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Introduction: Fifty-two percent of adults in the United States reported following

a popular diet pattern in 2022, yet there is limited information on daily

micronutrient intakes associated with these diet patterns. The objective of the

present study was to model the impact on micronutrient intake when foods

highest in added sugar and sodium were replaced with healthier alternatives to

align with the Dietary Guidelines for Americans recommendations.

Methods: Dietary data were acquired from 34,411 adults ≥ 20 y in the National

Health and Nutrition Examination Survey, 2005–2018. The National Cancer

Institute methodology was used to estimate usual dietary intake at baseline of

17 micronutrients using information from up to two dietary recalls per person. A

food substitution model was used to evaluate the impact on micronutrient intake

when three servings of foods highest in added sugar and sodium were substituted

with healthier alternatives.

Results: Dietary modeling to replace foods highest in added sugar with healthier

alternatives increased the mean intake of fat-soluble vitamins (0.15% for vitamin

A to 4.28% for vitamin K), most water-soluble vitamins (0.01% for vitamin B1

to 12.09% for vitamin C), and most minerals (0.01% for sodium to 4.44% for

potassium) across all diet patterns. Replacing foods highest in sodium had mixed

effects on the mean intake of micronutrients. The intake of most fatsoluble

vitamins increased by 1.37–6.53% (particularly vitamin A and D), yet while the

intake of some water-soluble vitamins and minerals increased by 0.18–2.64%

(particularly vitamin B2, calcium, and iron) others decreased by 0.56–10.38%

(notably vitamin B3 and B6, magnesium, sodium, and potassium).
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Discussion: Modeled replacement of foods highest in added sugar led to

more favorable changes in mean micronutrient intake compared to modeled

replacement of foods highest in sodium. Due to the composite nature of

mixed dishes that include multiple ingredients, food substitutions may result

in both favorable and unfavorable changes in micronutrient intake. These

findings highlight the challenges of making singleitem food substitutions to

increase micronutrient intake and call for further research to evaluate optimal

combinations of replacement foods to maximize the intake of all micronutrients

simultaneously.

KEYWORDS

NHANES, popular diet, micronutrient intake, low grain diet, restricted-carbohydrate diet,
time-restricted diet

1. Introduction

The proportion of people following popular diet patterns,
which typically modify the intake of macronutrients (e.g.,
restricted-carbohydrate), food groups (e.g., vegetarian), or eating
time (e.g., time-restricted), in the United States (US) has risen from
38% in 2019 to 52% in 2022 (1, 2). During the 2005–2018 period,
an average of 44% of people in the US tried at least one popular diet
pattern on a given day that restricted macronutrients, food groups,
or eating time (3).

Prior research has demonstrated that the overall quality
of popular diet patterns when measured using the Healthy
Eating Index (HEI)-2015–which measures adherence to the
Dietary Guidelines for Americans (DGA)–is poor, ranging from
52–65 points out of 100 (3, 4). When these diets were
modified by replacing foods highest in added sugar, sodium,
saturated fat, and refined grains with healthier alternatives, diet
quality improved modestly (2.5 to 9.8 points), pulling HEI
scores slightly above the average score of the US population
(58 out of 100), but all diet patterns remained far below
optimal (3). Others have shown that dietary modeling to
accommodate DGA recommendation had heterogenous effect
on the intake of food groups, such as elevating the intake
of fruits and vegetables, respectively, up to 47% and 10%,
but decreasing the intake of dairy by as much as 11%,
across different popular diet patterns (5). To our knowledge,
dietary modeling has not been used to assess micronutrient
intake in popular diet patterns that restrict food groups,
macronutrients, or eating time.

The 2020–2025 DGA recommends limiting the intake of
foods high in added sugar and sodium and increasing the intake
of fruits, vegetables, whole grains, and sources of unsaturated
fats (6). About 13% of the total energy intake of US adults

Abbreviations: CVDs, cardiovascular disease; DGA, Dietary Guidelines for
Americans; FNDDS, Food and Nutrient Database for Dietary Studies;
FPED, Food Patterns Equivalents Database; NCI, National Cancer Institute;
MPA, mean probability of adequacy; NHANES, National Health and
Nutrition Examination Survey; (NRF9.3), Nutrient Rich Food Index 9.3; RDA,
Recommended Dietary Allowance; RDN, Registered Dietitian Nutritionist;
TNI, total nutrient intake; US, United States.

is derived from added sugar (about 17 teaspoons or 85 grams
per day) whereas the DGA-recommended intake is <10% (6–
8). Most adults (about 90%) have very high sodium intake
with a mean of 3,468 mg/day, 51% higher than the Chronic
Disease Risk Reduction (CDRR) (2,300 mg/day) (9). People in
the US who consume more than 10% of energy from added
sugar have a 7–103% increased risk of death from cardiovascular
diseases (CVD) compared to those who consume 7.4% energy
from added sugar (10). Others have shown that CVD risk
increases by 17% for every additional 1,000 mg/day of sodium
intake (11).

Many foods are consumed as mixed dishes that contain
multiple ingredients, so limiting the intake of foods high in
added sugar and sodium may also impact the intake of some
micronutrients. Hence, the purpose of any food substitution to
comply with the DGA recommendation is not only to improve a
single component in diet but also to improve overall diet quality,
including micronutrient intake. It is therefore critical to evaluate
whether replacing foods highest in added sugar and sodium with
healthier alternatives impacts micronutrient intake among those
that follow popular diet patterns. To address this research need,
the present study models the changes in the mean daily intake
of 17 micronutrients for three popular diet patterns (low grain,
restricted-carbohydrate, and time-restricted) in the US when 3
servings of foods highest in added sugar or sodium were replaced
with healthier alternatives as per the DGA recommendations.

2. Materials and methods

2.1. Data acquisition

Individual-level data on food intake, nutrient intake from
foods and supplements, and sociodemographic status were
retrieved from the National Health and Nutrition Examination
Survey (NHANES), 2005–2018. NHANES collects data from
approximately 5,000 non-institutionalized participants per year
using a multi-stage, stratified, clustered sampling design, and some
population groups are oversampled (12). Trained interviewers
collect dietary data using the computer-assisted Automated
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Multiple Pass Method to minimize respondent burden and increase
reliability and validity (13, 14). Most (80%) participants complete a
second recall by telephone 3–10 days later (15). The salt adjustment
was appropriately removed from dietary data collected from 2005–
2008 to standardize measurement of sodium intake across all data
years (16). Many participants reported consuming mixed dishes
that include multiple food groups, so the Food Patterns Equivalents
Database (FPED) was used to convert each NHANES mixed dish
into one or more food groups that represent those included in
the DGA (17). This study is a secondary analysis of de-identified
and publicly available data and was exempted from human studies
ethical review by the Institutional Review Board at William & Mary.
Pre-registration for this study can be found elsewhere (18).

2.2. Baseline (current) dietary intake

The National Cancer Institute’s (NCI) usual intake
methodology was used to estimate current (baseline) dietary
intake of kcal and nutrients. This method estimates within-
person variation of the entire sample using data from two
24-h recalls collected from most participants (19). The SAS
macros MIXTRAN (v2.21) and INDIVINT (v2.3) were used to
estimate predicted intake at the individual level. The probability
of consumption was assumed to be correlated to the amount
consumed for nutrients consumed episodically (20); which
include the polyunsatured fatty acids, namely eicosapentaenoic
acid (20:5) and docosahexaenoic acid (22:6). The SAS macros
NLMIXED_UNIVARIATE (v1.2), NLMIXED_BIVARIATE (v1.2)
and PREDICT_INTAKE_DENSITY (v1.2) were used to estimate
nutrient densities (e.g., percent energy from carbohydrate) (21–23).

2.3. Diet pattern categorization

Each participant was categorized into one or more diet
patterns using data on usual food and nutrient intake at
baseline: low grain, restricted-carbohydrate, and time-restricted.
Supplementary Table 1 describes the characteristics of these diet
patterns, which was informed by published literature (24–28). Low
grain, restricted-carbohydrate, and time-restricted diet patterns
were categorized, respectively, using data on daily intake of food
groups from FPED, daily nutrient intake from NHANES nutrient
files, and the amount of time between each eating occasion for
each participant from the NHANES individual foods file. It was
possible for participants to be categorized into more than one
diet pattern. The NCI methodology does not predict zero intake,
so non-consumers were identified if they did not consume any
amount of a given food group on both days of recall. To provide
relevance to the general population, an additional diet pattern was
established that included all participants that met the inclusion
criteria specified below, regardless of whether they were categorized
into one of the dietary patterns described above.

2.4. Food categories and serving sizes

The categorization scheme used by the Food and Nutrient
Database for Dietary Studies (FNDDS) (29) and FPED (17)

was used to categorize each food and beverage consumed by
participants on the first day of dietary recall into 89 mutually
exclusive categories. For example, pasta dishes were identified using
FNDDS and were further disaggregated into whole grain and
refined grain pasta dishes using FPED (Supplementary Table 2).
Data on the gram weight of each food consumed as well as their kcal
and nutrient content were acquired from NHANES files, and data
on the amount of added sugar present in each food were acquired
from FPED files. Average serving sizes of each food category were
estimated from these data, as well as the average amount of kcal,
added sugar, and sodium present per serving of each food category,
as described below.

Serving sizes for each food category were estimated for the
entire sample by averaging the gram weight of each food consumed
within each category at each eating occasion. For example, there
were 174 types of refined grain pasta dishes that were consumed
on 5,424 occasions, and the average amount (in grams) of refined
grain pasta dishes consumed at each eating occasion was used as
the serving size for this food category. All computed serving sizes
for packaged foods and beverages were consistent with serving
sizes on the Nutrition Facts Panel of these products (30), and the
computed serving sizes for non-packaged foods were consistent
with serving sizes provided by FPED documentation (31). To
estimate the amount of kcal, nutrients, and added sugar per serving
of each food category, the amount of these food components per
gram of each food was averaged across all foods within each food
category and was multiplied by the average serving size (in grams)
of each food category.

2.5. Target foods and alternative foods

For each diet pattern, food categories to be removed during
modeling (target foods) were those that represented the greatest
daily intake of added sugar and sodium using data from the first day
of dietary recall. Alternative food categories were selected based on
four criteria: (1) adhered to the principles of each diet pattern (e.g.,
a grain dish was not used as an alternative food for the low grain
diet pattern), (2) represented a reasonable dietary substitution that
an individual may make, as determined through consultation and
consensus with multiple Registered Dietitian Nutritionists (RDN)
as described by Conrad et al. (3) (e.g., dishes were replaced with
dishes, beverages with beverages, snacks with snacks, and desserts
with desserts), (3) it was consumed in the greatest quantity of the
remaining options, and (4) it had a lower content of added sugar
and sodium per serving compared to the target food.

2.6. Diet modeling

A diet model was constructed to evaluate the effects on nutrient
intake if up to 3 servings of food categories highest in added
sugar or sodium (target foods) were substituted with up to 3
servings of alternative foods, which is consistent with DGA 2020–
2025 recommendations to limit these components in the diet
(32). To allow for discretionary intake, the model only performed
substitutions if a participant consumed at least the number of
servings of the target food compared to the alternative food. For
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example, if a participant consumed 0.9 servings of a target food
it would not get substituted with an alternative food, but if they
consumed 1.1 servings of a target food it would get substituted with
1 serving of an alternative food. Similarly, if a participant consumed
2.9 servings of a target food it would get substituted with 2 servings
of an alternative food. All substitutions were made on the basis of
whole servings (1, 2, or 3 servings) rather than mass quantity or kcal
to reflect the units in which individuals typically consume foods
and beverages. Individual-level intake of kcal and nutrients were
estimated at baseline and after modeling.

2.7. Statistical analyses

Micronutrient intake was evaluated at baseline (i.e., current
intake) and after modeling. Means were unadjusted and tests
of significance were adjusted for age, sex, and NHANES
survey cycle using linear regression models. Survey weights and
design variables from NHANES were used to account for the
multistage probability sampling design and to produce nationally
representative estimates. SAS 9.4 (SAS Institute; Cary, NC, USA)
was used to estimate usual intakes using the NCI macros, and
Stata 16.1 (StataCorp; College Station, TX, USA) was used for data
management and all other analyses.

3. Results

3.1. Sample characteristics

Participants were excluded from the present study if they
were less than 20 years old (n = 26,375) or pregnant or
lactating women or did not provide complete and reliable dietary
information (n = 896). Of the 61,682 participants in NHANES
2005–2018 that provided dietary data, 34,411 participants met the
inclusion criteria.

Details of the participant characteristics are included in Table 1.
In the general population group, the mean age of participants
was 48 years, approximately half were female (51%), and the
majority were non-Hispanic white (67%). The mean income-to-
poverty ratio of those in the general population was 3.0, and
61% of the participants attended some college. Of participants
that were categorized into a popular diet pattern, most followed
a restricted-carbohydrate diet (29%), followed by low grain (10%),
and time-restricted (9%) (Table 1). Participants that followed a low
grain diet pattern had a mean age of 50 years, were mostly female
(70%) and non-Hispanic white (70%), 59% attended some college,
and had a mean income-to-poverty ratio of 2.8. Participants that
consumed a restricted-carbohydrate diet pattern had a mean age of
48 years, over half were male (56%), most were non-Hispanic white
(73%) and attended some college (66%), and had a mean income-
to-poverty ratio of 3.3. Participants that followed a time-restricted
diet were younger (43 years), had less educational attainment (48%
attended college), and had a lower income-to-poverty ratio (2.4).
About half of the participants in the time-restricted diet pattern
group were female (52%) and non-Hispanic white (52%).

3.2. Sources of added sugar and sodium

All diet patterns evaluated in the present study had the
same food sources that were highest contributors of added sugar
(soft drinks with added sugar) and sodium (poultry dishes;
Supplementary Table 3). Soft drinks with added sugar contributed
to 17.9–35.6% of daily intake of added sugar for all diet patterns
and poultry dishes contributed to 8.5–9.5% of daily sodium intake
for all diet patterns. To generate modeled diets, soft drinks with
added sugar were replaced by soft drinks without added sugar in the
general population, restricted-carbohydrate, and time-restricted
diet patterns, but were replaced by 100% fruit juice in the low
grain diet pattern. In the case of modeled diets for sodium, poultry
dishes were substituted with egg dishes in all diet patterns. The
nutrient content per serving of target food items and their healthier
alternatives are presented in the Supplementary Table 4.

3.3. Micronutrient intake at baseline

Mean baseline intake of nutrients and energy are presented
in Supplementary Tables 5–8. Intakes of all fat-soluble vitamins
were lower among participants that followed a time-restricted diet
pattern than the general population. The low grain diet pattern
had lower mean intake of vitamin A (825.51 µg; 95% CI: 786.98,
864.05) and vitamin E (7.11 IU; 6.94, 7.3) compared to the general
population, whereas the restricted-carbohydrate diet pattern had
higher mean intake of vitamin E (8.64 IU; 8.53, 8.75) and vitamin
K (114.89 µg; 113.34, 116.44) than the general population. Similar
to the fat-soluble vitamins, intakes of all water-soluble vitamins
were lower among participants that followed a time-restricted diet
pattern compared to the general population. The mean intakes
of folate among participants in each of the three popular diet
patterns (454.74–575.92 µg) were lower compared with the general
population (614.80 µg; 609.38, 620.22). Compared to the general
population, participants that followed a low grain diet pattern had
a lower mean intake of vitamin B3 (25.43 mg; 24.43, 26.43), and
participants that followed a restricted-carbohydrate diet pattern
had a lower intake of vitamin B6 (4.39 mg; 4.07, 4.71) but a higher
intake of vitamin B3 (34.18 mg; 33.3, 35.05) compared to the
general population.

The intake of six minerals (calcium, magnesium, iron, zinc,
sodium, and potassium) were lower in the low grain and time-
restricted diet patterns compared to the general population. The
restricted-carbohydrate diet pattern had higher mean intake of
magnesium (337.15 mg; 332.64, 341.66), zinc (15.29 mg; 15.07,
15.5), sodium (3,705.48 mg; 3,677.95, 3,733.01), and potassium
(2,735.06 mg; 2,711.45, 2,758.67) than the general population.

3.4. Micronutrient intake in response to
modeled replacement of foods highest in
added sugar

Figure 1 presents the percent changes in mean micronutrient
intake after modeling, and Supplementary Tables 5–8 presents
the mean and the 95% confidence interval (CI) of micronutrient
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TABLE 1 Characteristics of study participants, 2005–2018 (n = 34,411).

Characteristic General population1

(n = 34,411)
Low grain2

(n = 3,446)
Restricted-

carbohydrate3

(n = 9,025)

Time-restricted4

(n = 4,115)

Mean or % (95% CI)5

Percent of population, % 100.0 10.2 (9.7–10.7) 28.7 (27.8–29.6) 9.2 (8.7–9.7)

Age, y, % 47.8 (47.3–48.3) 50.1 (49.4–50.9) 47.8 (47.2–48.3) 42.6 (41.7–43.5)

Female, % 51.0 (50.3–51.6) 69.5 (67.3–71.7) 44.0 (42.6–45.4) 51.9 (49.6–54.2)

At least some college, % 60.5 (58.8–62.2) 59.2 (56.4–62.0) 65.7 (63.7–67.7) 48.1 (45.2–50.9)

Income-to-poverty
ratio, %

3.0 (2.9–3.1) 2.8 (2.7–2.9) 3.3 (3.2–3.4) 2.4 (2.3–2.5)

Race/ethnicity, %

Non-Hispanic white, % 67.3 (64.7–69.7) 69.5 (66.1–72.6) 73.4 (71.0–75.7) 52.5 (48.7–56.4)

Non-Hispanic black, % 11.3 (10.0–12.8) 14.9 (12.9–17.3) 10.7 (9.4–12.1) 21.8 (19.1–24.9)

Other, % 21.4 (19.6–23.3) 15.6 (13.7–17.7) 16.0 (14.3–17.7) 25.6 (22.9–28.5)

Adapted with permission from Conrad et al. (3). Quality of popular diet patterns in the United States: evaluating the effect of substitutions for foods high in added sugar, sodium, saturated fat,
and refined grains. Current developments in nutrition, 12:nzac119.
Sample sizes are unweighted.
1All participants that met inclusion criteria, including those in each diet category as well as those not categorized into diet categories.
2
≤ 10th percentile of total grain intake.

3< 45% kcal from carbohydrate.
4
≥ 12 h food and beverage fast.

5Age and income-to-poverty ratio values are means, values for all other characteristics are percents. All values are adjusted for survey weights and multistage survey design.

intakes before and after modeling. Modeled replacement of
foods highest in added sugar with healthier alternatives led to
reduced energy intake (0.92–4.5%) and increased intake of most
micronutrients across popular diet patterns (0.01–12.09% increase)
and the general population (0.03–5.38% increase). The highest
increase among fat-soluble vitamins was estimated for vitamin
K (4.28%; corresponding to 4.55 µg increase from baseline) in
the low grain diet pattern, which also had the highest increase
for vitamin C intake (12.09%; 20 mg). The lowest change in
vitamin C intake was estimated for the restricted-carbohydrate
diet pattern (1.93% increase), corresponding to a 2.97 mg increase
from baseline (154 mg). Of the minerals, the highest change in
intake was estimated for potassium (4.44%; 104.86 mg increase),
followed by calcium (3.55%; 31.08 mg increase) among participants
with a low grain diet pattern. The rest of the changes in
micronutrient intakes were relatively small (0.01–2.44%), especially
when there were decreases in intake (less than 1%). No changes
were evident for vitamin D intakes among participants in the
restricted-carbohydrate and time-restricted diet patterns, and
among participants in the general population; and no changes were
observed for vitamin B12 and iron intakes among participants in
the restricted-carbohydrate diet pattern. All changes in the energy
intake and intakes of micronutrient are statistically significant
(p < 0.05 using paired Wald tests), except for the vitamin D.

3.5. Micronutrient intake in response to
modeled replacement of foods highest in
sodium

Modeled replacement of sodium rich foods (Figure 1 and
Supplementary Tables 5–8) decreased mean energy intake (1.6–
2.06%) as well as increased mean intake of vitamins A (4.03–6.53%;

corresponding to 33–58 µg), D (2.18–5.77%; 0.43–0.54 µg), and
E (1.37–1.95%; 0.1–0.17 IU), and decreased intakes of vitamin
K (1.53–2.08%; 1.63–1.95 µg), vitamin B1 (0.56–0.86%; 0.02–
0.03 mg), vitamin B3 (7.77–10.38%; 1.98–3.55 mg), B6 (2.26–3.83%;
0.1–0.17 mg), magnesium (1.7–2.43%; 4.73–8.19 mg), zinc (1.01–
1.21%; 0.12–0.14 mg), sodium (2.43–3.13%; 67–116 mg), and
potassium (1.99–2.5%; 47–56 mg) among all diet patterns. The
maximum increase in water-soluble vitamins was estimated for
vitamin B2 (2.64%; 0.1 mg) for the restricted-carbohydrate diet
pattern. Among the six minerals assessed in this study, only calcium
(1.51–2.11%; 13.21–22.85 mg) and iron (0.45–0.62%; 0.06–0.1 mg)
increased across all diet patterns. All results were statistically
significant (p < 0.05) using paired Wald tests.

4. Discussion

In this nationally representative modeling study of individuals
that consumed popular diet patterns, replacing foods highest in
added sugar and sodium with healthier alternatives reduced energy
intake and increased intake of many micronutrients, with some
exceptions. Modeled replacement of foods highest in added sugar
led to a modest decrease in the mean intake of folate, vitamin B12,
iron, and zinc for most diet patterns, and modeled replacement of
foods highest in sodium led to larger decreases in the mean intake of
vitamins B3 and B6 for most diet patterns. These findings highlight
the challenges of making single-item food substitutions to increase
micronutrient intake, which can lead to favorable changes in intake
of some micronutrients but not others.

In the US, high consumption of added sugar and sodium
is associated with elevated risk of morbidity and mortality from
obesity and CVD (33). Added sugar consumption in the US
decreased from 18% of total energy in 1999–2000 (34) to 13% in
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FIGURE 1

Percent change in intake of energy and micronutrients under conditions of modeled food replacement for popular diet patterns and the general
population, 2005–2018 (n = 34,411). All values are statistically significant at P < 0.05 using paired Wald tests, except those in bold text.

2017–2018 (35), but remained above the recommended threshold
of 10% (6). In the present study, added sugar contributed to
more than 10% of total energy, except for participants that
consumed the restricted-carbohydrate diet pattern. Soft drinks
are the principal source of added sugar in the diet of adults in
the US (7, 36), which was also confirmed in the present study.
After modeled replacement, the percentage of total energy from
added sugar decreased by 0.7 to 2.8 percentage points across
all diet patterns. Almost 90% of US adults exceed the CDRR
threshold for daily sodium intake (9, 37) of 2,300 mg/day. Dietary
modeling to substitute foods highest in added sugar and sodium
with healthier alternatives reduced energy intake as expected, but
dietary modeling to substitute three servings of sodium-rich items
was not enough to bring sodium intake below 2,300 mg/day. To
have a significant reduction in CVD related mortality in the US,
reducing daily sodium intake by 40% or to 1,500 mg has been
proposed (38), whereas the present study estimated less than a 5%
(corresponds to 5–115 mg) reduction.

Factors that drive the extent of changes in micronutrient
intake in the modeled diet patterns are the nutrient composition
of replaced and alternative foods, the content of undesired
food components in alternative foods, and the mean intake
of micronutrients at baseline. The nutrient composition of the
replaced items and the alternative items determines the level of
change in micronutrient content of modeled diets. For instance,
others showed that replacing typical breakfast foods with ready-to-
eat cereals improved the intake of several micronutrients (vitamin

D, folate, iron, and dietary fiber), and an additional increase for
calcium and potassium was achieved when milk was added (39).

Modeled diet patterns that replaced foods highest in added
sugar with soft drinks without added sugar led to moderately
lower intakes of folate (measured as dietary folate equivalent;
0.17–0.69%), vitamin B12 (0.01–0.02%), iron (0.01%), and zinc
(0.04–0.06%). However, in the low grain diet pattern, foods highest
in added sugar (soft drinks with added sugar) were replaced
with 100% fruit juice which resulted in increased intake of all
micronutrients (0.02–12.09%, with the highest increase observed
for vitamin C). The high vitamin C content of 100% fruit juices (40)
(Supplementary Table 4) contributed to the increase of vitamin
C in the modeled diet patterns, which might also be true for
the increase in other micronutrients as micronutrient content
per serving of the 100% fruit juice is higher than that of soft-
drinks without added sugar. Similarly, the nutrient compositions
of soft drinks with added sugar and soft drinks without added
sugar are similar, except for energy and a few minerals (calcium,
magnesium, and potassium) (Supplementary Table 4), which may
have led to minute or no changes in intake of vitamins (e.g., vitamin
D, K, B1, B2, B12) and minerals (iron, zinc, calcium, sodium,
etc.) after dietary modeling in the general population, restricted-
carbohydrate, and time-restricted diet patterns.

Improving the intake of a single dietary component might
increase the intake of other undesired food components (41) and
limit the intake of under-consumed micronutrients. In the present
study, modeled replacement of foods highest in sodium (poultry
dishes) with healthier alternatives (egg dishes) increased the
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intake of saturated fat (1.43–1.75%) and cholesterol (12.6–17.37%).
Similarly, modeled replacement of foods highest in sodium
increased the intake of several under-consumed micronutrients
(e.g., vitamin A, vitamin D, folate, and calcium), but at the same
time it decreased the intake of several important micronutrients
such vitamin B3, vitamin B6, and potassium. The mixed nature
of replacement dishes (i.e., including nutrients to encourage as
well as nutrients to limit) may result in both favorable and
unfavorable changes. This is consistent with a similar study that
assessed changes in consumption of food groups using modeled
substitutions, and found an increase in modeled intake of fruits
and whole grains but a decrease in modeled intake of vegetables in
some popular diet patterns (5). Further research is needed to utilize
optimization modeling to identify food substitutions that lead to
favorable changes in all or most micronutrients.

Finally, because the present study used the percentage change
from baseline intake as the unit of measure, the level of intake
of a micronutrient at baseline affected the percent increase
in the modeled diets. For example, identical food items with
equivalent weight were substituted, yet a lower baseline intake
of vitamin C among participants that consumed time-restricted
diet patterns (122.05 mg) than participants that consumed
restricted-carbohydrate diet patterns (154.0 mg) resulted in a
higher increase in vitamin C intake (8.8 vs. 1.93%) after
dietary modeling.

This study provides a foundation for future studies that could
evaluate intake of micronutrient from popular diet patterns. Other
tools are available to examine micronutrient intake, including
indices that measure the intake of multiple nutrients collectively,
such as total nutrient intake (TNI), mean probability of adequacy
(MPA), and the Nutrient Rich Food Index 9.3 (NRF9.3) (42,
43). Further research could apply these tools to popular diet
patterns and could be used to gauge the extent of achievable
improvement through modeled replacement with different foods.
In addition, studies could estimate the proportion of people
within each diet pattern at risk of developing micronutrient
inadequacy by comparing with the Recommended Dietary
Allowance (RDA) and the Tolerable Upper Intake Level (UL),
which can help inform dietary interventions. It will also be
useful to compare different alternative foods, especially those
with and without artificial sweeteners as the World Health
Organization (WHO) suggests that long-term intake of high
amounts of artificial sweeteners may present adverse health
effects (44).

The present study has several strengths. To the authors’
knowledge, this is the first study to report the mean micronutrient
intake of low grain, restricted-carbohydrate, and time-restricted
diet patterns in the US. Data were collected from a large, nationally
representative sample of over 34,000 participants over a 14-year
period, making these findings generalizable to the US population.
For the first time, this study also evaluated the changes in
micronutrient intake for people following popular diet patterns
when foods highest in added sugar and sodium were replaced with
healthier alternatives. Diet patterns were categorized using data
from multiple 24-h recalls instead of participants’ self-reported
adherence to diet patterns, because mischaracterization of diet
patterns by study participants is common (45, 46). Serving sizes
were also estimated from this nationally representative data and
were consistent with those provided on the Nutrition Facts Panel

(30) and published in the United States Department of Agriculture
(USDA) FPED (17). Additionally, the use of a serving in lieu
of mass quantity reflects the units in which most people make
food substitutions.

This study also has some limitations. As with all self-reported
dietary data, 24-h recalls are subject to recall bias and social
desirability bias which might lead to under- or over-estimation of
micronutrient intake (47, 48). However, 24-h dietary recalls provide
valuable and highly detailed dietary information and are especially
useful when assessing dietary information from large samples (47,
48). This study evaluated replacing one target food with one
alternative food, and other substitutions may yield different results.
Similarly, substitution with alternative foods of equal weight or
energy could produce different results than the present study. The
present study included three popular diet patterns, and other diet
patterns such as vegetarian and pescatarian were not included
since less than 3% of the participants in our sample followed
them, which has been reported elsewhere (3). However, diet
patterns that are commonly reported but have low adherence in
practice could be a potent future research area to explore. Also,
micronutrient intake was not assessed by any nutrient adequacy
index in the present study, thus future research could use such
nutrient indices to evaluate micronutrient adequacy of popular
diet patterns for guiding people to improve nutrition and health
outcomes. Finally, these results represent average dietary changes
of population subgroups which can produce overgeneralized results
for some individuals.

5. Conclusion

Dietary modeling to replace foods highest in added sugar
and sodium with healthier alternatives, as per DGA 2020–
2025 recommendations, had heterogeneous effects on mean
micronutrient intake across popular diet patterns. Modeled
replacement of foods highest in added sugar led to more
dramatic improvements in micronutrient intake with more modest
reduction of energy intake than replacement of foods highest in
sodium. When interpreting these results, one should consider the
difference in nutrient composition of replacement foods, which
determines the extent of benefits for micronutrient intake. The
results of the present study give directions for future research
regarding micronutrient adequacy of popular diet patterns.
Optimization modeling approaches may be useful in estimating
the appropriate combinations of different alternative foods items
to maximize micronutrient adequacy.

Data share policy
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