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A self-developed portable electronic nose and its classification model were 
designed to detect and differentiate minor mechanical damage to strawberries. 
The electronic nose utilises four metal oxide sensors and four electrochemical 
sensors specifically calibrated for strawberry detection. The selected strawberries 
were subjected to simulated damage using an H2Q-C air bath oscillator at varying 
speeds and then stored at 4°C to mimic real-life mechanical damage scenarios. 
Multiple feature extraction methods have been proposed and combined with 
Principal Component Analysis (PCA) dimensionality reduction for comparative 
modelling. Following validation with various models such as SVM, KNN, LDA, 
naive Bayes, and subspace ensemble, the Grid Search-optimised SVM (GS-SVM) 
method achieved the highest classification accuracy of 0.84 for assessing the 
degree of strawberry damage. Additionally, the Feature Extraction ensemble 
classifier achieved the highest classification accuracy (0.89  in determining the 
time interval of strawberry damage). This experiment demonstrated the feasibility 
of the self-developed electronic nose for detecting minor mechanical damage in 
strawberries.
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1. Introduction

1.1. Background

Strawberries are popular small fruits that are well-suited for their delicious taste and rich 
nutritional value (1). Phenolic compounds in strawberries are known for their antioxidant and 
anti-inflammatory actions (2). They are abundant in vitamin C, anthocyanins, phenolic 
compounds, and other antioxidants (3), which promote antioxidation in the human body and 
reduce the risk of cardiovascular diseases and cancer (4). Strawberries also possess direct and 
indirect antimicrobial, anti-allergic, and antihypertensive properties (5). Although dried 
strawberries undergo dehydration, they retain high pro-health potential and maintain acceptable 
sensory qualities (6). Consequently, strawberries have become an indispensable part of their 
daily diet. Strawberries have various shapes and sizes, bright colours, smooth skin, tender and 
jurious flesh, and a rich taste. Conversely, strawberries have delicate exteriors, making them 
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prone to mechanical damage during processes such as harvesting, 
transportation, and packaging (7). This minor damage may have 
accelerated the oxidation and deterioration of the strawberries. 
Moreover, strawberries are susceptible to fungal infections (8), and 
damaged areas can facilitate infection, leading to a decline in quality 
and waste from multiple perspectives. To avoid this situation, 
non-destructive detection and screening of strawberries with minor 
damage have become an important issue (9).

Electronic nose technology is an embodiment of the biomimetic 
olfaction concept that aims to mimic animal olfaction for fuzzy odour 
judgment without the need for precise chemical analysis. With the 
application of the e-nose technology, fruits can be  tested in large 
quantities without damage. Detecting minor fruit damage, particularly 
during the early stages, can be  challenging. In addition, image 
recognition methods may prove ineffective when fruits are stacked 
and obstruct each other. Traditional chemical analysis equipment 
typically requires sample extraction, which damages the external 
appearance of the fruit. This not only results in incomplete detection 
but also risks harming the packaging or fruit itself. In contrast, the 
electronic nose technology allows for rapid, non-destructive, and 
bulk assessments.

1.2. Research purpose and method

To ensure that the appearance and experience of strawberries are 
not negatively affected during sales, it is crucial to determine the 
timing of the damage and infer the cause in order to improve logistics 
and other pre-sales processes. Precise identification of damaged 
strawberry samples is needed so that they can be  assessed and 
removed, providing a rapid, convenient, and non-destructive solution 
for the early detection of minor strawberry damage. We  need to 
develop an electronic nose specifically designed to detect volatile gases 
emitted by strawberries using a sensor array that primarily meets the 
requirements for strawberry detection.

2. Literature review

2.1. Development of electronic nose for 
fruit and vegetable food inspection

In the 1960s, researchers designed microelectrodes to mimic the 
olfactory mechanism of animals by comparing it with that of olfactory 
hair. In 1963, Wilkens from Cornell University proposed that a 
differential response sensitivity to various volatiles could be obtained 
under any given microelectrode condition. By comparing the 
reactions to several odours under different electrode conditions, a 
differential response specificity similar to that of the different human 
olfactory receptor sites was discovered (10). In 1982, Persaud 
compared the olfactory system to an electronic nose. A comparison of 
electrical signals from sheep olfactory mucosa and semiconductor 
sensors showed some similarities. By adjusting these parameters, 
highly specific receptors can be replaced with a single sensor (11).

Electronic noses are widely used for the detection of diseases in 
fruits and vegetables. Gómez et al. used a portable PEN2 electronic 
nose device with ten different metal oxide sensors to evaluate the 
ability of electronic noses to monitor changes in volatile production 

during tomato ripening. Principal Component Analysis (PCA) and 
Linear Discriminant Analysis (LDA) were used to determine whether 
the electronic nose could distinguish different ripening stages 
(unripe, half-ripe, fully ripe, and overripe) (12). Chen et al. developed 
an electronic nose system for fruit ripeness and quality detection 
with an identification accuracy of up to 100% (13). Qian et  al. 
detected Chinese noodles using an Electronic Nose (e-nose). The 
e-nose results indicated that the primary flavour differences in 
noodles were primarily attributed to inorganic sulphides, alcohols, 
aldehydes, and ketones (14). Zhao et al. proposed a rapid electronic 
nose method to detect whether apples were infected with fungi, and 
the recognition accuracy of the SSA-BPNN model reached 
98.40% (15).

Commercial electronic noses commonly used for agriproduct 
detection include Germany’s AIRSENSE PEN 3 and France’s Alpha 
MOS Fox 4,000. In a study on the TVB-N content of eggs, Liu et al. 
used a Pen 3 electronic nose. Using the array response of the electronic 
nose, they established a content model capable of describing the egg 
storage period (16). Labreche et al. used a Fox 4,000 electronic nose 
to determine the shelf life of milk. An electronic nose was used to 
analyse milk samples stored at different temperatures and times (17).

2.2. The electronic nose as a common 
device for food detection

The electronic nose has always been a research hotspot for food 
detection. Elizabeth reviewed the applications of modern electronic 
noses and tongues in the food and pharmaceutical industries. The 
review covers various types of electronic nose sensors based on 
different principles, including organic polymers, metal oxides, quartz 
crystal microbalances, and the combination of gas chromatography 
(GC) and mass spectrometry (MS) (18). Shi et  al. reviewed the 
development of electronic noses in science and technology, and their 
applications in fresh food. This review focuses on the sensing and 
recognition systems of electronic noses as well as their applications in 
fresh food classification, flavour detection, and spoilage evaluation 
(19). Sanaeifar et al. reviewed the applications of electronic noses in 
the food industry and discussed future development trends, prospects, 
and challenges (20). Jia summarised the research on agriproduct 
detection. This review discusses the applications of electronic noses in 
agriproduct analysis (such as fruits, vegetables, tea, grains, livestock 
meat, and fish), including freshness evaluation, quality classification, 
authenticity assessment, variety identification, geographical origin 
identification, and disease detection (21). Hotel reviewed algorithms 
for volatile compound recognition in electronic noses based on 
surface acoustic wave (SAW) sensors. This review describes several 
machine learning algorithms and compares their performance on 
different features used in state-of-the-art electronic nose systems (22). 
Zheng et al. reviewed electronic noses based on metal oxide sensors 
for crop pest detection. When crops are attacked by pests, they release 
(VOCs) to alert their natural enemies, which can then be captured 
using metal oxide semiconductor gas sensors. This review introduces 
the principles, techniques, and progress of crop pest detection (23). 
Baietto et al. summarised the applications of electronic noses in fruit 
identification, ripeness, and quality grading. This study reviews the 
chemical properties of fruit volatiles during fruit production, describes 
some more important applications provided by electronic nose 
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(e-nose) technology for fruit aroma characterisation, and summarises 
recent research on e-nose data (24).

2.3. Study on strawberry-related gases, 
damage, and electronic nose detection

In 2006, Iannetta et  al. investigated the relationship between 
ethylene (C2H4) and carbon dioxide (CO2) to represent strawberry 
ripening. Their experiments showed that the C2H4 level increased 
linearly (without diurnal fluctuations) to approximately 1 nL 
fruit-1 h-1 as the strawberries reached the red-ripe stage. 24 hours 
after the red fruits began to produce C2H4 again, the CO2 levels 
increased approximately threefold, indicating a climacteric respiration 
period (25). In 2012, Hu et al. studied the effects of hydrogen sulphide 
(H2S) on the post-harvest shelf life and antioxidant metabolism of 
strawberries. Fumigation with H2S gas released from the H2S donor 
NaHS prolonged the postharvest shelf life of strawberry fruit in a 
dose-dependent manner (26). Positive effects of hydrogen gas on the 
nutrition, texture, and sensory freshness of strawberries have been 
observed (27).

Zhang J and colleagues used an electronic nose (e-nose), 
headspace solid-phase microextraction-gas chromatography–mass 
spectrometry (HS-SPME-GC–MS), and gas chromatography-ion 
mobility spectrometry (GC-IMS) to study the aroma of freshly 
squeezed strawberry juice during storage at 4 ± 1°C. By analysing the 
volatile organic compound (VOC) content, they enhanced our 
understanding of VOCs and provided a basis for studying the aromatic 
characteristics of freshly squeezed strawberry juice (28). Granitto et al. 
employed PTR-MS technology to analyse volatile compounds and 
applied various data mining techniques to achieve rapid and 
non-destructive detection of individual strawberries (29). Lu 
developed a mobile electronic nose to detect strawberry decay using 
gas sensors. Six metal oxide sensors were selected, and the sensor 
array was combined with a mobile unit and computer to construct a 
mobile electronic nose device (30). Pan L and colleagues employed an 
electronic nose and gas chromatography–mass spectrometry (GC–
MS) to detect and classify early post-harvest fruit pathogen infections. 
In the experiment, strawberries inoculated with grey mould, blue 
mould, and root mould fungi decayed within 2 d at 5°C. A multilayer 
perceptron neural network model accurately discriminated between 
four groups of strawberries with fungal infections with an accuracy 
rate of 96.6% (8). Xing M and colleagues developed a custom 
electronic nose system called “Red Face” for detecting the freshness of 
strawberries during different storage periods. The system consists of 
six metal oxide semiconductor sensors connected to a data acquisition 
system and a computer equipped with pattern recognition 
software (31).

Electronic noses often demonstrate good performance in 
detecting berry fruits such as white berries and blackberries (32). In 
2020, Rao Jingshan, Zhang Yuchen, and colleagues investigated the 
use of (e-nose) technology to predict the volatile organic compounds 
(VOCs) in vibration-damaged strawberry fruits during storage on all 
four sampling days. The best models for the residual prediction 
deviation values were 2.984 and 5.478. The discrimination model for 
damaged strawberries also achieved good classification results, with 
an average correct response rate of 99.24% for both calibration and 
prediction (33). In 2022, Cao Yang, Zhang Yuchen, and others 

improved upon previous research. By studying the detection of 
damaged strawberries through VOCs and establishing and predicting 
models for the degree of damage and impact time, they demonstrated 
that mechanical impact caused changes in the VOCs in strawberries 
and that using electronic nose technology to detect impact-damaged 
strawberries was feasible (34). In 2022, Al-Dairi Mai et al. conducted 
research on the postharvest transportation of fresh agriproducts and 
introduced an experimental method for measuring vibration levels 
during the transportation process. Factors affecting vibration levels 
include surface conditions, vehicle speed, vibration duration, vibration 
direction, and packaging units (35).

3. Experiment and equipment

3.1. E-nose used in the experiment

As an independent detection device, we must consider the ease of 
use for operators in addition to the sensor array. We developed a 
complete set of equipment based on a microcontroller incorporating 
a 10-inch capacitive touchscreen that integrates the device’s functions 
for operation and control, including sampling and cleaning switches, 
experimental data grouping, baseline zeroing, data combination 
display, column display, and time display. Furthermore, our electronic 
nose features a multilevel data saving function to ensure data security 
(36). In an electronic nose system, data stored on a TF card can also 
be uploaded to a server for backup storage via Wi-Fi. Figure 1 shows 
the electronic nose used in the experiment.

Figure  2 depicts the working and structural principles of the 
electronic nose used in the experiment. The electronic nose was 
equipped with a 12 W vacuum pump, which, after pulse width 
modulation (PWM) speed regulation, provided suction to the gas 
chamber as per demand, thereby drawing the sample gas into the 
chamber through a hose. The gas chamber contained embedded 
sensors that transmitted signals to the MCU. The data were calculated 
and displayed on a 10-inch touchscreen. In addition to the gas 
information, temperature, humidity, time, and group information 
were stored in the TF card.

FIGURE 1

The independently developed e-nose.
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3.2. Strawberry sample preparation

To obtain strawberries with minor damage, we  simulated the 
damage to freshly harvested strawberries. To simulate the mechanical 
damage in strawberries, two commonly used methods are freefall (34) 
and oscillation (33). However, in this particular study, the variety of 
strawberries investigated (double winter strawberries) was 
characterised by its small size and abundant fruit quantity, making 
oscillation the preferred method for simulating mechanical damage 
to strawberries. To facilitate gas detection, we  selected Shuangliu 
winter strawberries with an average weight of 8.5 g, that were in good 
and fresh condition. Nine strawberries were placed in a 250 mL wide-
mouth bottle and sealed with sealing film. Sealed strawberries were 
divided into groups to induce varying degrees of minor damage. An 
H2Q-C air-bath shaker was used to simulate the shaking process. The 
groups were divided according to the shaking intensity, as shown in 
Table 1, with 10 parallel samples in each group. After shaking, the 
samples are placed in a 4.5°C refrigerator for detection (Figure 3).

It is noteworthy that we tested different shakers, and the results 
varied under different devices, owing to factors such as the degree of 
fixation of the shaker and equipment resonance. If strawberries 
continually shift their positions within the bottle, severe damage may 
occur. However, if strawberries are packed tightly or subjected to high 
centrifugal force due to rapid rotation, there may be little displacement, 
resulting in damage caused by compression only. In this experiment, 

the shaker used at a rotation speed of 240 r/min still led to relatively 
intense collisions among the strawberries, but did not result in direct 
damage or loss of the fruit flesh.

3.3. Difficulty in sample detection

This experiment was challenging for several reasons. First, the 
damage to strawberries after shaking was minimal and did not directly 
damage the flesh. Even when observing with the naked eye, we needed 
to be close to the samples. After shaking, strawberries may exhibit 
swelling and darkening of colour, both of which are indicators of 
damage. Second, unlike previous studies, our experiment involved 
storing all samples in cold storage. Under refrigeration, strawberries 
are difficult to oxidise and rot.

These two factors account for the fact that, in the current 
strawberry harvesting and transportation processes, single-fruit 
packaging is often employed, road transportation conditions have 
improved, and the hardness and quality of the fruit have increased, 
making direct damage less common. Moreover, owing to the short shelf 
life of strawberries, refrigeration is commonly used for daily storage.

3.4. Detection method

Electronic nose collection experiments were conducted on the 
prepared samples after 24 h, 48 h, 72 h, 96 h, and 120 h of refrigeration. 
Before starting the experiment, the custom-built electronic nose needs 
to be  preheated for 2–4 h. Once the electrochemical sensors are 
unbiased and the metal-oxide sensors operate stably, data collection 
can begin. The collection phase can be  divided into ventilation 
calibration, sampling, and cleaning phases.

3.4.1. Calibration
After basic ventilation calibration, our self-developed electronic 

nose can respond to sensors in air, perform zero calibration on 
electrochemical sensors, and output G/G0 for metal oxide sensors.

Core Control Board

Sensors

Screen

Core Hardware of E-nose

Strawberry Samples

Aeration Chamber Vacuum Pump

Inlay
Other E-nose 
Components

C2F4 Pipe Suck

FIGURE 2

Schematic diagram of the e-nose operation.

TABLE 1 Group and oscillation frequency.

Group Oscillation 
frequency(r/min)

Time(min)

a 0 0

b 120 60

c 160 60

d 200 60

e 240 60
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3.4.2. Sampling
A rigid plastic sampling head was used to quickly puncture the 

sealing film, and a 12 W vacuum pump gradually pumped the detected 
gas into the gas chamber.

3.4.3. Cleaning
In comparison to the zeroing method mentioned in Reference 

(24), we still opt to sacrifice efficiency in favour of sensor accuracy by 
using a 40 W high-power vacuum pump and waiting for natural 
zeroing as much as possible. If natural calibration is not possible, wait 
10 min after cleaning before recalibration.

After experimental data collection, the obtained sample data had 
two labels: time and damage groups. The goal was to ensure that the 
e-nose model built at a later stage could accurately judge strawberry 
damage under various conditions.

3.5. Sensor array selection

Compared to existing electronic noses in the market, we chose to 
develop our own, tailored to the specific characteristics of the fruit 
being detected. Pen-3 is a mature commercial electronic nose widely 
favoured by researchers and is primarily fabricated using ten metal 

oxide sensors. These metal oxide sensors have broad applicability, a 
relatively long lifespan, and strong detection sensitivity owing to their 
cross-sensitivity, although they cannot accurately determine the 
specific composition of the reacted substances.

The method of selecting metal oxide sensors to detect the 
corresponding substances was in accordance with Reference (31); 
however, the models of the selected sensors were not the same. 
Preliminary tests were conducted on other batches of strawberries 
under the same experimental conditions. We applied the Savitzky–
Golay method to denoise the data and plotted the response curves of 
the sensor modules over time (Figure 4) to select relatively sensitive 
metal-oxide sensors. It can be observed that the curves of TGS2602 
and TGS2610 overlap; therefore, only one curve needs to be retained. 
The response of TGS826 was not obvious, whereas MQ136, MQ138, 
and MQ822 had relatively higher contributions. To ensure sufficient 
gas chamber space and increase the contact area between the unit gas 
and the sensor, TGS826 and TGS2602 were removed, leaving only 
MQ136, MQ138, TGS826, and TGS2602.

Electrochemical sensors have a more precise range and can 
accurately determine the chemical changes between the sensor and 
the reacted substances using millivolt-level voltages, thus obtaining 
precise reaction changes. However, electrochemical sensors mainly 
measure specific inorganic substances with a relatively high specificity. 
In existing strawberry research, the detection of substances, such as 
ethylene, sulphides, and alcohols, is often required. Therefore, 
we prioritised the selection of electrochemical sensors that can detect 
these types of substances.

As a result, we chose the metal oxide sensors TGS822, TGS2602, 
MQ136, and MQ138 and the electrochemical sensors 4CH3SH-10, 
4NO2-20, 4NH3-100, and 4H2-1,000. Based on the voltage change 
characteristics of the two types of sensor modules, we plotted Figure 5, 
which shows their sensitivity to various substances under known 
conditions. A value of 0 indicated no reaction or an unclear reaction. 
The sensitivity of these sensors to various substances was sufficient to 
detect the changes caused by strawberry volatiles.

Electrochemical sensors are more precise in their measurement 
range, and by utilising their millivolt-level voltage, they can accurately 
determine the chemical changes between the sensor and the 
substances being reacted, thereby obtaining precise reaction changes. 
However, electrochemical sensors are mainly used to measure a few 
inorganic substances and have a relatively high specificity for 
detection. In existing strawberry research, the detection of substances, 

FIGURE 3

Strawberry pre-processing: (A) using H2Q-C air bath shaker for oscillation, (B) the distribution of strawberries in the shaker and (C) refrigerate at 4°C 
Celsius.

FIGURE 4

Comparison of experimental results for metal oxide sensors.
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such as ethylene, sulphides, and alcohols, is often required. Therefore, 
we prioritised the selection of electrochemical sensors that can detect 
these types of substances. Metal-oxide sensors have high repeatability 
and stability, allowing them to operate stably over long periods of 
time. In addition, they exhibit different characteristics in response to 
different gases, which enables them to distinguish and identify 
different gases.

3.6. Experimental phenomenon

Strawberries exhibited varying levels of damage depending on 
the applied oscillation frequency. Group A represented undamaged 
strawberries, whereas group B consisted of samples obtained at a 
rotation speed of 120 rpm. The rotation speed increased 
progressively throughout the groups, with group E containing 
samples obtained at 240 rpm (Table 1). To ensure a proportional 
relationship between the rotation speed and the degree of damage, 
it is crucial that strawberries collide and move, even at the highest 
rotation speed. Strawberries with abnormal oscillations were 
removed by visual inspection. The visual distinctions among 
different groups can be discerned by examining the captured images 
of strawberries (Figure 6).

Group A contained undamaged strawberries. They are fresh, 
glossy, vibrant, and well formed, with a faintly sweet fragrance. Even 
after cold storage, they remained intact, although some of their gloss 
was lost.

In group B, strawberries exhibited slight surface wrinkling due to 
mild oscillation. Their scent was similar to that of group A. After a few 
days of cold storage, some strawberries in Group B showed a slight 
darkening of colour, but those with uneven collisions maintained 
their freshness.

Group C strawberries experienced an increase in wrinkle depth, 
and their edges became less defined. Their scent was similar to that of 
Group A, but slightly stronger. After several days of cold storage, the 
fruit loses moisture and the dark red colour becomes 
more pronounced.

In group D, the collision frequency reached a high-intensity 
rotation speed of 200 rpm, resulting in several strawberries with large 
areas of wrinkling and a dark red colour. They appeared soft and 
mushy, with a sweeter scent. After cold storage, the collision areas 
darken further, and dehydration issues arise, accompanied by a 
stimulating sweet aroma.

Finally, group E strawberries could not maintain their original 
angular shape after oscillation and gradually became smooth and 
round. Generally, they are soft and mushy. After a few days of storage, 
they developed a rich sweet scent that grew increasingly intense.

4. Results and analysis

4.1. Electronic nose detection data

To clearly show the changes in the sample gas, we provide an 
example from the experimental data (Figure  7). As the degree of 
damage changed over time, the sensor signals exhibited different 
variations. One noticeable observation was that the required detection 
time varied. On average, group E samples took longer to detect than 
group A and C samples. This may be because, when gas exchange 
occurs, the gas diffuses and intermingles. When the gas concentration 
is high, it takes longer for the gas to fully diffuse in the gas chamber; 
consequently, the rise and fall of the gas concentration also require 
more time. Different sensors exhibit varying sensitivities at different 
response stages. To further analyse this, we calculated all data.

Based on the experimental results, the response ratios of the 
sensors were visualised using eight 3D stacked bar charts of the 
voltage ratios of the metal oxide sensors (Figure 8). Calculations were 
performed on all the raw data from the experiments. The charts depict 
the voltage values (V) of each sensor during the entire response phase 
for different groups (groups) and times (h). These visualisations 
demonstrate the proportion of each sensor response under various 
experimental conditions. First, because the voltage range of metal 
oxide sensors differs from that of electrochemical sensors, we scaled 
the electrochemical sensor data to match the voltage range of the 

FIGURE 5

Sensitive response characteristic substances of 8 types of sensors: (A) sensitive substances for metal oxide sensors and (B) sensitive substances for 
electrochemical sensors.
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metal oxide sensors for comparison. Next, we calculated the mean 
values for each sensor during the entire reaction cycle (sampling, 
rising, peaking, and cleaning). This approach, which incorporates all 
the data, offers greater stability and versatility than the use of 
maximum or minimum absolute values. It can offset fluctuating 
electrical signals near 0, and conversely, it can include stable values 
throughout the entire reaction process. The following information can 
be obtained from the chart.

 1. The chart displays only the activity of the sensors and does not 
reflect their contributions to the results. The higher the 
proportion of the sensor, the higher is its activity, which may 
also be influenced by noise. However, for different orders of 
magnitude, a sensor with a larger proportion is more likely to 
be sensitive to the reactants.

 2. The mean voltage represented by the y-axis does not reveal the 
voltage pattern, because the data used were from the entire 

FIGURE 6

The visual observations of strawberries from the different groups. Photographs (A–E) were taken immediately after oscillation, when the strawberries 
were fresh, and photographs (F–J) were taken after 72  h of cold storage. Photographs (A–E) and (F–J) both correspond to the groups (A–E) described 
in Table 1.
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FIGURE 7

Comparison of electronic nose responses for individual samples at different experimental stages: (A1), (B1), and (C1) represent the voltage changes of 
the metal oxide sensor module for group A samples at 24  h, 72  h, and 120  h, respectively. (A2), (B2), and (C2) represent the changes in gas 
concentration detected by the electrochemical sensor module for group A samples at 24  h, 72  h, and 120  h, respectively. Similarly, (D1), (E1), and (F1) 
represent the voltage changes of the metal oxide sensor module for group C samples at 24  h, 72  h, and 120  h, while (D2), (E2), and (F2) represent the 
changes in gas concentration detected by the electrochemical sensor module for group C samples at 24  h, 72  h, and 120  h. (G1), (H1), and (I1) 
represent the voltage changes of the metal oxide sensor module for group E samples at 24  h, 72  h, and 120  h, while (G2), (H2), and (I2) represent the 
changes in gas concentration detected by the electrochemical sensor module for group E samples at 24  h, 72  h, and 120  h.
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detection process. The peak and cleaning times varied under 
different experimental conditions (e.g. the detection time for 
group E was several times that for group A). The time required to 
reach the peak and the time required to complete the cleaning 
process differed for the samples under different conditions. A low 
voltage might indicate a small reaction; however, in most cases, 
this is due to prolonged cleaning times, which lowers the average 
voltage value after taking the mean. Therefore, only the 
proportions of various sensors can be compared.

 3. The sensors with the lowest proportions were 4H2-1000 and 
4NH3-100. Possible reasons for their low responses are either 
an overly large measurement range or a small amount of 
reactive gases.

 4. Sensors TGS2602 and MQ138 have a slightly smaller 
proportion than MQ136, which is consistent with 
experimental expectations.

 5. The sensors with the highest proportions were 4CH3SH-10, 
4NO2-20, MQ136, and TGS822. For electrochemical sensors 
4CH3SH-10 and 4NO2-20, their small measurement range 
allow them to capture reaction states more sensitively within 
their range. For MQ136 and TGS822, this was because of the 
presence of sensitive reactants corresponding to them.

 6. The response level (also known as the activity level) of each sensor 
may vary under different conditions. For example, the red 
4CH3SH-10 sensor may become less active than the other sensors 
as the damage level increases. The MQ136 sensor's activity level 
may also increase as the time interval and damage level increase. 
However, some sensors do not exhibit a clear pattern, and may 
require other statistical or processing methods for analysis.

4.2. Use PCA to perform feature extraction 
on the raw data

Dimensionality reduction of the collected full-process data using 
PCA: The sample data obtained from the electronic nose is a time 

series, which is continuous data that change over time. Different 
sensor data were generated at each time point, and the data for each 
period constituted a sample. By employing principal component 
analysis (PCA) for dimensionality reduction, the original eigenvalues 
became matrices. In time series data, each sample typically contains 
data from multiple time points. We consider each time point as a 
feature and each sample as a vector, allowing us to convert the time-
series data into a matrix. Subsequently, we can perform PCA on this 
matrix to obtain low-dimensional data features.

4.2.1. Data for different damage groups
This set of data simultaneously shows the electronic nose 

response data for different damage groups A–E at the same time. 
PCA dimensionality reduction is applied to address the issue of 
determining the degree of damage. PCA1 and PCA2 account for 
more than 81% of the total, and the first three principal components 
account for 91%. As shown in Figure  9, the first two principal 
components accounted for 81% of the explainable variance, and 
points within the same group were clustered together. However, the 
boundaries were blurred and there was some overlap between 
groups A and B. This could be due to the low level of damage in 
Group B, which was not significantly different from the undamaged 
state, making it difficult to distinguish.

4.2.2. Data for different detection times
Subsequently, calculations were carried out for determining time 

periods, using strawberry samples with the same degree of damage, 
comparing their electronic nose voltage responses between 24 h and 
120 h of storage at 4°C. PCA1 and PCA2 account for more than 70% 
of the total, with the first four principal components exceeding 91%. 
Figure 10 shows that the confidence ellipses have multiple orientations, 
indicating different trends in different principal component directions 
and large variances in these directions. The confidence ellipse shapes 
and sizes vary. Although the data points are relatively concentrated, 
possibly owing to the small mean differences between multiple groups, 
the variances can be clearly distinguished, and there is a clustering 
trend for points of the same type.

A B

FIGURE 8

Voltage proportion of the 8 sensors under various experimental conditions: (A) viewpoint 1st and (B) viewpoint 2nd.
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Because the damage changes among the five groups of strawberries 
were not significant and the storage over time was at a low temperature, 
it was difficult to distinguish the obtained data. The introduction of 
data collection throughout the entire process (zero baseline, response 
emergence, peak, stability, and cleaning) may result in various 
situations that are difficult to interpret and classify, particularly the 
uncertainty of the cleaning time. In addition, the lack of designed 
weight values causes less important times and critical judgment points 
to have the same weight, thereby reducing their 
characteristic representations.

Although the PCA chart does not directly distinguish between 
groups, the size, direction, and aggregation of confidence ellipses and 
scatter points display a rich range of possibilities, indicating potential 
value for classification.

4.3. Use eigenvalue extraction methods to 
perform feature extraction on the raw data

Using eigenvalue extraction methods: The advantage of the 
electronic nose feature extraction is its flexibility in choosing different 

eigenvalues according to the requirements of the application scenario. 
It can be  combined with domain knowledge and experience for 
selection and is convenient for interpreting practical meanings. In EN 
data processing of the electronic nose, it is necessary to extract 
effective eigenvalues from raw data for pattern recognition and 
classification. In this study, we propose nine effective eigenvalues: the 
maximum value, minimum value, mean value, Variance, Differential 
mean, integral mean, start-up differential value, average slope near the 
extreme value, and count of data points greater than the absolute 
mean value (abbreviated as count). Owing to the uncertainty in the 
detection time, the differential and integral means are more practically 
meaningful. The integral mean was calculated using a trapezoidal 
formula. The average slope near the extreme value has a peak shape. 
The larger the value, the sharper the peak, and the smaller the value, 
the smaller the peak. Moreover, because a stronger odour can result 
in a longer cleaning time, which can lower the mean value, the count 
is a good indicator of samples with strong volatility.

4.4. Prediction model

The experimental data come from two sources: one is the PCA 
values obtained through dimensionality reduction of the time-series 
PCA, where their sum is greater than 95%, and the other is the 
dimensionality reduction using eigenvalues. The calculation method for 
the eigenvalues was introduced in the previous section, and nine 
eigenvalues were selected. MQ138 and TGS2602, which exhibited 
response curves similar to those of MQ136, were removed to reduce the 
probability of overfitting. Among the remaining six sensors, 4H2-1,000 
and 4NH3-100 had minimal impact owing to their larger measurement 
ranges compared to the measured gas content. In clean air, the voltage 
fluctuations are of the same order of magnitude as those in the sensitive 
gas; therefore, most eigenvalues are not applicable. Only the means and 
variances of the two sensors were retained to avoid adverse effects. 
Finally, four of the six sensors retained nine eigenvalues and two sensors 
retained two eigenvalues, resulting in a total of 40 eigenvalues per 
sample. A comparison of the two methods is presented in Table 2.

The dimensionality-reduced experimental data from both 
methods were imported into classifiers for classification. The classifiers 
mainly employ the LDA (37), SVM (38), KNN (39), naïve Bayes (40), 
and Subspace Discriminant (41) methods, among which the Subspace 
Discriminant is an ensemble classifier. The accuracy of the directed 
extraction method using eigenvalues was significantly higher than that 
of the PCA method applied to all the data in the time series. Moreover, 
performing PCA on the extracted 40 eigenvalues did not improve 
the accuracy.

For the damage problem, the ensemble classifier Subspace 
Discriminant performed the best, reaching an accuracy of 0.89, whereas 
the model for the timing problem achieved an accuracy of 0.81. This 
enabled a relatively clear classification of the five data categories. Table 3 
presents the effects of the other classifiers, with SVM, KNN, and Linear 
Discriminant Analysis having relatively good classification results.

4.5. Model optimization

At the current stage of research, there are still some 
limitations. The sensor selection can be further optimised. By 

FIGURE 9

Comparison of images before and after cold storage for different 
groups.

FIGURE 10

Comparison of images before and after cold storage for different 
groups.
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TABLE 5 Comparison of classification accuracy results for the damage-
based problem.

Dimensionality 
reduction 
method

Optimization 
method

Accuracy Cross-
validation

Feature extraction None 0.71 5

PCA None 0.40 5

Feature extraction Grid search 0.84 5

Feature extraction Random search 0.84 5

PCA Grid search 0.58 5

PCA Random search 0.42 5

comparing and verifying a greater variety of sensor models, the 
best sensor types can be  selected, thereby enhancing the 
recognition capabilities of the electronic nose from a hardware 
perspective. There is also room for improvement in data 
extraction. One possible approach is to process the data only 
prior to the peak, thus avoiding the negative impact caused by the 
uncertainty of stabilisation and cleaning times. The selection of 
feature values should also involve comparing a wider range of 
extraction methods to further improve accuracy.

From Table 4, it can be concluded that by using Grid Search 
optimization, the accuracy of SVM was improved from the 
original 0.80 to 0.84 using Grid Search SVM (GS-SVM), and the 
PCA-reduced data increased from the original 0.38 to 0.46. As 
shown in Table  5, using the GS-SVM method, the accuracy 
increased from 0.71 to 0.84%; however, it was not as high as that 
of the subspace discriminant model, which was 0.89. For the 
original PCA-processed data, the accuracy increased from 0.40 
to 0.58. The performance of the random search-optimised SVM 

(RS-SVM) was not as good as that of the GS-SVM. The final 
experimental results for damage and time discrimination 
accuracy are shown in Table 6, where the subspace discriminant 
model achieved 0.89 for a time classification problem and 0.84 
for a damage degree classification problem.

5. Discussion

5.1. Limitations and future improvements

At the current stage of research, there are still some limitations. 
The sensor selection can be further optimised. By comparing and 
verifying a greater variety of sensor models, the best sensor types can 
be  selected, thereby enhancing the recognition capabilities of the 
electronic nose from a hardware perspective. There is also room for 
improvement in data extraction. One possible approach is to process 
the data only prior to the peak, thus avoiding the negative impact 
caused by the uncertainty of stabilisation and cleaning times. The 
selection of feature values should also involve comparing a wider 
range of extraction methods to further improve accuracy.

Moreover, it is essential to further optimise the sample space, 
acquire more valid data, and enhance the robustness of detection. As 
research progresses, these areas of improvement can be addressed, 
leading to a more refined and effective non-destructive electronic nose 
technology for strawberries.

5.2. Applications and significance

The development prospects for non-destructive strawberry 
detection technologies are broad. Food safety regulatory agencies 
can use this technology to spot-check strawberries to ensure 
consumer food safety and health. Non-destructive electronic 

TABLE 2 Comparison of classification accuracy between the two dimensionality reduction methods.

Problem classification Dimensionality 
reduction method

Classification methods Cross-validation Accuracy

Time classification Feature extraction Subspace ensemble 5 0.88

Time classification PCA Subspace ensemble 5 0.6

Damage classification Feature extraction Subspace ensemble 5 0.81

Damage classification PCA SVM 5 0.38

TABLE 3 The accuracy of the first four models for the two classification 
problems.

Problem 
classification

Classification 
methods

Accuracy

Time classification Subspace discriminant 0.89

Time classification SVM 0.81

Time classification Fine KNN 0.77

Time classification Naive Bayes 0.77

Damage classification Subspace discriminant 0.82

Damage classification LDA 0.78

Damage classification Medium Gaussian SVM 0.78

Damage classification Weighted KNN 0.74

TABLE 4 Comparison of classification accuracy results for the time-based 
problem.

Dimensionality 
reduction 
method

Optimization 
method

Accuracy Cross-
validation

Feature extraction None 0.80 5

PCA None 0.38 5

Feature extraction Grid search 0.84 5

Feature extraction Random search 0.84 5

PCA Grid search 0.46 5

PCA Random search 0.34 5
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nose technology can be  applied during the production and 
processing of strawberries to monitor and control their quality 
and freshness. Production and processing companies can use this 
technology to screen raw strawberries and ensure product quality 
and safety.

Non-destructive electronic nose technology for strawberries will 
continue to be developed and improved, and its application scope will 
become more extensive. Simultaneously, electronic nose technology 
will continue to innovate, thereby improving its detection accuracy 
and sensitivity, and better serving people’s lives and health.

6. Conclusion

In this study, an electronic nose was developed to detect minor 
mechanical damage to strawberries. A shaker with a range of 
120–240 r/min was used to simulate minor mechanical damage in 
strawberries, which were stored at 4°C for 120 h under 
low-temperature refrigeration. An array of sensors specifically 
designed to detect volatile gases emitted by strawberries was employed 
in the experiments. Among the electrochemical sensors, 4CH3SH-10 
and 4NO2-20 exhibit the best detection responses. Among the metal 
oxide sensors, MQ136 and TGS822 demonstrated the highest 
responsiveness. Various feature extraction methods were applied to 
effectively capture the characteristics of strawberry data, and the 
electronic nose achieved an accuracy rate of over 0.8 for the detection 
of minor mechanical damage in strawberries. The multiclassification 
accuracy for determining the timing of strawberry damage was 0.84, 
and that for determining the degree of strawberry damage was 0.89. 
The experimental results indicated that the device could effectively 
differentiate the degree of mechanical damage in grouped strawberries 
and roughly estimate the time at which the damage occurred.
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