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Apigenin is a bioflavonoid compound that is widely present in dietary plant foods 
and possesses biological activities that protect against immune, cardiovascular, 
and neurodegenerative diseases and cancer. Therefore, apigenin is widely used 
in food and medicine, and increasing attention has been drawn to developing 
new delivery systems for apigenin. This review highlights the biological effects, 
metabolism, stability, and bioactivity of apigenin. In addition, we  summarized 
advancements in the delivery of apigenin, which provides some references 
for its widespread use in food and medicine. Better stability of apigenin may 
enhance digestion and absorption and provide health benefits. Constructing 
delivery systems (such as emulsions, nanostructured lipid carriers, hydrogels, and 
liposomes) for apigenin is an effective strategy to improve its bioavailability, but 
more animal and cell experiments are needed to verify these findings. Developing 
apigenin delivery systems for food commercialization is still challenging, and 
further research is needed to promote their in-depth development and utilization.
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1. Introduction

Apigenin, 4′,5,7-trihydroxyflavone, which is abundant in vegetables such as parsley, celery, 
and onions and in fruits such as strawberries and oranges (Figure 1) that have been historically 
used as medicinal plants worldwide (1). It is a yellow crystalline compound, its chemical 
structure comprises multiple hydroxyl groups, namely, in the C-5 and C-7 positions of ring A 
and the C-4 position of ring B. Because of its increased permeability and diminished water 
solubility, the plasma membrane of the host organism is readily penetrated by this substance (2). 
Apigenin is lipophilic and can be deactivated in the acidic environment of the gastrointestinal 
tract, leading to lower bioavailability, which limits its potential use in healthcare products and 
functional foods (3).

Nevertheless, because of its lipid-soluble properties, apigenin can be used as a natural 
pigment in food processing. It has been confirmed to possess a wide range of biological and 
therapeutic activities, including antioxidant, anti-inflammatory, anti-cancer, anti-genotoxic, 
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antiallergic, neuroprotective, cardioprotective, and antimicrobial 
effects (4). As a nutrient, apigenin has many applications in health 
products, medicine, cosmetics, and many others (5). Therefore, it is 
crucial to develop methods for enhancing apigenin bioavailability.

As previously reported, apigenin bioavailability can 
be significantly improved by constructing apigenin delivery systems 
(6). In this review, the extraction of apigenin is discussed and its 
biological activity, digestive absorption, and stability are also 
discussed. Furthermore, we review the latest advances in apigenin 
delivery systems to offer valuable insights into the future development 
and application of apigenin.

2. Apigenin biosynthesis in plants

Naturally, apigenin is biosynthesized by phenylpropanoid 
metabolic pathway where 4-coumaroyl-CoA compound is produced 
from phenylalanine amino acid through the shikimate pathway in 
plants (7). In the presence of chalcone synthase, a crucial enzyme in 
the route of flavonoid biosynthesis, the molecule 4-coumaroyl-CoA 
interacts with malonyl-CoA to create chalconaringenin, the backbone 
of flavonoids (8). Chalconaringenin is the main intermediate 
chalconoid that undergoes spontaneous cyclization into a compound 
called naringenin by an isomerase called chalcone (9). The enzyme 
flavone synthase catalyzes the conversion of naringenin to apigenin by 
forming a single double bond between the C2-C3 atoms of the ring 
C. For the C-or O-glycosylation, hydroxylation, and methylation of 
apigenin to create its derivatives, other enzymes, specifically 
glycosyltransferases, methyltransferases, and hydroxyltransferases, are 

required (10). Lee H. and colleagues have discussed the use of 
Escherichia coli for the production of apigenin and its derivative, 
genkwanin, from the tyrosine molecule (11). Marin and colleagues 
demonstrated the de novo synthesis of apigenin utilizing the 
microorganisms Streptomyces albus (12). Chemically, the first 
trustworthy apigenin synthesis method was proposed by Hutchins and 
Wheele, and it included the creation of chalcone (III), bromination of 
chalcone (III), demethylation, and debromination (13).

3. Extraction of apigenin

Apigenin possesses strong physiological and biochemical effects; 
therefore, the extraction and purification of apigenin from natural 
resources are very important for designing and developing apigenin 
products with higher bioactivities. Commonly used extraction 
methods in the food industry include pressurized solvent, enzymatic, 
heat reflux, soxhlet, supercritical fluid, ultrasound-assisted, and 
microwave-assisted extraction (14–25). The principles of apigenin 
extraction, advantages and disadvantages of various methods, and 
research achievements are summarized in Table 1.

Although there are many methods for extracting natural apigenin, 
their economic cost is high, and degradation or isomerization of 
apigenin often occurs during the extraction process (26). Existing 
evidence shows that there are a series of isomers and impurities in 
extracted apigenin; thus, its safety and usability in food processing and 
is extremely restricted. Microbial production and development 
technologies using fungi, algae, and yeast that meet the strict 
requirements of additives in the fields of food, pharmaceuticals, and 

FIGURE 1

The resources of apigenin from fruits.
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TABLE 1 The principle, advantages and disadvantages of different extraction technology of apigenin.

Extraction 
method

Extraction 
principle

Examples Advantages Disadvantages Reference

Organic solvent 

extraction

Apigenin has high 

solubility in different 

organic solvents.

Apigenin has high solubility 

in different organic 

solvents.

Mature technology, low 

equipment cost, simple 

operation and easy 

industrialization.

The extraction rate is low, 

the extraction time is 

long, the amount of 

solvent is large, difficult 

to recover, a variety of 

organic solvents make 

the safety risks greatly 

increased.

(14–19)

Supercritical fluid 

extraction

A solute in the mixture 

to be separated in a 

certain supercritical 

region near the critical 

point.

The extraction rate of 

apigenin was 61.80 μg/g 

under the condition: 25°C, 

8 ~ 14 MPa, 125 s.

High extraction 

efficiency, high yield, 

high purity, low energy 

consumption, shortened 

extraction time, lower 

equipment price, cheaper 

extractant, non-toxic, 

suitable for recovery.

Higher equipment costs. (20, 21)

Enzymatic hydrolysis 

assisted extraction

Specific enzymes are 

used to degrade or 

destroy endogenous 

pectin, glycoprotein, 

cellulose, etc. In cell 

walls, cell molds, reduce 

mass transfer resistance, 

and promote the 

dissolution of active 

ingredients.

Under the condition of 

enzyme reaction 

temperature 40°C, time 

30 min; and a concentration 

of 0.4 mg/mL at pH 5.5

，the yield of apigenin was 

25.3 mg/g.

Mild extraction 

conditions, favorable for 

maintaining the activity 

of apigenin, improving 

extraction efficiency, 

improving product 

purity, and having great 

development prospects 

and application potential.

Industrial enzyme 

preparations are costly.

(22)

Ultrasonic assisted 

extraction

The multi-stage effects, 

including cavitation, 

mechanical, and the 

thermal effect, increase 

the frequency and 

velocity of movement of 

the extracted 

components

The recovery rate of 

apigenin ranging from 72.7 

to 89.5% under the 

conditions by using 

1.0 mol/L 1-butyl-3-

methylimidazolium 

methylsulfate ([Bmim]

[MS]) aqueous solution at 

pH 1.0 as the extraction 

solvent; 200 W for 90 min 

(solid: liquid ratio was 1: 

10).

High extraction 

efficiency, low energy 

consumption, shortened 

extraction time, lower 

equipment price and 

simple operation.

The equipment is still at 

the laboratory level, and 

has not been 

industrialized.

(23)

Microwave assisted 

extraction

Under the action of 

microwave electric 

field, many substances 

composed of polar 

molecules will strongly 

oscillate, causing rapid 

generation of a large 

amount of heat energy, 

leading to cell rupture

The extraction rate of 

apigenin was 104 μg/g, the 

yield was significantly 

improved compared with 

conventional extraction 

method.

High extraction 

efficiency, low solvent 

consumption, and high 

extraction rat.

Microwave has a selective 

temperature effect on 

polar substances, so it is 

required to have a small 

dielectric constant.

(24)

Ultrasonic-microwave 

synergistic extraction

Combining ultrasonic 

vibration and 

microwave heating to 

enhance the extraction 

efficiency

The apigenin yield was over 

80%.

Overcome ultrasonic 

vibration, low noise, large 

noise, and uneven 

microwave penetration.

The mass transfer 

mechanism of ultrasonic-

microwave synergistic 

extraction and the effect 

on the structure and 

activity of apigenin are 

still unclear.

(25)
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livestock have gained increasing attention (27). This method has 
gained high praise in the food processing field because of its low cost, 
low energy consumption, and pollution-free nature; however, this 
technology has not matured and has not reached the scale of 
commercial mass production. To improve the efficiency of apigenin 
extraction and product quality, the scientific development of industrial 
production can be promoted by combining and exploiting beneficial 
characteristics of various extraction methods.

4. Bioactivity of apigenin

4.1. Antioxidant activity

Apigenin is an antioxidant that quenches singlet oxygen and 
scavenges peroxyl radicals (28). After the body absorbs oxygen, the 
oxygen can quickly interact with anions to form superoxide anion 
radicals, which are then converted into free radicals, including 
hydroxyl (OH•), superoxide (O2•−), nitric oxide (NO•), nitrogen 
dioxide (NO2•), peroxyl (ROO•), and lipid peroxyl (LOO•) (29, 30). 
An excess of free radicals and oxidants give rise to a phenomenon 
known as oxidative stress (OS), a deleterious process that can lead to 
cell damage and endogenous dysfunction (31). Long-term OS can 
accelerate aging and lead to several chronic disorders. In fact, many 
oxidants, such as hydrogen peroxide, nitrate, metal ion and glutamic 
acid, have been proven to induce cell dysfunction and diseases (32). 
Through literature research, large amounts of published studies have 
concentrated on the beneficial function of apigenin on OS-induced 
progressive diseases such as cancer, neurodegenerative diseases, 
cardiovascular disease, liver injury, and diabetes mellitus, both in vitro 
and in vivo (33). In general, apigenin can improve cell viability and/or 
alleviate tissue damage by increasing the resistance to oxidative stress 
inducers. It has been found that the key to the protective activity of 
apigenin is its ability to scavenge endogenous ROS and reduce 
malondialdehyde (MDA) levels. Further studies report, that apigenin 
reduced ROS and MDA levels, thereby enhancing antioxidant enzyme 
activities, such as those of superoxide dismutase (SOD), catalase, and 
glutathione peroxidase (GSH-Px), as well as the upregulation of 
antioxidant response proteins, such as nuclear factor erythroid 
2-related factor 2 (Nrf2) and AMP-activated protein kinase (AMPK) 
(34, 35). Overall, apigenin can be considered a novel antioxidant that 
can decrease the risk of OS-induced disorders.

4.2. Anti-inflammatory activity

In recent in vivo and in vitro studies, there has been increasing 
interest in the anti-inflammatory activities of apigenin (36). In an in 
vitro study, apigenin prevented the injury response of 
lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells by 
enhancing the reduction of NO (37). In these processes, apigenin 
decreased the levels of pro-inflammatory cytokines TNF-α, IL-18, and 
IL-6, and downregulated the expression of enzymes (COX-2 and 
iNOS), as well as reducing the intracellular ROS production. It has 
been shown that apigenin can inhibit the activity of intracellular cell 
adhesion molecules (ICAMS), monocyte inflammatory protein (MIP-
1α), and monocyte chemotactic protein (MCP-1α) inhibitors induced 
by LPS in an in vivo study of mouse leukocytes, resulting in an 

anti-inflammatory response (38). The downregulation of these 
pro-inflammatory factors by apigenin may be due to action of some 
transcriptional factors and kinases, such as extracellular signal-
regulated kinases (ERK), NF-kB, and mitogen-activated protein 
kinase (MAPK) (39).

Glial cells, such as microglia and astrocytes, mediate 
neuroinflammation which is triggered by the activation of the innate 
immune system in the brain to cope with inflammation (40). Microglia 
and astrocytes can be activated by exogenous infection or irritation, 
releasing inflammatory cytokines to magnify neuroinflammation, 
leading to enhanced or prolonged brain pathology. Therefore, it is 
helpful to attenuate this inflammation to combat neurodegenerative 
diseases. The anti-inflammatory properties of apigenin were observed 
in BV2 microglia stimulated by LPS, as proven by the activation of 
GSK-3β/Nrf2 signaling pathway that attenuated the expression of 
IL-6, IL-1β, and TNF-α (41). Apigenin-induced transformation of 
IBA1-positive cells into the amoebic phenotype was observed in 
isolated rat microglial cultures and was related to an increase in the 
expression of the activated M1 spectral markers OX-42 and iNOS and 
decreased expression of the M2 spectral marker CD206 (42). Taken 
together, these results demonstrate that apigenin has anti-
inflammatory and neuroprotective properties and could serve as a 
neuroimmunomodulatory agent (43).

4.3. Anti-cancer effects

Owing to the potent anti-proliferative effects of apigenin on 
different types of human cancer cells, including colon, bladder, breast, 
skin, prostate, and liver cancer cells, apigenin has a potentially broad 
application in cancer prevention and treatment (44, 45). A large 
number of experiments in vitro or in vivo have confirmed the 
biological effects of apigenin, showing that it has good anti-tumor 
activity (46).

Some possible mechanisms involved in the anti-cancer properties 
of apigenin include down-regulation of NF-κB pathway, inactivation 
of various kinases, and modulation of proteasomal degradation of the 
HER-2/neu proteins (47). It has been confirmed that apigenin is a 
selective protein kinase CK2 inhibitor, and evidenced by study results 
showing an increased apigenin-induced cell death rate in CK2α-high 
acute myeloid leukemia cells than that in CK2α-low acute myeloid 
leukemia cells (48). Furthermore, apigenin has been reported to 
trigger cell cycle arrest and promote and activate apoptosis in 
cancerous cells. Additionally, NF-κB was inactivated via apigenin 
inhibition of the Akt signaling-associated protein expression and p65 
phosphorylation (49). Moreover, apigenin exerted chemopreventive 
effects on cancer cells by regulating the expression of antioxidant 
enzymes and the accumulation of ROS in lung cancer cells (50). 
Further studies have reported that apigenin triggers apoptosis via the 
tumor necrosis factor (TNF) receptor, activating ligand receptor 
(TRAIL-R)-mediated caspase-dependent cell death pathways in 
tumor cells (51). These findings suggest that combining apigenin with 
chemotherapeutic drugs may enhance cytotoxicity against cancer cells.

Ferroptosis is a new form of cell death described by Dixon et al. 
in 2012 and is characterized by glutathione consumption and lipid 
peroxide accumulation (52). An increase in endoplasmic reticulum 
stress, suppression of the cystine/glutamate antiporter, and activation 
of mitogen-activated protein kinases (MAPK) and mitochondrial 
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voltage-dependent anion channels contribute to this process (53). An 
increasing number of studies have shown that ferroptosis has a highly 
complex relationship with cancer and could be  an innovative 
treatment option for cancer (54). Consequently, it is necessary to 
conduct clinical trials of ferroptosis-inducing medicines for cancer 
treatment. Interestingly, several studies have reported that apigenin 
induces ferroptosis and kills tumor cells (33). According to Adham 
et al., the treatment of the multiple myeloma cell line NCI-H929 with 
apigenin resulted in ferroptosis, autophagy, apoptosis, and cell cycle 
arrest. However, apigenin cytotoxicity was completely ameliorated by 
the ferroptosis inhibitor, ferrostatin-1 (55). In a study by Liu et al., 
mesoporous magnetic nanosystems were developed for the delivery 
of apigenin, and it was found that the typical characteristics of 
ferroptosis included cellular lipid peroxidation levels and ROS levels 
in A549 cells were significantly increased using the targeted apigenin-
loaded Fe2O3/Fe3O4@mSiO2-HA nanocomposite delivery system 
and the underlying mechanisms were mainly upregulation of 
ferroptosis associated genes COX2 and p53 and downregulation of 
GPX4 and FTH1 (56).

In addition, apigenin has anti-allergy ability, regulates blood 
lipids, prevents cardiovascular diseases, and can be used as a natural 
pigment in the food industry (57–59).

5. Digestive absorption, metabolism, 
and transport of apigenin

Owing to the important biological and pharmacological activities 
of apigenin, pharmacokinetic testing has been fully exploited to study 
its absorption, metabolism, distribution, and excretion. These findings 
are particularly beneficial for evaluating the optimal dose of apigenin 
for disease prevention and treatment.

5.1. Digestion and absorption of apigenin

The bioactivity of apigenin primarily originates from the release 
from raw food materials. To our knowledge, in food and herbal 
sources, the active apigenin is found in the form of various sugar 
moieties. During digestion, apigenin glycosides survive in the stomach 
through acid hydrolysis and enter the duodenum unchanged (4). 
Therefore, the location and degree of glycosylation affect apigenin 
absorption in the gastrointestinal tract (60). The distribution of the 
enzymes needed to generate bioactive apigenin and the characteristics 
of the linked sugar moiety affect the next step of digestion and 
absorption. Different cells metabolize apigenin intracellularly via 
enzymes present in the brush border epithelium (61). However, 
nondigestible glycosides require extracellular deglycosylation, which 
can be performed by bacteria and their associated enzymes that exist 
in the colon. Microbial alpha-glucosidase can facilitate the digestion 
of apigenin which is attached to rhamnose, whereas human beta-
glucosidase cannot (60). Hanske et al. studied the deglycosylation of 
apigenin-7-glucoside by human intestinal microorganisms in rats and 
found that it promoted the biological activity of apigenin to a great 
extent (62).

It has been demonstrated that 5–10% of apigenin can be absorbed 
after the consumption of polyphenols (63). The absorption of apigenin 
is mainly mediated by the gastrointestinal tract (GI) prior to its entry 
into the bloodstream and liver. A study using a rat intestinal irrigation 

model showed that apigenin was immediately absorbed by the intestine 
after aglycone apigenin administration (64). Remarkably, there are 
various absorption routes for apigenin in different parts of the intestine. 
In the jejunum and duodenum, active and passive vehicle-mediated 
saturation mechanisms stimulate the absorption of apigenin, while in 
the ileum and colon absorption occurs via passive transport. However, 
reports on the absorption rate of apigenin are inconsistent (65). A study 
by Gradolatto et al. was consistent with the fact that apigenin is slowly 
absorbed and metabolized after oral administration, and even slowly 
eliminated (detected in blood circulation after 24 h) (66). However, 
another study conducted by Chen et al. reported a high absorption rate 
of apigenin after oral administration to rats (detected in blood 
circulation after 3.9 h) (67). A possible explanation for the difference in 
these findings is that the animal strains used in the two studies were 
different, the former using SD rats and the latter using Wistar rats (67, 
68). It has been proved that animal strain difference is one of the main 
factors affecting the pharmacokinetic performance (68). Therefore, the 
absorption rate of apigenin requires further investigation.

5.2. Metabolism and transport

Growing evidence indicates that two main phases are involved in 
apigenin metabolism. In the liver, phase I metabolism of apigenin is 
accomplished by liver enzymes such as cytochrome P450, flavin-
containing monooxygenase (FMO), and nicotinamide adenine 
nucleotide phosphate (NADPH) (60, 63). In phase II metabolism, the 
intestinal and hepatic circulation are involved in the biotransformation 
of apigenin (67). The phase II metabolism of apigenin mainly involves 
glucoaldehyde and sulfur acidification (60). In the process of 
metabolism, the principal biochemical metabolites of apigenin are 
luteolin as well as sulfated and glucuronic acid conjugates (19). 
Apigenin is excreted in the urine and feces, with higher concentrations 
in urine (69). Based on a literature review, it is clear that the age and sex 
of rats are important factors affecting apigenin excretion (66). Briefly, 
immature male and female rats, like mature female rats, excreted a 
higher percentage of the mono-glucuronoconjugate of apigenin than 
the mono-sulfoconjugate of apigenin (10.0–31.6% versus 2.0–3.6%, 
respectively). Mature male rats excreted the same compounds in an 
inverse ratio (4.9 and 13.9%, respectively). In addition, animal research 
evidence has shown that considering its slow metabolism and excretion, 
the accumulation of apigenin in the body is easy to understand.

After intestinal digestion and absorption, apigenin is converted 
into glucuronic acid conjugates and secreted back into the lumen of 
the gut, decreasing net absorption. Furthermore, conjugated apigenin 
may also be transported through the efflux transporters multidrug 
resistance protein-1 (also referred to as P-gp, ABCB1, and CD243) and 
multidrug resistance-associated protein-2 (also referred to as ABCC2 
and CMOAT) (Figure  2), the abundances of which could 
be  significantly changed under different disease states (70). 
Additionally, apigenin can be modified by methylation, sulfation, and 
glucuronidation, all of which affect its bioactivity and distribution (71).

5.3. Distribution of apigenin

It is generally accepted that people and animals cannot synthesize 
apigenin but can only obtain it from food. Indeed, apigenin can 
be synthesized by a variety of plants.
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Human organs and tissues swiftly and equally distribute apigenin 
after it is absorbed by the body, and numerous studies have 
demonstrated the presence of apigenin in the serum, lung, kidney, 
brain, thyroid, ovary, womb, intestine, and liver. In addition, after 
apigenin intake by the body, it can also be found in the urine and feces 
(28). In particular, the blood and liver have been shown to have 
considerably higher apigenin content. Meyer et  al. studied the 
relationship between dietary intake of apigenin and circulating levels 
in a range of healthy human volunteers (ages 21–41 years, mean body 
mass index 23.9 kg/m2) (72). The results showed that systemic levels 
of apigenin following the ingestion of apigenin-rich parsley (mean 
intake: 149.5 ± 35.2 g) peaked at about 7 h after oral intake, resulting in 
a mean apigenin serum concentration of 127.0 ± 24.3 nM 
(34.3 ± 6.57 ng/mL). The concentration of apigenin in tissues is 
determined by the expression and genetic variants of lipoprotein 
receptors and cholesterol carriers, which affect its accumulation in 
target organs (73).

5.4. Bioavailability of apigenin

The bioactivity of apigenin depends primarily on its bioavailability 
after digestion and absorption (74). Bioavailability is defined as the 
percentage of the provided chemical which can be absorbed and used 
for storage or physiological functions, and it is closely linked to 
bioaccessibility (75). Bioavailability refers to the conversion of 
apigenin from the food matrix to mixed micelles during digestion and 
rendering it available for intestinal absorption.

As a bioactive compound, the bioefficacy of apigenin is affected 
by many factors that include molecular structure, digestibility, food 
matrix, bioaccessibility, and transporter and metabolizing enzyme 
availability (76). Published studies have confirmed that apigenin has 
a low solubility in fat and water, with the solubility of 2.16 μg/mL and 
0.001–1.63 mg/mL in water and non-polar solvents, respectively (77). 
Due to the low oral bioavailability of apigenin, its clinical application 
and promotion are limited. One of the core factors regulating the 

FIGURE 2

The digestion and absorption mechanism of apigenin in gastrointestinal tract. ① Under the action of chewing mechanical force, enzyme digestion and 
a small amount of oil, apigenin is released from the food substrate into the oral cavity. ② Apigenin is dissolved into the oil drips, then was hydrolyzed in 
the stomach. ③ Apigenin is released from the oil drips to form a mixed micella in the small intestine. ④ Through P-gp-mediated transport or other 
ways, the mixed micelles are absorbed by the epithelial cell layer. ⑤ Under the action of ABCB1 and ABCC2, the chylomicrons are transported to the 
lymph circulation and thereby enter the blood or physical organs.
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bioavailability of apigenin is its transformation in the intestinal 
mucosa to a large-molecular-weight glucuronic acid glycosidic 
conjugate. Thus, the net absorption of apigenin is severely reduced in 
the intestinal lumen (61). It has been reported that both the 
bioavailability and distribution of apigenin are also can be affected by 
formation of conjugates by methylation, sulfation, and 
glucuronidation. An intestinal epithelial metabolism model simulated 
by Caco-2 monolayers demonstrated that apigenin can be translated 
into a glucuronic acid conjugate by uridine 5′-diphosphate glucuronic 
acid transferase metabolism in the intestinal epithelium. It was further 
demonstrated that apigenin exhibited an apparent permeability 
coefficient (Papp) ranging between 10 to 5 cm/s, suggesting that 
apigenin has high hydrophilicity and good intestinal absorption (78). 
UDP-glucuronic acid transferase (UGT) plays a significant role in 
accelerating apigenin metabolism rate of in the intestinal tract (79). 
Gut-secreted apigenin in Gunn rats increases the levels of the UGT1A 
isoform, enhancing its properties through hepatic anion efflux 
transporters for efficient metabolism and compensatory regulation of 
intestinal UGT2B, thereby limiting its bioavailability and increasing 
its disposition.

6. Stability and influence factors of 
apigenin

Many types of food can be converted from raw materials to final 
products for consumption or intermediate products for cooking and 
storage by processing techniques such as grinding, washing, drying, 
and heating. During processing, Fe and Cu ions can easily penetrate 
the food substrate because of frequent contact of the food with pipes 
and equipment containing these two metals on the surface. 
Additionally, dietary flavonoids can be  affected by certain food 
treatments. The stability of apigenin is continuously damaged by Fe/
Cu, especially at 37°C, and its stability decreases sharply (80). Further 
studies show that the bioactivity (apoptosis induction, intracellular 
ROS generation, DNA damage, and growth inhibition) of apigenin 
was significantly decreased after heat treatment with temperatures of 
37°C and 100°C or Fe/Cu supplementation (80). As expected, the 
greatest reduction in the bioactivity of apigenin was observed after 
treatment with high temperatures, especially those above 100°C.

At present, only a few studies have evaluated the effects of heating 
processes on the phenolic composition of individual fruit and 
vegetable juices, such as kiwi, orange, and tomato. Generally, the 
results of these studies vary based on the available treatment, food 
matrix, and processing conditions. According to Sentandreu et al., the 
ordinary pasteurization of orange juice (90°C for 30 s) had little 
influence on its phenolic content (81). However, a study conducted by 
Morales-de la Pea found that immediately following processing, ultra 
pasteurized orange juice had higher concentrations of apigenin 
(5.32 ± 0.93 to 14.76 ± 1.28 mg/100 mL) than the control (7.20 ± 0.65 to 
8.83 ± 3.44 mg/100 mL), and the enhanced content has not declined at 
the end of storage (82). Nevertheless, apigenin content was reduced in 
sweet potato leaves with increased blanching time due to leaching of 
constituents into water, or possible enzyme activity (83).

A study conducted by Hostetler revealed that apigenin 
concentrations increased four-fold (from 1 to 5 mg/g) after incubation 
with chickpea flour, flax seed, and almond for 20 h at 37°C (84). The 
highest stability of apigenin was observed at pH 3, whereas it gradually 

degraded at pH values ranging from 5 to 7. There was a higher content 
of apigenin-7-glucoside (3.0 ± 0.4 mg/g dry weight [dw]) in extracts 
from fresh chamomile compared to that in the dried sample (1.0 ± 0.3 
to 2.0 ± 0.4 mg/g dw) (85). It has been reported that the content of 
apigenin in Kumquats (Fortunella crassifolia) exceeded 21 mg/100 g 
(fresh weight), but was less than 1 mg/100 g in F. japonica juice. In 
another study, vegetable snacks were prepared according to the ratio 
of parsley: carrot: onion: broccoli of 1:11.4:5.5:2.1 (86–88). The 
contents of apigenin in the dough and final products were 40.7 ± 4.9 
and 38.3 ± 11.6 mg/100 g dry matter, respectively, showing that the 
apigenin content only reduced slightly during baking. The apparently 
higher apigenin content in snack products compared to the dough 
could be explained by differences in the distribution of phytochemicals 
in one or more batches of dough, or by improved flavonoid 
extractability during baking.

7. Advances in apigenin delivery 
systems

Application of apigenin as a nutraceutical is currently restricted 
in the food industry because of its low bioavailability, high chemical 
instability, and poor water solubility. To overcome these shortcomings, 
several studies have been conducted to develop different apigenin 
delivery systems. Various delivery systems are available including 
liposomes, hydrogels, nanostructured lipid carriers, microemulsions, 
nanoemulsions, and emulsions. The digestion and absorption of 
apigenin in the gastrointestinal tract are affected by the delivery 
system, which improves apigenin bioavailability and chemical stability, 
thereby enhancing its therapeutic effects (89). Various apigenin 
delivery systems are shown in Figure 3 and Table 2. The physical 
stability and water dispersibility of apigenin can be improved using a 
delivery system.

7.1. Emulsions

The use of emulsions is a common approach to apigenin delivery. 
When two immiscible liquids are combined, the result is an emulsion 
fluid, in which one numerous tiny droplets of one liquid (droplet 
component or dispersed phase) are suspended in a continuous 
component (liquid phase) (101). Typical emulsions are of two main 
types: oil-in-water (O/W) and water-in-oil (W/O), both of which are 
potentially unstable because of their thermodynamic properties. For 
traditional emulsions (Figure 3A), bioavailability is increased, and the 
release of bioactive factors can be controlled; therefore, it has attracted 
the attention of many scholars and has become a research hotspot 
(90). The low solubility of apigenin may be resolved by encapsulation 
in oil-in-water (O/W) emulsions, resulting in the creation of new 
functional food products. Using high-pressure homogenization, 
Abcha et al. formulated and examined the physiochemical stability of 
apigenin-loaded food-grade O/W submicron emulsions (91). After 
one month of storage, the formed O/W emulsions maintained their 
physical stability with a minor decline in the PDI and dav values. In 
particular, the maximum retention rate (approximately 93%) was 
achieved by emulsions created at 100 megapascals (MPa) (92). These 
findings offer valuable insights for using high-pressure 
homogenization as a potentially effective method for the development 
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of stable food-grade apigenin-loaded O/W emulsions, and for other 
nutraceutical formulations enhanced with hydrophobic flavonoids.

Compared with traditional emulsions, the nanoemulsions 
(Figure  3B) are smaller in particle size (usually 2–500 nm) and 
uniformly distributed (102). Nanoemulsions can resist the physical 
destabilization caused by gravitational separation, flocculation, and/
or coalescence, and the water solubility and bioavailability is higher 
than traditional emulsions (103). Chou TH et al. prepared apigenin 
nanoemulsions using an anti-oxidative polymeric amphiphile, 
d-α-tocopheryl polyethylene glycol 1,000 succinate (TPGS), 
hydrogenated soy lecithin (HL), black soldier fly larvae (BSFL) oil, and 
avocado (AV) oil through pre-homogenization and ultrasonication 
method (93). The results found that apigenin nanoemulsions had 
higher chemical stability and antioxidant ability than that of apigenin 
emulsions. In addition, Jangdey MS et al. develop a potential novel 
formulation of carbopol-based nanoemulsion gel containing apigenin 
using tamarind gum emulsifier and the nanoemulsion formulation 
was stable for 3 months at 4°C or at ambient temperature (25°C) (94). 
More interestingly, the ex vivo skin permeation experiments revealed 
that the amount of apigenin permeated through skin from 
nanoemulsion gel (76%) was significantly higher than that from pure 
drug suspension and marketed product (49%). Therefore, the 
utilization of nanoemulsions is a good candidate for application of 
topical apigenin delivery.

Microemulsions (Figure 3C), which spontaneously develop from 
the coemulsifier, emulsifier, oil phase, and water phase at proper ratios, 
are clear, thermodynamically stable dispersion systems (104). 
Microemulsions have a uniform distribution and droplet sizes are 
much smaller (10–100 nm) in size than those in emulsions. The oil/

water interfacial tension decreases to an extremely low level (10–3 
mN/m) when the microemulsions are formed, further saturating both 
the water and oil phases by up to 70%. Zhao et  al. prepared a 
microemulsion containing apigenin and a complex of hydroxypropyl-
β-cyclodextrin (HP-β-CD). The resulting microemulsion increased 
apigenin release than that without HP-β-CD (95). Additionally, the 
antioxidant activity of the apigenin-loaded microemulsion was higher 
than that of the microemulsion without. Based on these observations, 
combining a microemulsion with an inclusion complex is a successful 
strategy for increasing the bioavailability of apigenin.

7.2. Nanostructured lipid carriers

Nanostructured lipid carriers (NLC) are a pharmaceutical 
colloidal delivery system combining the benefits and eliminating the 
defects of solid lipid nanoparticles (SLNs) and oil-in-water (O/W) 
nanoemulsions (105). The hydrophobic core of the particles in the 
NLCs is composed of a solidified fat phase with a loosely ordered 
structure that prevents morphological alterations and the escape of 
bioactive molecules. The structures of the NLCs are shown in 
Figure 3D. NLC nanoparticles are more hydrophilic than solid lipid 
nanoparticles (106). Lipophilic bioactive substances are more soluble 
in liquid lipids than in solid lipids. Thus, when the amount of liquid 
lipids increases, drug loading, encapsulation efficiency, and lattice 
defects also increase. The pharmacokinetics, stability, and adhesion of 
bioactive compounds are enhanced by NLCs because of good stability, 
high encapsulation efficiency, and high drug loading. Many studies 
have shown that the bioavailability, chemical stability, and dispersion 

FIGURE 3

Schematic diagram of different types of apigenin delivery systems. (A) Traditional emulsion. (B) Nanoemulsion. (C) Micelles and microemulsions. 
(D) Nanostructure lipid carrier. (E) Hydrogel. (F) Liposome.
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of lipophilic materials increase significantly with the application of 
NLCs (107). Furthermore, the food safety, nutritional value, and 
function of bioactive materials were enhanced by NLCs; as a result, 
the release of encapsulated compounds was well controlled. The oral 
bioavailability of apigenin NLCs is approximately five times higher 
than that of free apigenin, and oral administration of this material has 
no adverse effects on the organs of experimental animals (108). 
Production and in vitro testing of apigenin-loaded NLCs by Ding et al. 
revealed that the ideal apigenin-NLC particle size was 46.1 nm (96). 
In vitro release showed that the optimal apigenin-NLCs exhibited a 
sustained release property compared to free apigenin. The NLCs 
displayed better bioavailability and penetrability than the drug 
extracts. Because apigenin is a lipophilic compound, the lipid core of 
NLCs can induce chylomicrons to carry apigenin to achieve 
transmembrane transport (97). The adsorption of NLCs to the 
gastrointestinal wall increases the bioavailability of apigenin by 
increasing the contact time of with intestinal epithelial cells. The above 
studies provide evidence for NLCs as appropriate carriers for apigenin. 
Further studies are needed to determine whether various molecular 
polarities would alter the sustained-release behavior of nanoparticles 
in NLCs and the bioavailability of apigenin in the human body.

7.3. Hydrogel

Using physical or chemical bonding to covalently connect 
hydrophilic polymers, hydrogels (Figure  3E) are a type of three-
dimensional network that can hold several times their dry weight in 
water without dissolving (109). Filled hydrogels are emulsion-based 

delivery systems that shield biologically active materials from chemical 
degradation and digestion in storage and gastrointestinal 
environments. When used to maintain high-water meals or as food 
packaging, nanoemulsions or nanoparticles improve the antibacterial 
properties of hydrogels. According to the in vitro release kinetics, 
Zhao et  al. reported that an O/W microemulsion in gellan gum 
hydrogels as a carrier of apigenin produced a Fickian diffusion-
controlled mechanism for release under acidic conditions (95). The in 
vitro release under weakly alkaline conditions is an erosion-controlled 
mechanism. A further study demonstrated that apigenin-loaded 
hydrogels (HGs) was able to release 96.11% apigenin within one day 
and had an optimal hydrogel percent entrapment effectiveness of 
87.15 ± 1.20 when made utilizing gellan gum-chitosans (GGCHs) (98). 
Additionally, in normal and diabetic wound tissues, apigenin 
GGCH-HGs have been confirmed to possess greater wound treatment 
and considerable antioxidant potential. These results suggest that 
hydrogels may be a potential release system for hydrophobic drugs 
when administered orally. However, research on the delivery of 
apigenin through hydrogels in vivo is limited. Creating apigenin 
hydrogel with the correct cross-linking agents can increase its stability 
and controlled-release capabilities in the digestive tract (110).

7.4. Liposomes

Liposomes consist of closed microvesicles with a bilayer of lipid 
molecules (Figure 3F) encapsulating the internal aqueous medium 
(111). They can decrease drug toxicity, improve the stability of active 
ingredients, and provide targeted and sustained-release benefits. 

TABLE 2 Summary of report on the production of apigenin-based NPs, particle size and their importance in increasing bioavailability.

Delivery system Advantages Disadvantages Application Reference

Traditional emulsion Enhance chemical stability, 

antioxidant activity and 

bioavailability of the active 

compounds.

Culation or aggregation (to a large 

extent); larger particles.

In energy drinks, dairy 

products; food ingredients.

(90–92)

Nanoemulsion Low surfactant; dynamic 

stability; the bioavailability of 

the active compounds was 

significantly improved.

Flocculate or coalesce (to a lesser 

extent).

Drug delivery and targeted 

therapy.

(93, 94)

Micelles and microemulsions Thermodynamic stability. Recipitation; high level surfactant is 

required.

Energy drinks; natural 

colorant.

(95)

Nanostructure lipid carrier Avoid organic solvents; 

improve the bioavailability of 

apigenin; change the transport 

mechanism of apigenin in 

biofilm.

Difficult in mass production and 

supply of raw materials.

Anticancer apigenin carriers, 

apigenin extracts substitute; 

lipophilic nutrition health 

food, functional food.

(96, 97)

Hydrogel It can maintain a certain shape, 

absorb a lot of water; strong 

antibacterial activity; non-toxic 

and highly biocompatible; good 

release control ability of 

apigenin.

There is little research in the field of 

food.

May be used as packaging 

materials for foods with high 

water content.

(95, 98)

Liposome High biocompatibility; improve 

targeting; improve the 

bioavailability and stability of 

apigenin.

The preparation cost is high and the 

production process is relatively 

complex.

Drug delivery and targeted 

therapy.

(99, 100)
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Water molecules and liposomes can deliver amphiphilic, lipid-
soluble, and water-soluble compounds to the gastrointestinal tract 
(112). Liposomes containing apigenin with a particle size of 103 nm 
were examined in a study using human colorectal cancer cell lines 
HCT-15 and HT-2 (99). The results demonstrated that apigenin 
liposomes improved anti-neoplastic activity in a tumor xenograft 
model and enhanced hemocompatibility and cytocompatibility with 
normal fibroblasts. Liposomal apigenin, which has high 
chemotherapeutic potential, can be injected intravenously. Apigenin 
encapsulated in solid lipid nanoparticle (SLNP) showed enhanced 
efficacy in the treatment of diabetes mellitus. This highly bioavailable 
AP-SLNP, which had a particle size of about 150 nm, demonstrated 
antioxidant and anti-inflammatory activities, decreasing NF-kB 
activity and increasing Nrf2 and HO-1 expression. It also has a 
protective effect against diabetes by reducing the amount of glucose 
in rat blood (100). Although it has been demonstrated that lipid-
based carriers are appropriate for use as oral delivery systems, their 
circulation-longevity is decreased by significant gastrointestinal 
lipolysis (113). Additionally, studies have demonstrated the use of a 
non-water-quenching dye to restore lipids following lipolysis in vivo. 
It is possible to track the reconstitution of lipolytic products inside 
lipid-based carriers, which provides information on the health of the 
gastrointestinal system (114).

8. Application of apigenin in food

According to a large number of studies, the theoretical 
maximum daily intake of apigenin is approximately 50 mg, 
suggesting that it is a suitable dietary supplement (61). Apigenin has 
become a mature food additive and nutritional supplement with 
extensive application prospects. The effects of extreme 
gastrointestinal conditions and the external environment on the 
stability of apigenin can be  effectively reduced, and the 
bioavailability of apigenin can be improved by the delivery systems 
described above. It is important to design delivery systems 
comprehensively before introducing them into commercial food 
product development (115). The raw material used should reach 
food grade, and its economy should be  high. Delivery systems 
should not affect the physicochemical or sensory properties of the 
final product. Delivery systems must be extremely stable, such that 
the substance can be consumed and completely broken down in the 
human gut without degradation during processing, transportation, 
or storage. Capsulized apigenin should have better bioavailability. 
Current applications of apigenin are primarily to introduce it into 
health foods, functional drinks, and colorants because of its anti-
fatigue, anti-aging, and anti-cancer properties.

8.1. Application of apigenin in the 
development of health foods

Apigenin has strong anti-diabetic and anti-inflammatory activities, 
as well as immunoregulatory properties, and has good application 
prospects in the development of health foods. For example, in vivo 
animal studies have revealed the positive effects of celery-based 

apigenin-rich diets (AIN-93G control diet supplemented with 10% w/w 
celery-based apigenin rich extracts (25 μM apigenin-equivalent)) on the 
modulation of the LPS-induced miR-155 levels in mouse lungs (116). 
Importantly, it was further found that in vivo, concentrations of apigenin 
of ~1 μM, found in serum of mice fed with the celery-based apigenin 
rich diets effectively restored TNF-α expression to confer immune-
regulatory activity (116, 117). Future experiments are guarantee to 
evaluate the therapeutic as well as the preventive potential of this diet.

8.2. Application of apigenin in functional 
beverages

It is well known that deep formulations containing apigenin have 
been developed by more and more commercial companies for 
application in the research and development of various energy drinks, 
including composite fruit drinks, breakfast fortified drinks, and sports 
drinks. Apigenin energy drinks have anti-fatigue, cooling, and 
refreshing properties, because apigenin fights inflammation and OS 
after a short period of intense exercise (118).

8.3. Application of apigenin in food 
processing

Apigenin can be used as a food additive and colorant in the food 
processing industry. Importantly, apigenin has been assessed as safe 
and effective and its use as an ingredient in food has been approved 
(119, 120). As a natural pigment, apigenin can replace nitrites, ensure 
food safety, and can be used for corrosion prevention and coloring of 
biscuits, jellies, and meat products. Apigenin is also used as a coloring 
agent in pastries, ice-creams, and confectionary.

8.4. Application of apigenin in cosmetics

Apigenin strongly absorbs UVB rays (wavelengths between 280 
and 320 nm), and can be used in sunscreen cosmetics. However, the 
absorption of apigenin in region A (wavelengths between 320 and 
400 nm) is small, so low concentrations of apigenin can also be used 
as a skin darkening agent in tanning oils (121). Apigenin has been 
used in cosmetics as a pigment stabilizer at a recommended 
concentration of 1%. It can also be used in creams and in combination 
with vitamins C, B12, B6, and B1 and is usually mixed with plant 
essential oils such as chamomile, calendula, and almond oil. High 
concentrations of apigenin can inhibit the activity of melanocytes 
(122); can be added to sunscreen, face cream, essence, toner, facial 
masks, and other cosmetics; and can also be  used in shampoos 
and conditioners.

Apigenin has strong antioxidant properties, a strong trapping 
capacity for various oxygen-containing free radicals and can prevent 
the oxidative degradation of oil (123). Apigenin also has anti-
inflammatory activity and can prevent skin problems, such as bullous 
pemphigoid, keratosis, and incomplete keratosis. In addition, apigenin 
relieves itchy scalps and can be used in hair care products. Therefore, 
apigenin is increasingly used for its cosmetic efficacy.
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9. Conclusion and perspectives

Apigenin can be used extensively in the food industry because 
of its abundant bioactivities, and its influence on stability should 
be  considered during processing; its bioavailability, digestion, 
and absorption in the human body should also be investigated in 
the future. Additional animal and cell models should be used in 
the future to simulate and verify the outcomes of in vitro 
digestion models. Further studies investigating the upstream 
regulators or receptors are needed to better understand the 
mechanisms underlying the modulation of bioactivity. To 
effectively utilize the bioactivity of apigenin, scientists should 
conduct additional research and development on apigenin 
delivery systems, particularly Pickering emulsion and hydrogel 
delivery systems.
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