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Addressing systematic measurement errors in self-reported data is a critical

challenge in association studies of dietary intake and chronic disease risk. The

regression calibration method has been utilized for error correction when an

objectively measured biomarker is available; however, biomarkers for only a few

dietary components have been developed. This paper proposes to use high-

dimensional objective measurements to construct biomarkers for many more

dietary components and to estimate the diet disease associations. It also discusses

the challenges in variance estimation in high-dimensional regressionmethods and

presents a variety of techniques to address this issue, including cross-validation,

degrees-of-freedom corrected estimators, and refitted cross-validation (RCV).

Extensive simulation is performed to study the finite sample performance of the

proposed estimators. The proposed method is applied to the Women’s Health

Initiative cohort data to examine the associations between the sodium/potassium

intake ratio and the total cardiovascular disease.

KEYWORDS

measurement error, regression calibration, feeding study, biomarker, high-dimensional
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1. Introduction

The field of nutritional epidemiology plays a crucial role in understanding the impact

of dietary patterns on human health. The ongoing exploration of associations between

dietary components and chronic disease risks continually uncovers valuable insights. For

instance, the well-established link between obesity and cancer risk (1) serves as a testament

to the significance of this research. In order to effectively prevent and control chronic

diseases, it is imperative to acquire detailed information on how key energy balance factors

associate with the risks of major chronic illnesses [World Cancer Research Fund/American

Institute for Cancer Research (2)]. Investigating the complex working mechanisms of these

energy balance factors necessitates a comprehensive examination of the connections between

multiple dietary components and disease risks. Establishing such associations, however, is

far from simple. A major challenge stems from biases in dietary assessment, which are

notoriously difficult to address (3). Strong evidence (4) suggests that the misreporting of

dietary energy intake is associated with individual characteristics, such as body mass index

(BMI). These systematic measurement errors result in estimation biases that cannot be

automatically rectified (5). Moreover, correcting measurement errors becomes increasingly

challenging when attempting to model dietary components jointly in the context of their

relationships with chronic diseases.
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Correcting measurement errors has been an important

subject in statistical methodology development, greatly influencing

nutritional studies (6). Various strategies have been developed

to address these errors (7–15). One notable method, regression

calibration, is particularly useful for handling covariate-dependent

measurement errors and offers ease of implementation (16).

Studies within the Women’s Health Initiative (WHI) have

demonstrated the effectiveness of joint regression calibration

approaches in addressing measurement errors when objective

biomarkers are available for all modeled dietary intakes (4, 17–19).

These biomarkers inform calibration equations for self-reported

measurements of exposure variables, which then provide calibrated

intake estimates to better assess associations between dietary

exposures and disease risks.

There is a significant research gap in generating reliable

calibrated estimates for numerous nutritional and physical activity

variables using single objective measurements. Consequently,

regression models with multiple predictors have been developed

from feeding studies to obtain calibrated estimates (4, 20). For

instance, in the WHI Nutrition and Physical Activity Assessment

Study (NPAAS), a regression-based biomarker has been established

for a single dietary component or energy balance factors (21). To

address the systematic measurement errors in self-reported food

frequency questionnaire (FFQ) data from a large cohort, blood and

urine measurements were collected for a subgroup, while a feeding

study (NPAAS-FS) was conducted on another smaller subgroup

where both blood and urine measurements and assessed dietary

intake information were collected. This novel feeding study design

aimed to improve the accuracy of capturing measurement errors in

the FFQ (21). However, there are some challenges in building the

regression calibration method, as the classical measurement error

assumption will be violated by the feeding study-based biomarker

development procedure, which regresses the consumed nutrient

on blood and urine measurements and personal characteristics.

This issue arises because the residual of the regression model

is independent of the predicted value instead of the actual one.

Ignoring this violation results in biased estimates of the calibrated

dietary intake and the diet-disease association due to Berkson-

type errors (22). When developing biomarkers for objectively

measured variables with low dimensions, new calibration methods

have been developed to account for Berkson-type errors in

association studies of univariate nutritional variables (20). Zhang

et al. (23) have extended this approach to multivariate nutritional

variables, providing consistent estimators for disease associations

of a single dietary component and valid confidence intervals

for disease association parameters under rare disease settings.

Nevertheless, for some macronutrient intakes, suitable biomarkers

cannot be developed from low-dimensional measurements. High-

dimensional metabolites offer an opportunity to establish valid

biomarkers, but it remains an open question on how to obtain valid

inferences for such biomarkers.

In this paper, we concentrate on high-dimensional objective

measurements for a univariate exposure of interest, where the

sample size is smaller than the dimension of the variables,

in constructing a biomarker model. High-dimensional variable

selection constitutes a significant portion of the rapidly advancing

statistical frontiers today. Over the past few decades, numerous

studies have been dedicated to understanding the performance

of various variable selection techniques. Frank and Friedman

(24) first proposed a technique called bridge regression. Breiman

(25) introduced the nonnegative garrote for shrinkage estimation

and variable selection. Lasso, an l-1 regularized least squares

method, was studied and introduced by (26) for variable selection.

Nonconcave penalized likelihood estimators, such as smoothly

clipped absolute deviation (SCAD), were proposed by (27) and

(28). Efron et al. (29) presented the least angle regression for

variable selection and introduced the LARS algorithm. Zou and Li

(30) proposed one-step sparse estimates for nonconcave penalized

likelihood models and introduced the local linear approximation

algorithm for optimizing non-concave penalized likelihoods.

Building a biomarker model with high-dimensional sparse data

requires predictive performance that can effectively address the

challenges associated with such data. One issue that arises when

working with high-dimensional models is the collinearity among

covariates, which can result in spurious correlations between

variables (31). Numerous researchers have explored penalized

regression techniques, such as Lasso and SCAD, to handle high-

dimensional sparse data. Alternatively, variable selection can also

be done by ranking predictive powers using random forest (RF)

(32). Variance estimation in high dimensional models presents its

own challenges, due to factors such as collinearity among covariates

and the presence of spurious correlations. A variety of techniques

have been proposed to address the issue of variance estimation

in high-dimensional regression methods. Cross-validation (CV), a

popular resampling technique, has been widely applied to assess

the performance of different models and obtain unbiased variance

estimates (33). The bootstrap, another resampling method, has

been employed to estimate the variability of regression parameters

(34). The degrees-of-freedom corrected estimators, such as the

generalized degrees of freedom and the effective degrees of

freedom, provide better error variance estimates by accounting

for the complexity of the models (35, 36). The refitted cross-

validation (RCV) method is a modification of the standard cross-

validation procedure that improves the estimation of error variance

in high-dimensional regression (37).

The remaining of the paper is organized as follows. In

Section 2, we introduce the framework of the present study

and the notation. In Section 3, we introduce different methods

and detail variance estimation procedures. In Section 4, we

conduct extensive simulations to evaluate the finite sample

performance of our proposed estimators. In Section 5, we

apply our method to the WHI data to estimate the effect

of macronutrient intakes on the risk of various chronic

diseases. Finally, in Section 6, we present our conclusions

and discussions.

2. Framework and notation

We aim to investigate the correlation between a particular type

of dietary intake Z ∈ R [such as the (log-transformed) ratio

of dietary sodium to potassium] and the timeframe, T, to the

emergence of a specific chronic illness. Nevertheless, rather than

directly observing Z, we only gather information on self-reported

dietary intake Q ∈ R, which may deviate from Z depending on
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individual characteristics:

Q = (1,Z,V⊤)a+ ǫq, (1)

Here, a ∈ R(2+q) is an unidentified parameter vector, and ǫq is a

random error with a mean of 0 that is independent of Z and V .

We also take into account potential confounding factors, referred

to as personal characteristics V ∈ Rq where q is the number of

covariates. To model the hazard of the response, we employ a Cox

model:

λ(t|Z,V ,Q) = λ(t|Z,V) = λ0(t) exp((Z,V
⊤)θ), (2)

where θ = (θz , θ
⊤
v )

⊤ ∈ R(1+q), θz is the parameter we are interested

in, and λ0(t) represents a “baseline” hazard function.

In the NPAAS feeding study (NPAAS-FS), we furnish

participants’ meals with standardized food, which closely

mimicking their regular diet, has well-documented nutrient

content (21). The true unobservable dietary intake within the

2-week feeding period is denoted as

X = Z + ǫx, where ǫx ∼ N (0, σ 2
x ). (3)

In our current model, we assume that ǫx is independent of

Z and V . However, condition (3) could be considered somewhat

restrictive, given that the design of the feeding study is based

on reported long-term dietary intake and not the actual diet.

To address this, we have modified this assumption such that

the true short-term unobserved diet X does not necessarily need

to be centered around Z. Additional specifics can be found in

Section 3. One intricate issue related to the feeding study is the

measurement errors arising from food packaging. For example, a

pack of chips labeled as 100 calories might in reality contain 101

calories. Consequently, the observed short-term dietary intake X̃

during the feeding study can be expressed as X̃ = X + ǫ̃x, where

ǫ̃x ∼ N (0, σ̃ 2
x ) is independent of ǫx, Z, and V .

The study is organized into three stages: the feeding study

(Sample 1) for biomarker development, the biomarker sub-

study (Sample 2) for calibration equation development, and the

association study (Sample 3) using the complete cohort to establish

the disease association.

When self-reported intake Q data from feeding study samples

is available, the bias of self-reported dietary intake can be directly

calibrated (refer to Section 3.4). However, self-reported dietary

intake Q is usually not available concurrently in Sample 1. To

acquire that data, a long-term feeding study would be necessary,

wherein participants report their dietary intake provided over

preceding months (e.g., 3 months). Furthermore, the Q value

obtained just prior to the feeding period in NPAAS-FS is not

collected at the same time as biomarker W, and it might be

inappropriately highly correlated with X̃.

As an alternative, we could employ a high-dimensional

biomarkerW ∈ Rp, comprised of p blood and urine measurements

obtained objectively, as a bridge between X̃ from the feeding study

sample and Q from a separate, larger sample. We assume that the

blood and urine measurementsW are influenced by the short-term

diet X, whereas the self-reported questionnaire data are directly

impacted by the long-term diet Z. We assume that W is possibly

high-dimensional and follows a parametric model:

W = [(1,X,V⊤)B]⊤ + ǫw,

where B ∈ R(2+q)×p is a matrix of unknown parameters and

ǫw ∼ N (0, σ 2
wIp) is independent of ǫx, ǫ̃x, ǫq,Z,V and B.

In practical terms, our best option is to utilize the baseline Q

gathered at a separate time (for instance, at baseline for Sample

3) for Sample 1. This baseline Q has been effectively used in

studies concerning various dietary components [e.g., protein and

carbohydrate; (22)]. However, a time gap exists between the data

collection for this baseline Q and the timing of (X̃,V ,W,Z)

measurements in Sample 1. Consequently, there’s a concern that

the conditional distribution (Q|X̃,V ,W,Z) in Sample 1 may differ

from Samples 2 and 3 for specific dietary components. Even

when Q is available, the feeding study’s sample size is usually

restricted, which could lead to less than optimal efficiency for

disease association estimates. In such instances, we consider Q as

unavailable in Sample 1 and useW to predict X̃.

The process of estimating the association between Z and T is

divided into three stages, each utilizing distinct, non-overlapping

samples derived from the same fundamental population: 1. the

biomarker creation phase, 2. the calibration phase, and 3. the phase

assessing the association. Each stage employs a different sample.

The size of the sample used in stage k is denoted as nk. In Stage

1, there are n1 samples, and for each individual i, we have access

to data (X̃i,W
⊤
i ,V

⊤
i ) and possibly Qi; in Stage 2, n2 samples are

available, and for each individual i, we have (Qi,W
⊤
i ,V

⊤
i ); in Stage

3, there are n3 samples, and for each individual i, we have (Qi,V
⊤
i )

and the composite outcome [T∗
i = Ti∧Ci,1i = I(Ti ≤ Ci)], where

Ti is the time of disease occurrence, and Ci is a potential censoring

time. Conventionally, Ti and Ci are assumed to be independent

given (Qi,V
⊤
i ).

During the first stage, we utilize data from the biomarker

creation phase to develop the biomarker. This model can be

constructed by regressing the observed short-term dietary intakes

X̃ on one of the following:

(i) blood/urine measurements W and personal characteristics

V ;

(ii) blood/urine measurements W, self-reported dietary intake

Q, and personal characteristics V ;

(iii) self-reported dietary intake Q and personal characteristics

V .

As earlier indicated, self-reported dietary intake Q may be

deemed unavailable during Stage 1. If that’s the case, we treat

Q as unavailable and opt for choice (i) in Stage 1. When Q is

accessible in Stage 1, choice (ii) might enhance the estimation of

X̃. If the biomarker W is not available, option (iii) directly models

X̃ based on Q and V , but the effectiveness might be hampered by

the limited sample size n1. In Stage 2, a calibration equation is

developed using self-reported log-transformed dietary intakeQ and

personal characteristics V to predict actual intake X if options (i)

or (ii) are implemented in Stage 1. If option (iii) is chosen, Stage

2 is bypassed, as the equation is already established in Stage 1.

However, option (i) introduces Berkson-type error, which impacts

regression calibration, thus necessitating new methodologies to

address this characteristic. In Stage 3, we calibrate the self-reported

dietary intake utilizing the Stage 2 calibration equation, conduct
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disease association analyses with the available data on Q, V , and

the composite survival outcome (T∗,1).

In summary, the high-dimensional regression calibration

procedure has three stages: biomarker construction, calibration,

and estimation. In Stage 1, the relationship between the true dietary

intake X and high-dimensional biomarkerW is established. If self-

reported dietary intakes Q are not available, option (i) can be used.

If Q is available in Stage 1, whether or not W is also available,

relationships between X and Q can be directly established with

option (iii). If both W and Q are available for Stage 1, one of

the options from (i), (ii), and (iii) can be used. As discussed, (i)

might lead to Berkson type error (38) and (iii) might have low

efficiency. For Stage 2, we developed bias correction methods to

account for the bias introduced by the Berkson type error. For

Stage 3, we can use a multivariate approach to jointly study the

associations between multiple dietary components and the disease

risks.

3. Methods

we first consider the case where σ̃x is known. We propose

methods to estimate σ̃x in the discussion section. In the real data

analysis where σ̃x is not available, we vary this parameter to perform

sensitivity analysis.

With high-dimensional data on urine measurements (W), we

first need to obtain estimated coefficients among n1 subjects in

the biomarker discovery sample of the observed short-term dietary

intake X̃ on high-dimensional blood and urine measurements (W)

as well as subject characteristics (V). Three different approaches

including Lasso, SCAD, and RF are used to conduct variable

selection in high-dimensional statistical inference. We will describe

each approach explicitly for every method in the following

subsections.

3.1. Method 1: the naïve three-step
approach with multiple exposure

In the first step, we need to fit a linear regression of X̃ onW and

V :

E(X̃|W,V) = (1,W,V)β1.

With Lasso approach, the coefficients, β̂1, minimize the penalized

least squares (PLLasso) as below:

PLLasso =

n∑

i=1

(X̃i − (1,W⊤
i ,V

⊤
i )β1)

2 + λ

p∑

j=1

|β1j|.

Lasso performs variable selection by shrinking coefficient estimates

toward zero leading to a sparse model. The tuning parameter λ is

selected through cross-validation.

With the SCAD approach, a nonconvex penalty is given by:

PLSCAD(β1j) =





λ|β1| if |β1j| < λ

2aλ|β1|
2 − 2aλ|β1| if λ < |β1j| < aλ

(a+ 1)λ2/2 if |β1j| > aλ

The first derivatives of PLSCAD(β1j) is continuous and is given by

PLSCAD(β1)
′ = λ{I(β1 < λ)+

(aλ − β1)+

(a− 1)λ
I(β1 > λ)}

for some a > 2 and β1 > 0. Similar to Lasso, λ in SCAD is selected

through cross-validation based on the smallest mean square error

(MSE) whereas a is set to be 3.7 based on simulation results and

Bayesian statistical point of view from (27).

Other than penalized regression as we described above, RF is

another choice for variable selection. The basic concept is to grow

regression trees in the general form below:

E[X̃|W,V] =

M∑

m=1

cm1(W ,V)∈Rm

where R1, . . . ,RM denotes a partition of feature space. Then we

can repeat this procedure to build the RF by considering the

approximate square root of the total number of predictors each

time. The advantage of RF is we can see the contribution of each

variable to the regression tree and their relative importance.

For each method, we did direct selection and post selection. For

direct selection, we applied an estimatedmodel from each approach

to predict the long-term dietary intake straightly. For post selection,

we performed linear regression afterward with selected variables (Ŝ)

from each approach. Specifically, for Lasso and SCAD, we have:

β̂1 = argmin{

n∑

i=1

(X̃i − (1,W⊤
i ,V

⊤
i )β1)

2
2}.

β1 ∈ RP and β̂1j = 0 ∀ j /∈ Ŝ

For RF, the 10 most important variables are considered as the final

selected variables. For both direct and post selection, we considered

two ways to deal withW andV ; one is to consider bothW andV in

the approach of variable selection while the other is to consider only

W. To be more specific, in Lasso and SCAD, the penalization will

be applied to (W, V) or to onlyW, respectively. In RF, the decision

trees will be built by considering (W, V) or onlyW, respectively.

With estimated β̂1 we had in the prior step, we can then

compute X̂1i = (1,W⊤
i ,V

⊤
i )β̂1 to predict the long-term dietary

intake (Z) among the n2 calibration samples and run a regression

of X̂1 on self-reported food frequency questionnaire data (Q) and

V to build calibration equation using the n2 calibration samples to

estimate the parameter

γ̂1 =





n1+n2∑

i=n1+1

(1,Qi,V
⊤
i )

⊤(1,Qi,V
⊤
i )





−1


n1+n2∑

i=n1+1

(1,Qi,V
⊤
i )

⊤X̂1i



 .

Using the Stage 3 sample, we then estimate Z as Ẑ1i = (1,Qi,V
⊤
i )γ̂1

for i = n1 + n2 + 1, · · · , n1 + n2 + n3. Finally, we estimate the

association between Z and the time-to-event endpoint (T∗,1) by

solving the score equation for Cox model:

0 =

n1+n2+n3∑

i=n1+n2+1

∫ τ

0

[(
Ẑ1i
V i

)

−
∑

j

Yj(t) exp
{
(̂Z1j,V

⊤
j )θ

}

∑
k Yk(t) exp

{
(̂Z1k,V

⊤
k
)θ
}
(
Ẑ1j
V j

)
 dNi(t).
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where τ is a pre-specified large number and we assume P(C > τ ) >

0, Ni(t) = I(1i = 1,T∗
i ≤ t) and Yi(t) = I(T∗

i ≥ t). In application,

τ is typically defined as the largest follow-up time in the Stage 3

sample.

3.2. Method 2: three-step with bias
correction

As shown in (20), for low-dimension setting, Method 1 will lead

to a bias factor in Ẑ1 when using X̂1 and a bias-corrected estimator

has been proposed. so for this high dimensional setting, we propose

a similar bias-corrected estimator X̂2 = X̂1B̂F
−1

where

B̂F = R̂2
1|V = 1−

V̂ar(X̃|V ,W)− σ̃ 2
x

V̂ar(X̃|V)− σ̃ 2
x

is an estimated version of the bias factor.

For direct selection, we used K-fold cross-validated errors to

compute the V̂ar(X̃|Ws,V s) in penalized regression and RF to

obtain B̂F. Denote the predicted value for the k − th fold when

using regression parameters from the other K − 1 training datasets

as ̂̃X1k when using (W,V) as predictors and as ̂̃X2k when using V as

predictors, then we have

̂̃X1 = (̂̃X11,
̂̃X12, · · · ,

̂̃X1k),

̂̃X2 = (̂̃X21,
̂̃X22, · · · ,

̂̃X2k).

With ̂̃X1 and
̂̃X2, B̂F can be calculated as

B̂F = 1−
n−1

∑n
i=1(X̃i −

̂̃X1i)
2 − σ̃ 2

x

n−1
∑n

i=1(X̃i −
̂̃X2i)2 − σ̃ 2

x

.

For post selection, we first obtain the selected variables

from the methods Lasso, SCAD, or RF. Afterward, we estimate

the coefficients by refitting a linear regression. To facilitate

interpretation, we consider both W and V in variable selection for

the remainder of this subsection. Consequently, we have:

X̃ ∼ (Ws,Vs)β
PS
WV .

Subsequently, we can fit a low-dimensional model as below:

X̃ ∼ VβV .

Here, Ws and V s denote the selected W and V variables, while

βPS
WV and βV represent the corresponding coefficients in the

aforementioned equations. From there, BF can be estimated as:

B̂F = 1−
V̂ar(X̃|Ws,V s)− σ̃ 2

x

V̂ar(X̃|V)− σ̃ 2
x

,

where

V̂ar(X̃|Ws,V s) = n−1
n1∑

i=1

(X̃i − (Wsi,Vsi)β̂
PS
WV )

2, and

V̂ar(X̃|V) = n−1
n1∑

i=1

(X̃i − Viβ̂V )
2.

As demonstrated above, obtaining a precise estimation of

V̂ar(X̃|Ws,Vs) is crucial for a reliable estimation of BF. Chatterjee

and Jafarov (39) revealed that the estimator V̂ar(X̃|Ws,V s), as

mentioned earlier, leads to a downward bias when using Lasso.

Therefore, we decide to compute and compare three different types

of V̂ar(X̃|Ws,V s) in our study involving post selection. We will

provide a description of each type below.

(i) K-fold cross validation

We fit penalized regression or RF with the cross-validated

training dataset and get predicted X̃ with selected (W, V) for

each fold. Denote the selected subset as Sk for each training set

X̃−k.

Denote WSk as selected W and VSk as selected V in the

(K-1) training dataset for each fold, then we can fit a linear

regression of X̃k onWSk ,VSk and the predicted value is denoted

as ̂̃X1k. Also, we can fit a linear regression of X̃k on Vk and

the predicted value is denoted as ̂̃X2k. After doing this for all

K folds, we get the estimated values of X̃ for the whole sample

1, that is,

̂̃X1 = (̂̃X11,
̂̃X12, · · · ,

̂̃X1k),

̂̃X2 = (̂̃X21,
̂̃X22, · · · ,

̂̃X2k).

With ̂̃X1 and
̂̃X2, B̂F can be calculated as

B̂F = 1−
n−1

∑n
i=1(X̃i −

̂̃X1i)
2 − σ̃ 2

x

n−1
∑n

i=1(X̃i −
̂̃X2i)2 − σ̃ 2

x

.

(ii) Modified variance estimator

When performing penalized regression for variable

selection, the choice of the regularization parameter λ is crucial

for obtaining an accurate finite sample estimator. The value

of λ influences both the number of variables selected and

the extent to which their estimated coefficients are shrunk

toward zero. If λ is set too large, not all signal variables

will be selected, resulting in rapidly degrading performance

(mainly characterized by a significant upward bias) as the

true β becomes less sparse with a larger signal per element.

Conversely, if λ is set too small, many noise variables will be

selected, which allows spurious correlations to decrease our

variance estimate, leading to considerable downward bias.

Based on the simulation result in (40), there is a balance to be

maintained when selecting the appropriate λ:

V̂ar∗(X̃|Ws,Vs) = (n− ŝλ)
−1
∑

i

(X̃i − (Wsi,V si)β̂
PS
WV )

2

where ŝλ is the number of nonzero elements in b̂ at the

regulation parameter λ selected with K-fold (usually 5–10)

cross-validation. Then we have:

B̂F = 1−
V̂ar∗(X̃|Ws,V s)− σ̃ 2

x

V̂ar(X̃|V)− σ̃ 2
x

.
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(iii) Refitted cross-validation estimator (RCV)

This estimator is derived from the RCV procedure

proposed by (37). We first split the dataset into two roughly

equal parts: [X̃(1),W(1),V(1)] and [X̃(2),W(2),V(2)]. We then

perform penalized regression and RF on the first part. For

penalized regression, we fit Lasso or SCAD on W and V with

cross-validated λ̂ to obtain the non-zero estimated coefficients

forW and V . In the case of RF, we select the 10 most important

variables based on the residual sum of squares (RSS). We then

refit the model with the selected W and V to obtain the post

selected estimators of their coefficients, denoted as β̂PS(1)WV .

Subsequently, using the selected W and V in W(2) and V(2),

we can compute the following variance estimate on the second

part.

V̂ar∗∗1 (X̃|Ws,Vs) = (n−ŝ(1))−1
∑

i

(X
∗(2)
i −(W

(2)
si ,V

(2)
si )β̂

PS(1)
WV )2,

where ŝ(1) is the number of selected variables in the first part.

Repeating the mirror image procedure on [X̃(2),W
(2)
s ,V

(2)
s ], we

can obtain λ̂2, selected W obtained from Lasso in the second

part and V̂ar2(X̃|W,V). Last, B̂F can be derived as below:

V̂ar∗∗(X̃|Ws,V s) =
1

2
(V̂ar∗∗1 (X̃|Ws,V s)+ V̂ar∗∗2 (X̃|Ws,V s))

B̂F = 1−
V̂ar∗∗(X̃|Ws,V s)− σ̃ 2

x

V̂ar(X̃|V)− σ̃ 2
x

.

With B̂F, we have X̂2i = X̂1i/B̂F. We can run a regression of

X̂2 on self-reported food frequency questionnaire data (Q) and V

to build calibration equation using the n2 calibration samples to

estimate the parameter

γ̂2 =





n1+n2∑

i=n1+1

(1,Qi,V
⊤
i )

⊤(1,Qi,V
⊤
i )





−1


n1+n2∑

i=n1+1

(1,Qi,V
⊤
i )

⊤X̂2i



 .

Using the Stage 3 sample, we then estimate Z as Ẑ2i = (1,Qi,V
⊤
i )γ̂2

for i = n1 + n2 + 1, · · · , n1 + n2 + n3. Finally, we estimate the

association of Z with the time-to-event endpoint (T∗,1) by solving

the score equation for Cox model:

0 =

n1+n2+n3∑

i=n1+n2+1

∫ τ

0

[(
Ẑ2i
V i

)

−
∑

j

Yj(t) exp
{
(̂Z2j,V

⊤
j )θ

}

∑
k Yk(t) exp

{
(̂Z2k,V

⊤
k
)θ
}
(
Ẑ2j
V j

)
 dNi(t).

For method 2 to work, we can relax Equation (3) to that the

conditional mean E[Z|W,V] from sample 2 is the same as the

conditional mean E[X|W,V] from sample 1.

3.3. Method 3: three-step with
self-reported data

If the self-reported data Q from the feeding study is accessible

and we presume that the distributions of (Q|Z,V) remain

consistent between the controlled feeding study and the cohort, the

bias in the naive estimator can be rectified by simply incorporating

Q into the biomarker development equation. This is because the

inclusion of Q ensures that E[Ẑ|Q,V] = E[E[Z|Q,V ,W]|Q,V] =

E[Z|Q,V].

The sequence of the first method remains unchanged, but in the

first step of the regression model, the log-transformed self-reported

food frequency questionnaire data (Q) is included. Specifically, for

the first step, the predictors W, V , and Q are utilized to construct

the biomarker. Following this, in the second step, we employW, V ,

and Q to estimate Z. Lasso, SCAD, and RF, as previously described,

are all applied in Method 3 for variable selection and effect

estimation in high-dimensional statistical inference, considering

both direct selection and post-selection.

With the estimated β̂3 from the first step, X̂3i =

(1,W i,Qi,V
⊤
i )β̂3, we can execute a regression of X̂3i on the

self-reported food frequency questionnaire data (Q) and V to

construct a calibration equation using the n2 calibration samples to

estimate the parameter

γ̂3 =





n1+n2∑

i=n1+1

(1,Qi,V
⊤
i )

⊤(1,Qi,V
⊤
i )





−1


n1+n2∑

i=n1+1

(1,Qi,V
⊤
i )

⊤X̂3i



 .

Using the Stage 3 sample, we then estimate Z as Ẑ3i =

(1,Qi,V
⊤
i )γ̂3 for i = n1 + n2 + 1, · · · , n1 + n2 + n3. Finally,

we estimate the association of Z with the time-to-event endpoint

(T∗,1) by solving the score equation for Cox model:

0 =

n1+n2+n3∑

i=n1+n2+1

∫ τ

0

[(
Ẑ3i
V i

)

−
∑

j

Yj(t) exp
{
(̂Z3j,V

⊤
j )θ

}

∑
k Yk(t) exp

{
(̂Z3k,V

⊤
k
)θ
}
(
Ẑ3j
V j

)
 dNi(t).

For method 3 to work, we can relax Equation (3) to that the

conditional mean E[Z|W,Q,V] from sample 2 is the same as the

conditional mean E[X|W,Q,V] from sample 1.

3.4. Method 4: direct estimation

We build the estimating equation by regressing X̃ on Q and V

in the first step and directly apply it to the third step. Then we build

the calibration equation using the feeding study by regressing X̃ on

V and Q and use the calibration equation to predict Z and perform

a Cox regression of Y on Z and V in the full cohort to estimate the

association parameter. In other words, we have

γ̂4 =





n1+n2∑

i=n1+1

(1,Qi,V
⊤
i )

⊤(1,Qi,V
⊤
i )





−1


n1+n2∑

i=n1+1

(1,Qi,V
⊤
i )

⊤X̃i



 ,
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TABLE 1 Simulation results with direct Lasso selection forcing personal characteristics in the model.

Setting 1 Setting 2 Setting 3

Pattern Sparsity Method Bias SD SE CR Bias SD SE CR Bias SD SE CR

Same

2

1 0.69 0.844 0.867 0.94 0.53 0.469 0.461 0.85 0.28 0.453 0.462 0.94

2 0.03 0.298 0.362 0.96 0.02 0.187 0.208 0.97 0.02 0.276 0.288 0.96

3 −0.02 0.249 0.287 0.96 −0.02 0.155 0.182 0.97 −0.02 0.245 0.276 0.97

4 −0.01 0.280 0.355 0.94 −0.02 0.158 0.194 0.95 −0.01 0.280 0.355 0.94

5

1 0.30 5.454 1.294 0.95 0.66 0.761 0.596 0.87 0.34 0.613 0.528 0.95

2 −0.06 0.375 0.402 0.95 −0.01 0.209 0.215 0.96 0.00 0.287 0.297 0.95

3 −0.03 0.259 0.300 0.97 −0.02 0.167 0.186 0.98 −0.03 0.264 0.283 0.96

4 −0.01 0.280 0.355 0.94 −0.02 0.158 0.194 0.95 −0.01 0.280 0.355 0.94

10

1 78.75 776.634 107.201 0.94 0.89 1.328 0.819 0.88 0.38 0.662 0.625 0.94

2 −3.72 36.126 2.578 0.95 −0.07 0.175 0.229 0.99 −0.04 0.236 0.307 0.95

3 −0.03 0.259 0.312 0.95 −0.03 0.160 0.192 0.97 −0.03 0.257 0.292 0.94

4 −0.01 0.280 0.355 0.94 −0.02 0.158 0.194 0.95 −0.01 0.280 0.355 0.94

Random

2

1 0.63 0.770 0.760 0.90 0.52 0.420 0.459 0.88 0.23 0.399 0.440 0.93

2 0.04 0.369 0.324 0.96 0.04 0.212 0.217 0.97 0.02 0.268 0.289 0.94

3 0.00 0.356 0.291 0.96 −0.01 0.178 0.182 0.97 0.04 0.746 0.278 0.96

4 −0.01 0.258 0.324 0.97 0.00 0.177 0.191 0.96 −0.01 0.258 0.324 0.97

5

1 0.69 0.708 0.850 0.88 0.57 0.459 0.506 0.9 0.27 0.381 0.474 0.97

2 0.03 0.258 0.350 1.00 0.04 0.184 0.225 0.97 0.03 0.242 0.304 0.99

3 −0.01 0.227 0.303 0.97 0.00 0.149 0.194 0.96 −0.01 0.219 0.290 0.97

4 0.01 0.250 0.323 0.97 0.01 0.161 0.206 0.98 0.01 0.250 0.323 0.97

10

1 0.92 1.022 0.955 0.87 0.61 0.503 0.513 0.78 0.37 0.520 0.486 0.89

2 0.07 0.322 0.349 0.93 0.03 0.206 0.214 0.94 0.07 0.304 0.294 0.91

3 0.04 0.287 0.296 0.95 −0.01 0.172 0.183 0.94 0.03 0.278 0.281 0.95

4 0.05 0.309 0.330 0.95 −0.01 0.173 0.188 0.93 0.05 0.309 0.330 0.95

Ẑ4i = (1,Qi,V i)γ̂4 and θ̂4 by solving estimating equations

0 =

n1+n2+n3∑

i=n1+n2+1

∫ τ

0

[(
Ẑ4i
V i

)

−
∑

j

Yj(t) exp
{
(̂Z4j,V

⊤
j )θ

}

∑
k Yk(t) exp

{
(̂Z4k,V

⊤
k
)θ
}
(
Ẑ4j
V j

)
 dNi(t).

For method 4 to work, we can relax Equation (3) to that the

conditional mean E[Z|Q,V] from sample 3 is the same as the

conditional mean E[X|Q,V] from sample 1.

4. Simulation

We simulate data with varying levels of sparsity, effect size, and

shape within the context of high-dimensional statistical inference.

Our goal is to investigate how the sparsity, effect size, and shape

among different measurements influence the bias and variance

of various estimators. We compare the bias, empirical standard

deviation (SD), estimated standard error (SE), and coverage rate

for a nominal 95% confidence interval (CR) across different sample

sizes, effect shapes, effect sizes, and correlation structures. Here the

CR is computed from the asymptotic SE formula as shown in the

Theorem 1 of (20) with the term 6̂γ k estimated from 100 Bootstrap

samples using data from the first two samples given that there

is no closed-form variance formula for 6γ k when W is of high-

dimension. We examine both scenarios, with and without penalties

applied to the personal characteristics V during the first stage of

penalized regression. Time-to-event outcomes are generated using

the Cox model.

(Z,V) ∼ N

(
0,

(
1− σ 2

x ρ

ρ 1

))
,

W = b0 + b1X + b2V + ǫw,

X = Z + ǫx,

X̃ = X + ǫX̃ ,

Q = a0 + a1Z + a2V + ǫq,

λ(t|Z,X,V ,W,Q) = λ(t|Z,V) = λ0(t) exp(θzZ + θvV),

where Z, V , X, and Q ∈ R, while W ∈ Rp is high-dimensional.

In this study, ǫx and ǫq are independently sampled from normal

distributions with mean zero and standard deviations σx and σq.
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TABLE 2 Simulation results with post Lasso selection forcing personal characteristics in the model.

Setting 1 Setting 2 Setting 3

Pattern Sparsity Method Bias SD SE CR Bias SD SE CR Bias SD SE CR

Same

2

1 0.46 0.813 0.658 0.93 0.36 0.421 0.375 0.91 0.16 0.376 0.387 0.94

2.1 −0.20 0.226 0.217 0.79 −0.15 0.154 0.160 0.76 −0.103 0.208 0.216 0.90

2.2 0.18 0.480 0.436 0.93 0.10 0.262 0.248 0.93 0.07 0.308 0.322 0.95

2.3 0.02 0.374 0.329 0.94 0.00 0.219 0.203 0.94 −0.01 0.266 0.273 0.94

3 −0.01 0.260 0.404 0.97 −0.02 0.167 0.190 0.97 0.00 0.274 0.336 0.97

4 −0.01 0.280 0.355 0.94 −0.02 0.158 0.194 0.95 −0.01 0.280 0.355 0.94

5

1 0.39 0.858 1.286 0.95 0.41 0.592 0.434 0.92 0.18 0.448 0.417 0.95

2.1 −0.24 0.181 0.296 0.80 −0.18 0.131 0.169 0.81 −0.115 0.206 0.217 0.89

2.2 0.09 0.470 0.792 0.96 0.11 0.319 0.267 0.91 0.06 0.333 0.335 0.94

2.3 −0.09 0.277 0.524 0.95 −0.04 0.222 0.205 0.97 −0.04 0.259 0.269 0.93

3 −0.02 0.280 0.348 0.96 −0.02 0.187 0.190 0.98 −0.01 0.303 0.303 0.97

4 −0.01 0.280 0.355 0.94 −0.02 0.158 0.194 0.95 −0.01 0.280 0.355 0.94

10

1 0.49 1.302 1.341 0.95 0.62 1.157 0.563 0.89 0.26 0.542 0.501 0.93

2.1 −0.32 0.406 0.316 0.73 −0.27 0.199 0.191 0.72 −0.170 0.174 0.222 0.89

2.2 0.12 0.609 0.771 0.95 0.16 0.528 0.317 0.93 0.08 0.355 0.374 0.93

2.3 −0.14 0.285 0.407 0.94 −0.08 0.321 0.216 0.93 −0.06 0.269 0.275 0.92

3 −0.03 0.269 0.334 0.95 −0.03 0.181 0.196 0.98 −0.03 0.256 0.304 0.96

4 −0.01 0.280 0.355 0.94 −0.02 0.158 0.194 0.95 −0.01 0.280 0.355 0.94

Random

2

1 0.46 0.740 0.653 0.93 0.36 0.373 0.381 0.87 0.16 0.384 0.379 0.94

2.1 −0.18 0.263 0.221 0.75 −0.15 0.155 0.162 0.79 −0.102 0.214 0.211 0.92

2.2 0.19 0.554 0.438 0.94 0.11 0.255 0.257 0.94 0.08 0.336 0.321 0.95

2.3 0.04 0.432 0.325 0.95 0.00 0.208 0.209 0.95 0.00 0.293 0.272 0.94

3 −0.05 0.390 0.335 0.97 0.00 0.210 0.190 0.96 −0.04 0.311 0.301 0.96

4 −0.01 0.258 0.324 0.97 0.00 0.177 0.191 0.96 −0.01 0.258 0.324 0.97

5

1 0.42 0.532 0.702 0.94 0.37 0.353 0.413 0.90 0.16 0.323 0.410 0.97

2.1 −0.20 0.184 0.251 0.85 −0.15 0.142 0.173 0.81 −0.102 0.184 0.232 0.93

2.2 0.14 0.335 0.479 0.98 0.11 0.223 0.276 0.97 0.07 0.266 0.345 0.98

2.3 0.00 0.268 0.349 0.95 0.00 0.184 0.221 0.97 0.00 0.232 0.290 0.98

3 −0.01 0.241 0.480 0.96 0.00 0.152 0.201 0.96 −0.01 0.232 0.317 0.95

4 0.01 0.250 0.323 0.97 0.01 0.161 0.206 0.98 0.01 0.250 0.323 0.97

10

1 0.57 0.792 0.675 0.89 0.37 0.383 0.388 0.86 0.23 0.414 0.401 0.91

2.1 −0.20 0.269 0.244 0.77 −0.16 0.158 0.161 0.75 −0.077 0.221 0.220 0.88

2.2 0.23 0.492 0.442 0.94 0.10 0.249 0.253 0.92 0.12 0.336 0.329 0.91

2.3 0.01 0.297 0.319 0.96 −0.02 0.188 0.201 0.94 0.03 0.277 0.277 0.94

3 0.04 0.285 0.325 0.95 0.00 0.181 0.190 0.96 0.04 0.282 0.300 0.94

4 0.05 0.309 0.330 0.95 −0.01 0.173 0.188 0.93 0.05 0.309 0.330 0.95

The censoring time is sampled from a mixture of a uniform

distribution Unif(0, 10) and a point mass at 10, with equal

probability. Three settings are considered: (i) baseline setting, (ii)

weak biomarker effect and strong self-reported data effect, and (iii)

strong biomarker effect. We experiment with three sparsity levels

ofW (2, 5, and 10), and consider two different patterns of the effect

size for W: equivalent and random. More details on the parameter

settings can be found in Supplementary material (Section 1.1).

The bias, mean estimated standard error (SE), empirical

standard deviation (SD), and coverage rate (CR) of 95%

nominal confidence interval for all four methods from 100

simulations are listed in Tables 1, 2 with Lasso penalized
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TABLE 3 Simulation results for direct SCAD selection forcing personal characteristics in the model.

Setting 1 Setting 2 Setting 3

Pattern Sparsity Method Bias SD SE CR Bias SD SE CR Bias SD SE CR

Same

2

1 0.53 1.219 0.715 0.94 0.39 0.463 0.384 0.89 0.17 0.359 0.398 0.94

2 −0.02 0.356 0.277 0.95 −0.04 0.179 0.180 0.95 −0.04 0.230 0.252 0.94

3 −0.02 0.248 0.306 0.97 −0.01 0.176 0.185 0.96 −0.02 0.266 0.290 0.96

4 −0.01 0.280 0.355 0.94 −0.02 0.158 0.194 0.95 −0.01 0.280 0.355 0.94

5

1 1.00 2.047 2.359 0.91 1.48 8.942 0.734 0.91 0.37 1.263 0.538 0.95

2 −0.12 0.255 0.387 0.93 −0.07 0.257 0.201 0.93 −0.06 0.326 0.262 0.91

3 −0.02 0.259 0.317 0.97 −0.03 0.156 0.193 0.98 −0.01 0.331 0.319 0.96

4 −0.01 0.280 0.355 0.94 −0.02 0.158 0.194 0.95 −0.01 0.280 0.355 0.94

10

1 3.15 5.880 8.839 0.90 1.56 2.116 2.040 0.82 0.55 0.927 0.971 0.92

2 −8.89 62.117 1.686 0.88 −0.12 0.239 0.357 0.88 −0.12 0.230 0.297 0.93

3 −0.02 0.272 0.338 0.95 −0.02 0.165 0.197 0.95 −0.02 0.272 0.312 0.95

4 −0.01 0.280 0.355 0.94 −0.02 0.158 0.194 0.95 −0.01 0.280 0.355 0.94

Random

2

1 0.42 0.572 0.623 0.93 0.39 0.371 0.380 0.86 0.16 0.357 0.383 0.93

2 −0.03 0.281 0.281 0.95 −0.02 0.179 0.190 0.96 −0.03 0.242 0.257 0.94

3 −0.25 2.306 0.299 0.97 0.00 0.190 0.185 0.95 −0.18 1.627 0.284 0.96

4 −0.01 0.258 0.324 0.97 0.00 0.177 0.191 0.96 −0.01 0.258 0.324 0.97

5

1 0.52 0.618 0.742 0.89 0.43 0.356 0.424 0.91 0.20 0.339 0.421 0.97

2 −0.03 0.231 0.300 0.97 −0.02 0.162 0.196 0.98 −0.02 0.221 0.265 0.98

3 −0.01 0.226 0.311 0.97 0.00 0.149 0.197 0.96 −0.01 0.221 0.299 0.96

4 0.01 0.250 0.323 0.97 0.01 0.161 0.206 0.98 0.01 0.250 0.323 0.97

10

1 0.81 1.084 0.923 0.87 0.51 0.499 0.471 0.81 0.29 0.459 0.446 0.89

2 −0.01 0.291 0.310 0.94 −0.06 0.162 0.185 0.95 0.01 0.265 0.259 0.92

3 0.04 0.328 0.309 0.95 −0.01 0.171 0.185 0.93 0.03 0.292 0.294 0.96

4 0.05 0.309 0.330 0.95 −0.01 0.173 0.188 0.93 0.05 0.309 0.330 0.95

regression. The performance of our proposed Method 2 varies

under different scenarios. Post selection and direct selection are

both performed for variable selection. The results are for the

ones forcing personal characteristics (V) in the model while

the results for not forcing V in the model can be found in

Supplementary Tables 2, 3.

In general, the post selection methods perform slightly

better than the direct-selection methods with lower SDs and

SEs. For a few settings, the direct selection approach does not

perform stably in terms of bias and SD. The direct selection

not forcing the inclusion of personal characteristics showed

more stable results compared with direct selection forcing the

inclusion of personal characteristics for Method 2 but the

variance is larger in general for all other methods. For the

post selection approach, the performances of the three variance

estimation methods, are shown as 2.1 (K-fold cross-validation),

2.2 (modified variance estimator), and 2.3 (RCV) in Tables 2,

4, 6. Method 2.3 (RCV estimation under post selection within

Method 2) performs the best among all three approaches

across different settings and patterns. Some key advantages of

Method 2.3 include lower bias and smaller standard deviations

(SD) and standard errors (SE), along with good coverage rates

(CR).

Tables 1, 2 shows the results using Lasso penalized regression

when forcing personal characteristics in the model. As the sparsity

level increases, the performance of most methods seems to degrade,

with higher biases and lower coverage rates. Methods 3 and 4

demonstrate good performances in most of the settings. However,

when the strength of the biomarker is strong and the strength

of FFQ is relatively weak (i,e., Setting 3), we can see Method

2 generally generated the most efficient result compared with

Methods 3 and 4. When we have strong biomarker effects (Setting

3), Method 2.3 outperforms the other methods.

Tables 3, 4 present the results for SCAD penalized regression

when personal characteristics are forced into the model.

Corresponding results without forcing personal characteristics can

be found in Supplementary Tables 4, 5. When comparing SCAD

with Lasso, we can observe a similar trend in terms of bias control

and standard deviation (SD) across various effect size patterns

and settings. In addition, when comparing the three approaches

for variance estimation in constructing the bias factor (BF) using

Method 2 with post selection, the RCV approach continues to
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TABLE 4 Simulation results for post SCAD selection forcing personal characteristics in the model.

Setting 1 Setting 2 Setting 3

Pattern Sparsity Method Bias SD SE CR Bias SD SE CR Bias SD SE CR

Same

2

1 0.49 0.940 1.289 0.92 0.46 0.591 0.514 0.86 0.18 0.420 0.443 0.95

2.1 −0.23 0.180 0.227 0.78 −0.18 0.154 0.166 0.74 −0.12 0.201 0.208 0.87

2.2 0.15 0.393 0.470 0.94 0.11 0.293 0.251 0.93 0.07 0.308 0.321 0.95

2.3 0.08 0.500 2.590 0.93 0.01 0.268 0.670 0.93 0.02 0.329 1.304 0.94

3 −0.01 0.259 0.331 0.97 −0.01 0.171 0.194 0.96 0.00 0.262 0.315 0.97

4 −0.01 0.280 0.355 0.94 −0.02 0.158 0.194 0.95 −0.01 0.280 0.355 0.94

5

1 0.46 2.725 11.428 0.93 0.42 2.520 3.700 0.93 0.25 0.732 0.667 0.91

2.1 −0.29 0.312 0.309 0.71 −0.18 0.175 0.201 0.79 −0.13 0.237 0.224 0.86

2.2 0.46 3.503 0.759 0.95 0.17 0.884 0.406 0.93 0.10 0.464 0.361 0.96

2.3 0.41 4.576 2.323 0.91 −0.21 1.818 1.132 0.87 −0.01 0.315 0.650 0.94

3 −0.01 0.322 0.352 0.96 −0.01 0.229 0.195 0.98 0.01 0.450 0.462 0.97

4 −0.01 0.280 0.355 0.94 −0.02 0.158 0.194 0.95 −0.01 0.280 0.355 0.94

10

1 1.12 2.994 8.838 0.94 1.08 3.364 3.596 0.88 0.44 0.690 1.498 0.90

2.1 −0.43 0.773 0.858 0.83 −0.27 0.319 0.307 0.78 −0.19 0.208 0.268 0.86

2.2 0.16 0.628 1.148 0.96 0.18 0.534 0.357 0.95 0.09 0.334 0.436 0.95

2.3 0.05 0.629 2.045 0.95 −0.01 0.893 2.983 0.93 0.10 1.633 1.124 0.95

3 −0.02 0.276 0.412 0.94 −0.02 0.174 0.200 0.95 −0.02 0.269 0.357 0.95

4 −0.01 0.280 0.355 0.94 −0.02 0.158 0.194 0.95 −0.01 0.280 0.355 0.94

Random

2

1 0.45 0.641 2.098 0.97 0.44 0.717 0.674 0.87 0.20 0.614 0.432 0.96

2.1 −0.25 0.191 0.254 0.72 −0.18 0.147 0.161 0.77 −0.13 0.198 0.227 0.86

2.2 0.06 0.742 0.431 0.96 0.11 0.263 0.258 0.91 0.07 0.341 0.323 0.91

2.3 0.06 0.429 0.839 0.94 0.03 0.243 0.321 0.95 0.01 0.286 0.362 0.94

3 −0.03 0.288 0.348 0.96 0.02 0.294 0.191 0.96 −0.03 0.313 0.309 0.95

4 −0.01 0.258 0.324 0.97 0.00 0.177 0.191 0.96 −0.01 0.258 0.324 0.97

5

1 0.64 1.151 3.383 0.92 0.46 0.497 0.657 0.90 0.21 0.381 0.476 0.97

2.1 −0.24 0.183 0.433 0.77 −0.18 0.150 0.181 0.75 −0.12 0.181 0.222 0.91

2.2 0.15 0.342 0.504 0.97 0.11 0.214 0.278 0.97 0.07 0.268 0.351 0.99

2.3 0.06 0.409 0.811 0.97 0.02 0.231 0.327 0.98 0.02 0.229 0.364 0.99

3 −0.01 0.230 0.476 0.97 0.00 0.162 0.205 0.96 −0.01 0.231 0.324 0.95

4 0.01 0.250 0.323 0.97 0.01 0.161 0.206 0.98 0.01 0.250 0.323 0.97

10

1 0.96 1.940 4.993 0.92 0.84 2.196 1.202 0.86 0.35 0.762 0.525 0.95

2.1 −0.24 0.247 0.300 0.73 −0.19 0.171 0.175 0.78 −0.10 0.216 0.217 0.84

2.2 0.25 0.480 0.465 0.88 0.11 0.256 0.262 0.94 0.12 0.339 0.337 0.93

2.3 0.24 1.034 1.989 0.93 0.04 0.348 0.374 0.92 0.08 0.442 0.338 0.92

3 0.05 0.313 0.346 0.94 0.00 0.192 0.192 0.94 0.04 0.289 0.318 0.95

4 0.05 0.309 0.330 0.95 −0.01 0.173 0.188 0.93 0.05 0.309 0.330 0.95

outperform the others in controlling bias and providing the most

efficient results. With direct selection using SCAD inMethod 2, the

bias is generally well-controlled, and the confidence rate (CR) is

promising when personal characteristics are not fixed for variable

filtering. These results are comparable to those obtained with Lasso.

However, when variables are post selected, SCAD’s performance

is not as strong as Lasso’s. This is particularly noticeable in

scenarios with large sparsity, where SCAD struggles to control bias

effectively. In summary, Lasso demonstrates superior performance

in variance estimation and bias control when compared to SCAD.
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TABLE 5 Simulation results for direct RF selection not forcing personal characteristics in the model.

Setting 1 Setting 2 Setting 3

Pattern Sparsity Method Bias SD SE CR Bias SD SE CR Bias SD SE CR

Same

2

1 1.08 20.056 42.699 0.91 2.29 1.361 2.066 0.90 6.28 17.557 22.674 0.91

2 −0.07 7.706 4.795 0.93 0.35 0.528 0.645 0.93 3.56 17.387 15.925 0.91

3 1.62 1.506 2.256 0.91 1.03 0.724 0.785 0.84 1.94 2.153 3.978 0.9

4 −0.01 0.280 0.355 0.94 −0.02 0.158 0.194 0.95 −0.01 0.280 0.355 0.94

5

1 2.77 3.167 5.799 0.90 1.90 1.236 1.366 0.76 1.67 1.840 2.236 0.88

2 0.17 0.753 1.028 0.93 0.00 0.242 0.324 0.98 0.62 1.384 0.919 0.87

3 1.16 1.282 1.335 0.89 0.69 0.520 0.587 0.84 0.87 0.876 1.067 0.93

4 −0.01 0.280 0.355 0.94 −0.02 0.158 0.194 0.95 −0.01 0.280 0.355 0.94

10

1 2.34 2.588 4.669 0.88 2.40 1.475 2.011 0.86 1.18 1.374 1.195 0.88

2 −0.18 3.913 0.618 0.95 −0.13 0.254 0.393 0.93 0.07 0.370 0.463 0.95

3 0.99 1.141 1.293 0.87 0.60 0.486 0.641 0.90 0.67 0.765 0.835 0.89

4 −0.01 0.280 0.355 0.94 −0.02 0.158 0.194 0.95 −0.01 0.280 0.355 0.94

Random

2

1 −2.68 31.746 61.244 0.92 1.29 25.138 109.942 0.86 −80.83 641.046 101.489 0.94

2 −1.85 9.158 14.467 0.95 −0.89 5.915 19.942 0.88 19.35 184.338 46.897 0.9

3 3.53 6.489 25.208 0.98 2.56 23.515 24.412 0.92 −0.63 42.632 40.913 0.94

4 −0.01 0.258 0.324 0.97 0.00 0.177 0.191 0.96 −0.01 0.258 0.324 0.97

5

1 32.47 339.650 88.785 0.91 −0.50 66.632 120.634 0.88 −16.21 142.496 168.673 0.92

2 8.23 83.762 26.403 0.92 −0.06 8.969 53.692 0.91 −0.43 22.138 67.965 0.94

3 −1.26 20.206 24.392 0.91 1.39 23.664 33.013 0.82 1.70 39.330 52.827 0.87

4 0.01 0.250 0.323 0.97 0.01 0.161 0.206 0.98 0.01 0.250 0.323 0.97

10

1 4.92 81.304 82.072 0.89 6.89 58.844 71.207 0.89 −5.83 125.518 375.281 0.88

2 0.01 7.096 21.133 0.98 48.46 496.413 595.578 0.90 2.63 31.842 43.618 0.91

3 −14.44 127.206 13.957 0.89 2.56 4.880 172.054 0.84 4.08 17.941 31.275 0.89

4 0.05 0.309 0.330 0.95 −0.01 0.173 0.188 0.93 0.05 0.309 0.330 0.95

RF offers an alternative approach for constructing a biomarker

prediction model in the second stage. Tables 5, 6 display the results

obtained using RF. When the 10 most important variables are

directly selected with RF, the estimated bias is considerably large in

most scenarios. However, when post selection is applied to variables

using RF, results with variance estimation approaches 2.2 and 2.3

both exhibit small bias and promising confidence rates (CR). These

outcomes are comparable to those achieved with Lasso for Method

2 using the RCV estimation (2.3). In summary, while RF does

not provide accurate estimations of associated parameters when

using direct selection, its performance is similar to Lasso when post

selection is employed.

Overall, with the linear settings, Lasso provides a consistent

estimator in most cases and largely attenuates the bias compared

with SCAD and RF. For more general model settings, RF has

potential advantages when the linear model does not hold. The post

selection option with RCV variance estimation for BF construction

provides consistent estimation on associated parameters with stable

CR and is recommended especially when we have sparse high-

dimensional data structure.

5. Data analysis

We exemplify our methodologies utilizing data from the WHI

NPAAS feeding study (n = 153), NPAAS biomarker study (n =

450), and the comprehensive WHI cohort data [comprising the

WHI Observational Study (OS) and the Dietary Modification Trial

Control Arm (DM-C), n = 122, 970]. A log-transformed self-

reported ratio of sodium to potassium intake from FFQ serves as

Q. Covariates such as age, BMI, race/ethnicity, education level, self-

reported physical activity, and smoking status are considered as

V . The high-dimensional 24 h urine measurements, acquired via

nuclear magnetic resonance (NMR) and gas chromatography-mass

spectrometry (GC-MS) platforms, are denoted as W. The disease

outcome under consideration is total cardiovascular disease (CVD).

The prevalence of CVD events is <10% (41), suggesting that the

rare disease assumption is not substantially violated. Follow-up

times commence at the moment of FFQ measurement (year-1

visit in DM-C and at enrollment in OS) and persist until the

earliest of the specific CVD outcomes under consideration, death,

loss to follow-up, or September 30, 2010, whichever occurs first.
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TABLE 6 Simulation results for post RF selection not forcing personal characteristics in the model.

Setting 1 Setting 2 Setting 3

Pattern Sparsity Method Bias SD SE CR Bias SD SE CR Bias SD SE CR

Same

2

1 0.47 0.606 0.655 0.88 0.41 0.383 0.394 0.83 0.17 0.373 0.391 0.93

2.1 −0.09 0.217 0.248 0.90 −0.09 0.153 0.167 0.91 −0.07 0.218 0.238 0.94

2.2 0.00 0.275 0.306 0.97 0.04 0.199 0.217 0.96 −0.02 0.246 0.264 0.95

2.3 0.00 0.279 0.324 0.97 −0.01 0.189 0.205 0.96 0.00 0.259 0.275 0.95

3 −0.02 0.260 0.308 0.96 −0.01 0.170 0.193 0.97 −0.01 0.262 0.291 0.95

4 −0.01 0.280 0.355 0.94 −0.02 0.158 0.194 0.95 −0.01 0.280 0.355 0.94

5

1 0.72 1.298 0.974 0.90 0.61 0.569 0.564 0.85 0.25 0.483 0.463 0.92

2.1 −0.10 0.266 0.297 0.91 −0.14 0.161 0.187 0.84 −0.06 0.236 0.253 0.94

2.2 0.02 0.354 0.384 0.97 0.06 0.229 0.263 0.94 −0.01 0.262 0.282 0.94

2.3 0.17 1.820 0.366 0.96 −0.07 0.180 0.209 0.96 0.01 0.285 0.299 0.96

3 0.00 0.293 0.345 0.98 0.00 0.183 0.201 0.97 0.03 0.365 0.337 0.93

4 −0.01 0.280 0.355 0.94 −0.02 0.158 0.194 0.95 −0.01 0.280 0.355 0.94

10

1 1.02 1.184 2.059 0.91 1.20 1.336 1.205 0.86 0.59 0.736 0.818 0.90

2.1 −0.17 0.229 0.412 0.92 −0.24 0.299 0.244 0.73 −0.05 0.269 0.317 0.96

2.2 0.04 0.338 0.646 0.97 0.17 0.416 0.444 0.92 0.04 0.309 0.379 0.95

2.3 −0.01 0.335 0.517 0.95 −0.07 0.268 0.275 0.90 0.09 0.372 0.431 0.91

3 0.06 0.524 0.395 0.94 0.01 0.188 0.213 0.97 0.25 1.677 13.383 0.93

4 −0.01 0.280 0.355 0.94 −0.02 0.158 0.194 0.95 −0.01 0.280 0.355 0.94

Random

2

1 0.43 0.570 0.651 0.91 0.39 0.367 0.395 0.88 0.15 0.341 0.381 0.93

2.1 −0.09 0.230 0.248 0.95 −0.07 0.164 0.177 0.92 −0.06 0.222 0.238 0.97

2.2 0.03 0.313 0.328 0.96 0.04 0.203 0.224 0.97 0.00 0.254 0.275 0.95

2.3 −0.02 0.282 0.308 0.97 0.01 0.199 0.210 0.96 −0.01 0.251 0.269 0.97

3 0.05 0.740 0.316 0.97 0.01 0.188 0.194 0.96 −0.25 2.308 0.293 0.96

4 −0.01 0.258 0.324 0.97 0.00 0.177 0.191 0.96 −0.01 0.258 0.324 0.97

5

1 0.68 1.701 0.743 0.93 0.41 0.350 0.421 0.87 0.18 0.325 0.408 0.98

2.1 −0.08 0.380 0.257 0.91 −0.07 0.146 0.177 0.96 −0.05 0.202 0.249 0.98

2.2 0.08 0.459 0.351 0.97 0.05 0.189 0.228 0.96 0.01 0.232 0.290 1.00

2.3 −0.04 0.238 0.461 0.95 0.00 0.176 0.210 0.99 −0.01 0.223 0.280 1.00

3 0.01 0.236 0.334 0.97 0.02 0.159 0.204 0.97 0.00 0.225 0.305 0.96

4 0.01 0.250 0.323 0.97 0.01 0.161 0.206 0.98 0.01 0.250 0.323 0.97

10

1 0.70 2.558 1.365 0.87 0.45 0.443 0.425 0.84 0.26 0.431 0.421 0.92

2.1 −0.05 0.377 0.310 0.87 −0.11 0.167 0.174 0.85 −0.02 0.247 0.240 0.91

2.2 0.13 0.507 0.444 0.94 0.04 0.213 0.221 0.94 0.05 0.291 0.284 0.91

2.3 0.06 0.797 0.579 0.87 −0.03 0.206 0.195 0.93 0.02 0.271 0.263 0.91

3 0.06 0.298 0.319 0.96 0.00 0.172 0.195 0.94 0.05 0.283 0.296 0.95

4 0.05 0.309 0.330 0.95 −0.01 0.173 0.188 0.93 0.05 0.309 0.330 0.95

In our analytical process, hazard rates are modeled as implicitly

conditioned on the continued survival of the study subject. This

implies that death is not viewed as a source of censoring in

our formulation. Rather, death merely constrains the follow-up

period during which hazard rate information is collected for

the subject. This differs from considering death as censoring

non-fatal outcomes, which would be the case in a competing

risk formulation.

We scrutinized the normality of the log-transformed

self-reported intake (Q), the log-transformed metabolites from

24-hour urine measurements (W), and the log-transformed

evaluated sodium/potassium ratio (X̃) utilizing the NPAAS-FS
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TABLE 7 Association between 20% increase in sodium-to-potassium ratio with total CVD in high-dimensional space under Lasso, SCAD, and RF

approaches.

Approach Method Lasso SCAD Random forest

HR 95 CI% HR 95 CI% HR 95 CI%

Direct selection with V not fixed

1 1.30 (1.16, 1.46) 1.18 (1.04, 1.34) 1.39 (0.61, 3.18)

2 1.09 (1.04, 1.15) 1.05 (0.99, 1.11) 1.10 (0.71, 1.70)

3 1.08 (1.00, 1.17) 1.08 (0.97, 1.21) 1.28 (1.00, 1.65)

4 1.08 (1.03, 1.13) 1.08 (1.03, 1.13) 1.08 (1.03, 1.13)

Direct-selection with V fixed

1 1.21 (1.04, 1.40) 1.18 (0.80, 1.73) – –

2 1.06 (1.00, 1.14) 1.05 (1.00, 1.11) – –

3 1.08 (1.00, 1.18) 1.08 (0.88, 1.33) – –

4 1.08 (1.03, 1.13) 1.08 (1.03, 1.13) – –

Post selection with V not fixed

1 1.20 (1.08, 1.33) 1.17 (0.81, 1.69) 1.19 (1.06, 1.34)

2.3 1.08 (1.01, 1.15) 1.07 (0.87, 1.31) 1.08 (1.03, 1.13)

3 1.09 (0.98, 1.21) 1.10 (0.97, 1.25) 1.11 (1.05, 1.16)

4 1.08 (1.03, 1.13) 1.08 (1.03, 1.13) 1.08 (1.03, 1.13)

Post selection with V fixed

1 1.16 (1.03, 1.31) 1.15 (0.87,1.52) – –

2.3 1.06 (0.99, 1.14) 1.05 (0.90, 1.22) – –

3 1.08 (1.00, 1.17) 1.08 (0.97, 1.20) – –

4 1.08 (1.03, 1.13) 1.08 (1.02, 1.14) – –

dataset. No evidence indicated a violation of any normality

assumptions (B-H adjusted p value > 0.1) (42).

The estimated HR and corresponding 95% confidence interval

according to a 20% increase in the sodium-potassium ratio

are shown in Table 7 for the methods of Lasso, SCAD,

and RF.

We observe that the estimated HR is >1 in all cases, indicating

a higher risk of CVD with increased sodium-to-potassium ratios,

regardless of the different high-dimensional approaches used.

These findings are consistent with those reported in previously

published studies (20). The most conservative estimate for ˆ̃σ 2
x ,

0, is used to construct the BF in Method 2. Moreover, RCV

variance estimation is employed to construct the BF for the post

selection approach with Method 2. The estimation of the associated

parameter derived from Method 2 is smaller in scale compared to

Method 1 and is similar to Methods 3 and 4. We note that the

95% CI does not include an HR of 1 with Lasso and RF in most

cases, indicating a significant association between calibrated dietary

intake and the risk of CVD. Conversely, the 95% CI with SCAD

exhibits less efficient results with larger variance, indicating a non-

significant association between calibrated dietary intake and the

risk of CVD in several instances.

6. Discussion

We investigated the prerequisites for a valid biomarker in high-

dimensional space for regression calibration purposes. Various

methods to handle high-dimensional data (i.e., Lasso, SCAD, and

RF) and approaches to variable selection (i.e., direct and post

selection) were applied and compared across different scenarios,

such as sparsity level and pattern of effect size. This paper offers

researchers a comprehensive understanding of how to handle high-

dimensional data in calibrated regression studies. Building linear

regression models in high-dimensional space presents challenges,

such as overfitting to samples and multicollinearity, which can lead

to inadequate estimations.

In order to identify the most effective measurements associated

with consumed dietary intakes in the feeding study, Lasso, SCAD,

and RF were applied for variable selection within the high-

dimensional dataset. Overall, Lasso demonstrated more stable

results for variable selection compared to the other two approaches.

Method 2, with the BF constructed using RCV estimation under

the Lasso post selection approach, consistently provided good

estimations in most cases.

It is worth noting that various factors, such as filtering

conditions and methods for obtaining tuning parameters, can

influence the accuracy of the biomarker prediction model when

using penalized regression methods and RF. Depending on these

choices, the accuracy of the estimated association parameters

can vary significantly. Consequently, researchers should carefully

consider these factors to achieve the most accurate and reliable

results when working with high-dimensional data in calibrated

regression studies.

Identifying effective measurements associated with consumed

dietary intakes is crucial for biomarker construction. Statistical

inference presents challenges with penalized estimators. In this

paper, a bootstrapping approach was employed for variance

estimation in high-dimensional data for penalized regression

and RF. However, there are alternative approaches for variance

estimation in high-dimensional data with penalized regression that

could be considered in future analyses.
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One issue with the estimated covariance matrix relates to

zero components. Specifically, when coefficients are zero, the

approximate covariance matrix results in zero for estimated

variance. Although the estimation of non-zero components is

robust, the signs of zero components can be either negative or

positive. This issue is also present in the sandwich formula of the

covariance matrix developed by (31). Wasserman and Roeder (43)

proposed a two-stage procedure for valid inference. Their method

involves randomly dividing the data into training and testing

datasets. Penalized linear regression is used in the training data to

select informative variables in the first stage, while ordinary least

squares (OLS) are applied in the testing data to compute standard

errors. A drawback of the single-split method is that results may

depend on how the data is split. To address this, Meinshausen et al.

(44) suggested a multi-split method, which repeats the single-split

multiple times. Lockhart et al. (45) introduced the covariance test

statistic to test the significance of predictor variables that enter the

current Lasso model. For ultra-high-dimensional cases where the

sample size is equal to or smaller than the variable dimension, the

sure independent screening (SIS) technique proposed by (31) can

be considered for variable screening in future work.
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