
delivery 
system

Delivery system Subclass of delivery 
system

Fabrication 
process

Wall materials Particle characterization Key outcomes Reference

Particles size Encapsulation 
efficiency

Amphiphilic 

based 

delivery 

systems

Liposome Film evaporation and 

micro fluidization

Soy phosphatidylcholine 70 − 130 48–50 Enhanced vitamin C 

stability

Reduced lipid 

oxidation, 

agglomeration and 

premature release of 

encapsulated vitamin 

C

Improve 

physicochemical 

stability

(247)

Extrusion Soy phospholipid

Krill

NA <100 multilamellar 

liposome 

demonstrated high 

stability than 

unilamellar

(248)

Dehydration/

rehydration

Soybean phosphatidylcholine 100–150 nm 31.64–34.63 High stability under 

cold conditions after 

49 days of storage

(249)

Dehydration–

rehydration

Soy phosphatidylcholine 140–220 38 High potential for 

food fortification

(250)

micro fluidization Soy phosphatidylcholine ∼100 ∼62 Vitamin C stability 

can be enhanced 

addition of sucrose 

and applying freeze 

drying

(251)

Film hydration-

ultrasonication

Lecithin 373 42 Highly stable 

nanoparticle

(252)

Hydration with 

extrusion

Hydrogenated soy 

phosphatidylcholine

<120 ∼100 Boosted antitumor 

activity

(253)

Micelles Emulsification poly(ε-caprolactone)-b-poly(N,N-

diethylaminoethyl methacrylate)-ss-b-

poly(2-methacryloyloxyethyl 

phosphorylcholine)

NA NA Offered surface charge 

conversion and fast 

drug release

(254)

(Continued)
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Class of 
delivery 
system

Delivery system Subclass of delivery 
system

Fabrication 
process

Wall materials Particle characterization Key outcomes Reference

Particles size Encapsulation 
efficiency

Lipid based 

delivery 

systems

Nanostructured lipid carrier High pressure 

homogenization

Witepsol®, Miglyol 812®

TegoCare 450®

Carbopol 940®

221 71.1 High stability under 

cold condition

(255)

High pressure 

homogenization

Labrasol, Tristearin

Phospholipid-90NG

268 87 Offer great drug target 

delivery

(256)

Solid lipid carrier High pressure 

homogenization

high pressure homogenization 

technique

228 67.6 High stability under 

cold condition

(255)

Spray congealing glycerol monostearate 90

Tween 80

74 - 84 Retained 75% of its 

initial vitamin C after 

56 days of storage

(257)

Microemulsion/Nanoemulsion Emulsification carboxymethyl cellulose, oleic acid as 

oil phase, Tween 20, propylene glycol

20-200 nm NA Offered high stability 

at various storage 

temperature (4°, 25° 

and 40 °C)

(258)

Emulsification and 

titration

l-ascorbic acid, β-carotene, 1-pentano NA NA Prevention of 

oxidation of 

β-carotene

(259)

Spontaneous 

emulsification

Tween 20, tween 80, span 80, starch 

and virgin olive oil.

1,000 ± 68 nm NA Encapsulated vitamin 

C inhibited oxidation 

of olive oil

(260)

Emulsification Vitamin C, D-limonene, Tween20, 

Tween 80 and polyethylene glycol 400

55.65 ± 1.44–

142.20 ± 7.82 nm

NA Offer high stability at 

different storage 

temperature (25 and 

40°C) after 1 month

(261)

Emulsification fish gelatin 97.45 ± 0.53 NA Offer high 

antibacterial activity 

against bacterial film

(262)

TABLE 8 (Continued)

(Continued)
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Class of 
delivery 
system

Delivery system Subclass of delivery 
system

Fabrication 
process

Wall materials Particle characterization Key outcomes Reference

Particles size Encapsulation 
efficiency

Molecular inclusion Co-precipitation, 
kneading and freeze-
drying

β-cyclodextrin NA NA H NMR and UV-Vis, 
analysis

(263)

Electro and 
physicochemical 
methods

β-cyclodextrin NA NA FTIR, H NMR, UV-Vis, 
X-ray and DSC 
spectrum was 
performed

(264)

Micro-/nanocapsules Coacervations soybean protein isolate (SPI)/pectin 16.24–24.12 78.80–91.62 Offer controlled 
release

(265)

Coacervation gelatin/sodium carboxymethyl 
cellulose

90–160 32.54–69.91 Offers good 
dispersibility and oral 
organoleptic attributes

(266)

Coacervation Gelatin and pectin <10 μm 23.7–94.3 High release (68%) in 
the gastric fluid

(267)

Coacervation Gelatin and gum Arabic 7.7–12.4 μm 27.3–93.8 Offer high stability 
and release at defined 
pH conditions

(268)

spray drying technique Sodium alginate NA 93.48 Vitamin C retained 
after 30 days of 
storages

(269)

Coacervation Gelatin and sodium caseinate NA 8–99 Offer controlled 
release of encapsulated 
vitamin C

(239)

Spray drying
Solvent evaporation
Melt dispersion 
method

Starch and -cyclodextrin NA NA Delayed degradation 
of encapsulated 
vitamin C

(125)

Spray drying
Freeze drying

Arabic gum, stearic acid and 
hydrogenated vegetable fat

9.3–31.2 μm 97.8–100.8 Spray dried 
microcapsule has 
higher retention 
power than freeze 
drying microcapsules

(215)

Complex coacervation 
and freeze drying

Corn oil and gelatin 26.59–81.91 ± 4.99 98 Improve vitamin C 
stability
Offer controlled 
release under defined 
condition

(226)

TABLE 8 (Continued)

(Continued)
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Class of 
delivery 
system

Delivery system Subclass of delivery 
system

Fabrication 
process

Wall materials Particle characterization Key outcomes Reference

Particles size Encapsulation 
efficiency

Micro-/nanospheres Spray drying Chitosan, tripolyphosphate 6.1–9.0 μm 45.05–58.30 Sustained release of 

encapsulated vitamin 

C

(211)

Solvent evaporation Cellulose triacetate, ethylcellulose NA NA Improved release at 

pH 7.4

(270)

Spray-drying Eudragit® RL NA NA Good particle size 

distribution and 

morphology

(216)

Particular Chitosan based 

nanoparticles

Ionic gelation Chitosan

Sodium tripolyphosphate

186–201 10–12 Improved stability 

against heat 

processing

(271)

Self-aggregation chitosan 215.6 ± 18.1–

288.2 ± 10.2 nm

55–67 Demonstrated 

resistance against 

gastric digestion

(272)

Chitosan Ionic gelation 375–503 83–89 High vitamin C 

encapsulation

Enhanced shelf life

(273)

N,N,N-trimethyl 

chitosan

Ionic gelation ∼530 N/A Enhanced vitamin C 

stability

(274)

Chitosan Ionic gelation 255.3 ± 22.9 nm NA Provide enhanced 

vitamin C stability 

under in vitro 

digestion

(275)

Chitosan

Sodium 

tripolyphosphate

Ionic gelation 185 ∼50 Controlled release (276)

Starch nanoparticles Potato starch Ultrasonication N/A 42-80 High stability against 

heat processing

(277)

Nanofiber Polyvinyl alcohol Electrospinning process 50 NA Porous in nature

Fast release of 

encapsulated vitamin 

C

(278)

TABLE 8 (Continued)
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been loaded into micelles assembled from modified-
phosphorylcholine and used as an antitumor drug delivery system 
(254). Researchers have fabricated microemulsions from 
carboxymethyl cellulose, oleic acid, Tween 20, and propylene glycol 
and observed them to be highly stable at different storage temperatures 
(4°, 25°, and 40°C) (258). The researchers also investigated the 
influence of surfactant/co-surfactant and hydrophilic-lipophilic 
balance on vitamin C-loaded microemulsions (261). In general, this 
kind of delivery system is likely to be most useful for applications 
where the vitamin C needs to be trapped within an oil phase, then 
reverse micelles or W/O microemulsions can be used.

7.3. Lipid-based delivery systems

This group of delivery systems includes colloidal dispersions 
primarily assembled from edible fats and oils, including emulsions, 
solid lipid nanoparticles, and nanostructured lipid carriers (Table 8).

7.3.1. Emulsions
Emulsions are thermodynamically unstable colloidal dispersions 

because of the positive free energy associated with the oil-water 
interface. Emulsions with droplets below a few hundred nanometers 
are often referred to as nanoemulsions. A range of fabrication methods 
has been developed to form emulsions, including mechanical 
approaches (like microfluidization, homogenization, and sonication 
methods) and physicochemical approaches (like phase inversion and 
spontaneous emulsification methods) (328–330). Emulsions can 
be  classified as oil-in-water or water-in-oil types depending on 
whether the oil phase makes up the droplets or the surrounding 
medium, respectively. O/W emulsions are rarely used to encapsulate 

vitamin C because it is hydrophilic and therefore tends to be soluble 
in the external aqueous phase, rather than inside the oil droplets. 
Researchers have encapsulated vitamin C within the internal aqueous 
phase of W/O/W multiple emulsions, but they did not measure its 
retention or stability over time (331). In another study, the same 
authors showed that the vitamin C was rapidly released from these 
emulsions, which can be  attributed to the fact that it has some 
solubility in oil and can therefore diffuse out of the W/O droplets into 
the surrounding water (239). Emulsions therefore appear to have 
limited application for the encapsulation of vitamin C.

7.3.2. Solid lipid nanoparticles and 
nanostructured lipid carriers

This type of colloidal delivery system is like an emulsion, but the 
lipid droplets are fully or partially crystalline. Typically, an oil-in-
water emulsion is formed at a temperature above the melting point of 
the fat phase, and then the system is cooled to promote crystallization 
and form solid lipid nanoparticles (SLNs) or nanostructured lipid 
carriers (NLCs) (332–335). In SLNs, the lipid phase is completely 
crystalline, whereas in NLCs it is only partly crystalline. The 
advantages of using these kinds of delivery systems are that the solid 
nature of the lipid phase can slow down molecular diffusion processes, 
which can improve the retention and stability of encapsulated 
substances. SLNs and NLCs are typically used to encapsulate lipophilic 
bioactive substances but some researchers have examined their 
application to vitamin C. For instance, vitamin C-loaded SLNs have 
been prepared using a hot homogenization method (255). Another 
study reported that vitamin C was retained in SLNs at a relatively high 
level (>75%) after 56 days of storage (257). High-pressure 
homogenization has been used to produce vitamin C-loaded NLCs, 
which was shown to prolong the release of the vitamin (256). 

FIGURE 8

Fate of encapsulated delivery systems and their release mechanism and digestion site.
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Nevertheless, further research is required in this area. Like emulsions, 
it may be  difficult to trap and retain the hydrophilic vitamin C 
molecules within the hydrophobic interior of the particles in SLNs 
and NLCs.

8. Fate of vitamin C loaded delivery 
systems in gastrointestinal tract

It is often important to design food-grade delivery systems that 
can increase the bioavailability of nutrients and/or control the region 
they are released and absorbed in the gastrointestinal tract (9, 13–17, 
67). This can often be achieved by controlling the compositions, sizes, 
structures, physical states, aggregation states, and interfacial properties 
of the colloidal particles they contain. Most research studies on 
vitamin C fortification using delivery systems have focused on the 
following aspects: morphological characterization, degree of stability 
enhancement, release kinetics, compatibility with food matrices, 
stability in food matrices, and impact on food properties (9). Some 
studies have also examined the bioaccessibility (in vitro models) or 
bioavailability (in vivo models) of encapsulated vitamin C.

It is important that any encapsulated vitamin C is released within 
the gastrointestinal tract in an active form that can be absorbed by the 
enterocytes. The hydrophilic nature of vitamin C means that it is 
usually highly soluble in gastrointestinal fluids, which ensures it has a 
high bioaccessibility (67). However, it may chemically degrade within 
the gastrointestinal environment, which can be inhibited using well-
designed delivery systems. Nevertheless, there is still a need for a 
systematic comparison of the efficacy of different kinds of delivery 
systems for improving the bioavailability of vitamin C in different food 
matrices. A schematic diagram of the fate of vitamin C-loaded delivery 
systems in the human gastrointestinal tract is shown in Figure 8: (i) 
the delivery system should initially contain a sufficiently high 
concentration of the vitamin to have a biological effect; (ii) the delivery 
system should retain and protect the vitamin in the mouth and 
stomach; (iii) the delivery system should release the vitamin in the 
small intestine where absorption normally occurs; (iv) the delivery 
system might be designed to protect the vitamin and promote its 
absorption in the small intestine; (v) the delivery system itself should 
be safe for application within foods. Clearly, further studies are needed 
in this area.

9. Safety compliance and risks of 
vitamin C delivery systems

It is important that any vitamin C delivery systems are safe for 
human consumption and do not have any unforeseen adverse health 
effects (336, 337). Synthetic polymers or surfactants may have some 
undesirable health impacts and therefore natural alternatives may 
be better (338). Similarly, the use of organic solvents, alcohols, or 
synthetic chemicals during the production of the delivery systems 
should be avoided, or they should be completely removed prior to sale, 
to reduce health risks (338). In general, the impact of their short- and 
long-term effects on human health should be assessed (338). The Food 
and Drug Administration (FDA) in the United States has released 
guidelines regarding the incorporation of nanoparticles in foods 
(339). The European Food Safety Authority (EFSA) in the European 

Union has developed regulations on the utilization of nanomaterials 
as delivery systems in foods (340). Methods to perform risk 
assessments of nanomaterials applied in foods have been given (341).

10. Conclusion

In many countries, the general population consumes enough 
fruits and vegetables to have sufficient levels of vitamin C in their 
diets. However, there are some populations that do suffer from 
vitamin C deficiencies, which lead to debilitating diseases like 
scurvy. Moreover, vitamin C may act as a nutraceutical ingredient 
that can exhibit a range of other beneficial health effects, especially 
due to its antioxidant activity. The biological activity of vitamin C 
in many foods and beverages is limited because of its tendency to 
chemical degrade. Consequently, there is interest in improving the 
chemical stability and bioavailability of this bioactive substance 
using encapsulation technologies. There have been many studies on 
the use of colloidal delivery systems to encapsulate, protect, and 
release hydrophobic vitamins (like vitamins A, D, and E) but to far 
fewer on their application to hydrophilic vitamins (like vitamin C). 
There appears to be a range of colloidal delivery systems available 
that can be  used for this purpose, especially those that have 
hydrophilic domains inside the particles (like polymer particles, 
W/O/W emulsions, and liposomes) but further work is needed to 
establish their relative merits and limitations. Moreover, research is 
required to establish whether they can be affordably produced at 
sufficiently high quantities for commercial applications, and 
whether they are robust enough and effective under real 
life situations.
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