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The use of high-dimensional data has expanded in many fields, including in 
clinical research, thus making variable selection methods increasingly important 
compared to traditional statistical approaches. The work aims to compare the 
performance of three supervised Bayesian variable selection methods to detect 
the most important predictors among a high-dimensional set of variables and 
to provide useful and practical guidelines of their use. We assessed the variable 
selection ability of: (1) Bayesian Kernel Machine Regression (BKMR), (2) Bayesian 
Semiparametric Regression (BSR), and (3) Bayesian Least Absolute Shrinkage and 
Selection Operator (BLASSO) regression on simulated data of different dimensions 
and under three scenarios with disparate predictor-response relationships and 
correlations among predictors. This is the first study describing when one model 
should be  preferred over the others and when methods achieve comparable 
results. BKMR outperformed all other models with small synthetic datasets. 
BSR was strongly dependent on the choice of its own intrinsic parameter, but 
its performance was comparable to BKMR with large datasets. BLASSO should 
be preferred only when it is reasonable to hypothesise the absence of synergies 
between predictors and the presence of monotonous predictor-outcome 
relationships. Finally, we applied the models to a real case study and assessed 
the relationships among anthropometric, biochemical, metabolic, cardiovascular, 
and inflammatory variables with weight loss in 755 hospitalised obese women 
from the Follow Up OBese patients at AUXOlogico institute (FUOBAUXO) cohort.
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Highlights

  ‑   We compared the variable selection ability of three Bayesian variable selection models: 
Bayesian Kernel Machine Regression (BKMR), Bayesian Semiparametric Regression (BSR) 
and Bayesian Least Absolute Shrinkage and Selection Operator (BLASSO) using both 
simulated and real data.
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Introduction

The advent of exposomics and the abundance of novel 
toxicological information have made the identification of the 
associations between both exposures and their molecular responses 
and a health outcome more challenging. Therefore, many variable 
selection approaches have increased in importance and popularity (1). 
When multiple exposures and their molecular responses co‑occur and 
have a strong complex correlation structure, traditional statistical 
models are limited in accounting for multicollinearity or standard 
error inflation (2). To reduce this problem, dimensionality reduction 
methods—such as principal component and factor analyses—become 
very valuable. However, those approaches focus on the transformation 
of the original variables thus leading to interpretability issues. In 
addition, multiple co‑occurring predictors can have nonlinear and 
nonadditive relationships with the health outcome, and most statistical 
methods fail to properly model those relationships. Penalised 
regression methods are used in this context, such as the least Absolute 
Shrinkage and Selection Operator (LASSO) (3) and its numerous 
variants (4–7), along with Bayesian variable selection methods, which 
have recently been developed to handle jointly multiple correlated 
predictors and both nonlinear and nonadditive relationships, allowing 
for the inclusion of prior information (8, 9).

Among these Bayesian methods, those employing spike‑and‑slab 
priors (10) or shrinkage priors (11) stand out for features selection. 
These methods are now widely studied and employed within the 
environmental epidemiological literature (9, 12), but only a few 
studies have evaluated the differences and similarities of those 
approaches in a more general setting.

In this work, we compared three supervised Bayesian models: the 
Bayesian Kernel Machine Regression (BKMR) (13), the Bayesian 
Semiparametric Regression (BSR) (14), and the Bayesian LASSO 
(BLASSO) (15) and we provided useful and practical guidelines of 
their use. BKMR models the outcome‑predictors associations through 
the use of a kernel function of predictors, while BSR flexibly models 
the relationships between the predictors and the outcome by 
employing natural splines. We evaluated the models’ goodness of fit 
and selection results, simulating several predictors with a complex 
correlation structure and with disparate relationships with a 
continuous outcome and considering data with different sample sizes. 
We finally assessed the models’ performance on a real case study. 
We leveraged data on weight loss in hospitalised obese women from 
the Follow Up OBese patients at AUXOlogico institute (FUOBAUXO) 
cohort (16) and determined the association between biochemical, 
anthropometric, and clinical variables on weight loss percentage in 

these patients over a period of 40 days. The paper is organised as 
follows. In Section 2, we provide a brief overview of the models; in 
Section 3, we  describe the simulation studies for evaluating the 
models’ selection and performance based on three scenarios; in 
Section 4, we illustrate the methods’ performance on data from the 
FUOBAUXO study; and in the last section, we offer some concluding 
remarks and suggestions for further research.

Methods

In this section we  summarise the methodologies applied 
throughout the study. We assume a continuous outcome variable Y 
and several main predictors Z and confounders/covariates X for all 
models. The BKMR model has the following form:

 Y h z z xi i iM i i= …( ) + +′
1, , β ε  (1)

where Yi is the outcome for individual i i n= …( )1, , ; zim is the mth 
predictor, also called the exposure variable; xi is a vector of potential 
confounders; h denotes the unknown exposure‑response function to 
be estimated; β represents the effect of the covariates; and εi represents 
residuals iid N(0, σ2). To model the h function, BKMR uses a Gaussian 
kernel machine representation of the form:
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where Z z , ,zi i iM
T= …( )1  is the vector of predictors’ values for the 

individual i, K(.) is the Gaussian kernel, and αi  represents unknown 
parameters (13). Such representation can include a large number of 
variables of interest and allows for nonlinear and nonadditive 
relationships between these variables and the health outcome. In 
linear models, including linear or spline terms of all main predictors 
and their interactions with the outcome can lead to over‑fitting issues 
due to the high number of parameters to estimate. The use of the 
kernel machine representation for h addresses this concern by 
regularising the high‑dimensional response function, with the result 
that subjects with similar exposures will have similar health risks (13). 
Prior distributions on all the unknown parameters are placed as 
described in the supplemental material of (13). Adding an auxiliary 
parameter to the kernel function, which assumes a value of zero when 
the predictor is no longer included in the model, and a value of one 

 ‑ For large sample size data, BKMR and BSR may be employed indiscriminately, as they were 
able to capture complex relationships between predictors and the outcome even in presence 
of highly correlated variables.

 ‑ For small sample size data: BKMR correctly selected the important variables, while BSR 
was strongly dependent on the choice of its tuning parameter and additional considerations 
should be taken into account to ensure an accurate variable selection.

 ‑ BLASSO should be preferred only when it is reasonable to hypothesise the absence of 
interactions between predictors and in the presence of monotonous relationships.

 ‑ In general, the performance of these models strongly depends on the sample size of the 
dataset, the correlation structure, and the predictor‑outcome relationships.
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otherwise, BKMR allows for variable selection. The posterior inclusion 
probabilities (PIPs), which provide measures of variable importance, 
are estimated for each variable included in the model. Finally, the 
interactions can be  studied using a graphic tool, investigating the 
predictor‑response function of a single predictor in Z for another 
predictor in Z fixed at various quantiles (and for the remaining 
predictors set to a particular value). The BSR model is similar to the 
form of BKMR (1), but the predictor‑response function h is modelled 
through the use of suitable spline functions:

 
h z z f z f z zi iM

j

M
j ij

j K
jk ij ik1
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, , ,…( ) = ( ) + ( ) +…
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where each function f(.) is a natural cubic spline of a required 
dimension d, and dots indicate that the summation extends all the way 
through M‑way interactions (14). The d parameter corresponds to the 
number of degrees of freedom used to model the effects of the 
predictors. The authors suggest building the model for different d 
values and using the Watanabe–Akaike information criterion (WAIC) 
to evaluate which model should be utilised going forward.

As a result of variable selection, the BSR provides the PIPs for the 
main effects and the interactions. Lastly, the LASSO is a technique for 
improving the ordinary least squares estimates for a linear exposure‑
response function h by imposing the L1 penalty on the regression 
coefficients, shrinking or setting them to zero:
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where α α α α= …( )0 1, , , .M  The λ parameter controls the 
amount of shrinkage that is applied to the estimates. Within a Bayesian 

context, BLASSO is obtained by placing a conditional Laplace prior 
on the α parameter (15), considering that LASSO estimates can 
be  interpreted as posterior mode estimates when the regression 
parameters have independent and identical Laplace priors (3).

Software

The R programming language was used for all analyses, along with 
open‑source software packages for BKMR (bkmr), BSR 
(NLinteraction), and BLASSO (monomvn).

Simulation

We compared the BKMR, BSR, and BLASSO models in terms of 
their ability with feature selection and performance prediction in three 
simulated scenarios with: (1) linear, (2) quadratic, and (3) logistic 
predictor‑response relationships. We considered each scenario under two 
circumstances: with and without interactions among predictors. Changes 
in correlations structures and sample size (small, n = 100; large, n = 1,000) 
were also evaluated, and two prior settings were used in each model.

The correlation structures were set as moderate (r = 0.5) or high 
(r = 0.8) between the first five predictors and low (r = 0.2) or absent 
between all the others (Figure 1).

We assessed the robustness of each model by changing the 
underlying priors in two situations: for BKMR and BSR, we assumed 
that a mixture component zm was included in the model with a prior 
probability π following a beta(aπ  = 2, bπ  = 2) or beta(aπ  = 2, bπ  = 6) 
distribution such that, a priori, we would expect, respectively, 50 and 
25% of the components to be included (6, 7). For λ2 (square of the lasso 
penalty parameter) of BLASSO, we used gamma distribution priors 
with α (shape) and β (rate) parameters (1, 0.5) and (1, 2), corresponding 
to exponential distributions (10). A total of 48 configurations (x3 

FIGURE 1

High- and low-correlation structure for the simulated datasets.
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scenarios, x2 interaction situations, x2 correlation structures, x2 sample 
sizes, x2 prior settings) were studied for all the models.

For each of these configurations, we generated K = 100 simulated 
datasets with M = 10 predictors Z Z1 10, ,…( )  from a multinormal 
distribution with a mean of zero and a standard deviation of one for 
each predictor, and with the correlation structure defined above. The 
predictor‑response functions depending on the scenario and the 
presence/absence of an interaction are shown in Table 1; in Figure 2, 
a summary of the simulation structure and parameters is presented.

Training and validation sets were selected with an 80/20 ratio for 
each dataset. We computed the average PIP of each predictor from the 
training datasets and then reported mean PIPs and standard errors 
(SEs) for all variables of interest. We fit BSR for a few d values, which 
are considered optimal in Antonelli et al. (14) (i.e., d ∈ {1, 2, 3, 4}).

We assessed the performance prediction on the validation sets 
using the mean squared error (MSE), reporting the mean and the 
standard deviation (SD) for each configuration. To select the 
important predictors in each model, we used the median probability 
model (MPM) (17), which consisted of having a marginal PIP of at 
least 50%.

Results

The results in terms of feature selection under each configuration 
and considering only the first set of priors are shown in Figures 3–5. 
Due to the robustness of the results, the findings with the second prior 
setting are shown in Supplementary Figures S1–S3. Each bar 
represents the mean PIP for each variable and model, and the black 
horizontal line shows the MPM threshold of 50%.

Under the first scenario, all the models were able to select the 
predictors Z2 and Z3 when the sample size was large. With a small 
sample size (n = 100), BLASSO and BKMR showed similar selection 
abilities, selecting both Z2 and Z3. BSR was unable to identify Z2 in 
the situation of high correlation with a sample size of 100. BSR was 
influenced by the choice of the parameter d; in this scenario, d = 1 led 
to the best results. Z1 was not selected by any model, nor were the 
highly correlated variables Z4 and Z5. Considering the interaction 

terms, the results were mostly consistent with previous findings, with 
the exception of the BLASSO, which did not select any predictor. BSR 
with d = 1 led to the best results when the sample size was large; that 
is, it showed mean PIP values that were higher than those of the 
models with different d values. It also identified the weak relationship 
with Z1, but to the detriment of a greater number of false positives 
(selecting also the correlated variables Z4 and Z5).

In the second scenario, all the models were able to identify the 
variables Z2 and Z3 in all configurations. The BKMR and BSR also 
identified Z1 as important in the scenario with a large sample size, 
while in the low sample size, only the BKMR identified this predictor. 
When the interactions were included, we detected a decrease in the 
selection performance of the BLASSO that did not identify any 
predictors, while the results of the BKMR and BSR were unchanged. 
BSR showed strong variability in terms of mean PIP as the parameter 
d varied, especially when the predictor‑response relationship was weak.

Finally, in the third scenario, the BKMR was able to select the 
predictors Z2 and Z3 in all configurations, both with and without 
interactions, while the BSR was unable to identify Z2 in the scenario 
with a low sample size, high correlation, and without the interactions. 
Z1 was identified by both models only in when the interactions were 
included and a large sample size was used, while only the BKMR was 
able to identify this relationship when the sample size was small. The 
BLASSO performed well, selecting Z2 and Z3 in all situations without 
interactions. When interactions were present, it was able to identify 
Z3 and, only with a large sample size and low correlation, also Z2. 
Changes in prior settings led to consistent results for all models.

To test the predictive ability of the models on the validation set, 
we  used MSE. The results in terms of the mean MSE for each 
configuration and the first prior setting are shown in Table 2. The 
results for prior setting 2 are presented in Supplementary Table S1 in 
our Supplementary material. In all scenarios, the BKMR and BSR 
showed similar predictive abilities, with comparable mean MSE 
values. The BLASSO mean MSE values were comparable with the MSE 
values of the other models only in the situation with no interactions. 
When the interactions were included, the BLASSO was characterised 
by higher average MSE values and, therefore, by a lower 
predictive ability.

TABLE 1 Predictor-response relationships for the three scenarios.

Scenario 1: linear predictor-response associations

a) No interactions Y z z zi i i i i= + + +0 2 1 21 2 3. ε

b) With interactions Y z z z z z z zi i i i i i i i i= + + + + +0 2 1 21 2 3 1 2 1 3. ε

Scenario 2: quadratic predictor-response associations

a) No interactions Y z z zi i i i i= + + +0 2 1 2
1
2

2
2

3
2

. ε

b) With interactions Y z z z z z z zi i i i i i i i i= + + + + +0 2 1 2
1
2

2
2

3
2

1 2 1 3. ε

Scenario 3: logistic predictor-response associations

a) No interactions Y e

e
i

z z z

z z z i
i i i

i i i

=
+

+
+ +( )
+ +( )

0 2 1 2

0 2 1 2

1 2 3

1 2 31

.

.
ε

b) With interactions Y e

e
i

z z z z z z z

z z z z
i i i i i i i

i i i i

=
+

+ + + +( )
+ + +

0 2 1 2

0 2 1 2

1 2 3 1 2 1 3

1 2 31

.

.
11 2 1 3
z z z i
i i i+( ) + ε

εi N~ 01,( )
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FIGURE 2

Simulation summary.

FIGURE 3

Mean PIPs for each configuration in Scenario 1 (linear predictor-response associations). Results for prior setting 1 shown [π following a beta (aπ = 2, bπ = 2) 
for BKMR/BSR, λ2 following a gamma (α = 1, β = 0.5) for BLASSO].
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Real case study on morbidly obese women

Here we present a case study to compare the models using data 
from the Istituto Auxologico Italiano. The FUOBAUXO study, 
approved by the Ethical Committee of the Istituto Auxologico Italiano 
(protocol research project code: 18A301) (16), included 1,129 women 
hospitalised for clinical complication care and to access the metabolic 

rehabilitation program at San Giuseppe Hospital in Piancavallo (VB), 
Italy. The eligibility criteria for enrolment in this cohort included being 
over 18 years of age and having a Body Mass Index (BMI) ≥ 30 kg/m2. 
All women were recruited between May 2015 and July 2019. The 
protocol was explained to the patients, who gave their written informed 
consent. The overall objective of this study was to determine the 
association between the rehabilitation program and each patient’s 

FIGURE 4

Mean PIPs for each configuration in Scenario 2 (quadratic predictor-response associations). Results for prior setting 1 shown (π following a beta (aπ = 2, 
bπ = 2) for BKMR/BSR, λ2 following a gamma (α = 1, β = 0.5) for BLASSO].

FIGURE 5

Mean PIPs for each configuration in Scenario 3 (logistic predictor-response associations). Results for prior setting 1 shown (π following a beta (aπ = 2, 
bπ = 2) for BKMR/BSR, λ2 following a gamma (α = 1, β = 0.5) for BLASSO].
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weight loss percentage during the hospitalisation (median length of 
stay: 35 days, Inter‑Quartile Range [IQR]: 33–36 days) and in the 
24 months after discharge. The rehabilitation program consisted of a 
restricted diet (an approximately 15% kcal/day reduction from the 
resting energy expenditure measure), moderate aerobic physical 
activity (5 days per week of outdoor walking, 20–30 min 
cycloergometer, and 1 h aerobic standing exercise), nutritional 
education, and psychological support (three times per week).

In this study, we  focused on the association between several 
predictors—anthropometric, clinical, and biochemical variables—and 
weight loss percentage at discharge on obesity‑affected women. The 
predictors included in the models were grouped according to a 
medical experts’ suggestion in: anthropometric, biochemical, 
cardiovascular, metabolic, and inflammatory (Supplementary Table S2). 
Furthermore, predictors were characterised by a complex correlation 
structure (Supplementary Figure S4). Women with missing 
information on the predictors were not included in the analyses, thus 
leaving a total of 755 participants. We divided the initial dataset into 
training (80%, n1 = 604) and validation (20%, n2 = 151) sets. Women 
in the training and validation sets had similar demographic 
characteristics (Table 3). We fitted the three models on the training 
dataset and considered the 50% PIP threshold for predictor selection 
(Table  4). The BSR WAICs when d = 3 and d = 4 were equivalent 
(2793.0 and 2792.4, respectively). Therefore, we chose the model with 
d = 3 because the model increases its complexity with an increase of 
the d value.

In the training data among 39 predictors, 13 were selected by the 
models. All three models agreed in selecting the lean body mass 
(mean PIP: BKMR = 99.9%, BSR = 81.7%, BLASSO = 82.7%). However, 
we identified discrepancies among the variable selections performed 
by the BKMR, BSR, and BLASSO models. The BLASSO selected all 
anthropometric predictors except for uric acid. Both the BKMR and 
BSR selected thyroid‑stimulating hormone (TSH) and erythrocyte 
sedimentation rate, showing a nonadditive effect between the two 
(BKMR and BSR results are shown in Figure 6). Among the differences 
between the BKMR and BSR results, we  identified fasting plasma 
glucose, which was a relevant predictor for the BSR but not for the 
BKMR. The BKMR selected a greater number of variables, suggesting 
a wider interaction pattern (Figure 6) and more complex mechanisms 
of action (e.g., between total cholesterol and TSH). We measured and 
compared the prediction ability of each model by leveraging the 
validation set and using the MSE. The MSE obtained were 3.6, 7.6, and 
3.6. for the BKMR, BSR, and BLASSO, respectively.

Discussion

In this study, we compared three supervised Bayesian methods 
(BKMR, BSR, and BLASSO) that were designed to perform variable 
selection and evaluate the association of multiple predictors on an 
outcome. We highlighted advantages and limitations of each approach 
under different data configurations. Both the BKMR and BSR are 

TABLE 2 Mean MSE (and SD) for each model for the different simulations’ configurations.

Scenario Interaction
Sample 

size
Correlation BKMR

BSR 
(d = 1)

BSR 
(d = 2)

BSR 
(d = 3)

BSR 
(d = 4)

BLASSO

1 No 100 Low 7.6 (2.2) 7.5 (2.2) 7.8 (2.1) 8.2 (2.3) 8.4 (2.3) 7.5 (2.1)

High 10.0 (3.3) 9.7 (3.1) 9.9 (3.3) 10.2 (3.4) 10.2 (3.4) 9.7 (3.0)

1,000 Low 7.8 (0.6) 7.6 (1.1) 7.6 (1.1) 7.6 (1.1) 7.7 (1.1) 7.7 (0.8)

High 9.5 (0.8) 9.4 (1.2) 9.4 (1.2) 9.4 (1.2) 9.5 (1.2) 9.4 (1.2)

Yes 100 Low 16.4 (7.1) 19.0 (7.9) 15.7 (6.7) 16.2 (6.5) 16.7 (6.8) 24.8 (11.4)

High 20.5 (9.9) 20.6 (9.1) 19.9 (9.2) 20.3 (9.5) 20.8 (9.9) 30.1 (17.8)

1,000 Low 12.0 (4.4) 16.9 (2.1) 13.2 (1.8) 13.3 (1.8) 13.3 (1.8) 25.3 (3.7)

High 17.4 (1.1) 17.7 (2.3) 17.0 (2.3) 17.1 (2.3) 17.1 (2.3) 33.8 (5.8)

2 No 100 Low 12.8 (4.8) 12.6 (4.2) 13.2 (4.3) 14.5 (5.1) 14.3 (5.2) 14.9 (5.9)

High 17.4 (7.2) 17.3 (7.3) 17.7 (7.4) 18.2 (7.5) 18.5 (7.6) 22.0 (9.6)

1,000 Low 11.2 (1.0) 11.5 (1.6) 11.7 (1.6) 11.9 (1.7) 12.0 (1.7) 15.6 (2.2)

High 15.6 (1.0) 15.5 (2.1) 15.7 (2.1) 15.8 (2.1) 15.9 (1.8) 21.4 (3.0)

Yes 100 Low 36.7 (23.5) 38.9 (23.0) 37.6 (35.0) 37.9 (28.2) 39.1 (24.9) 54.9 (35.5)

High 53.9 (22.1) 52.3 (21.2) 54.7 (24.3) 54.9 (23.8) 57.5 (26.0) 84.7 (44.3)

1,000 Low 28.1 (6.6) 31.6 (3.9) 28.3 (3.6) 28.7 (3.7) 29.3 (3.8) 54.5 (8.6)

High 44.1 (4.2) 43.8 (5.8) 43.2 (5.8) 43.5 (5.8) 43.6 (5.9) 82.9 (13.3)

3 No 100 Low 0.133 (0.044) 0.142 (0.047) 0.143 (0.047) 0.136 (0.046) 0.138 (0.046) 0.141 (0.046)

High 0.147 (0.051) 0.149 (0.052) 0.148 (0.049) 0.145 (0.053) 0.144 (0.051) 0.149 (0.050)

1,000 Low 0.133 (0.013) 0.138 (0.018) 0.134 (0.018) 0.132 (0.017) 0.132 (0.017) 0.143 (0.018)

High 0.143 (0.012) 0.146 (0.019) 0.143 (0.019) 0.141 (0.019) 0.141 (0.019) 0.156 (0.020)

Yes 100 Low 0.133 (0.050) 0.141 (0.054) 0.140 (0.052) 0.137 (0.050) 0.139 (0.048) 0.148 (0.055)

High 0.117 (0.040) 0.120 (0.044) 0.123 (0.048) 0.118 (0.042) 0.121 (0.045) 0.135 (0.044)

1,000 Low 0.118 (0.011) 0.127 (0.016) 0.122 (0.017) 0.120 (0.016) 0.120 (0.017) 0.154 (0.019)

High 0.106 (0.014) 0.118 (0.019) 0.111 (0.020) 0.109 (0.015) 0.108 (0.015) 0.150 (0.020)

Results for prior setting 1 shown [π following a beta (aπ = 2, bπ = 2) for BKMR/nBSR, λ2 following a gamma (α = 1, β = 0.5) for BLASSO].
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novel semiparametric approaches that are able to handle nonlinear 
and nonadditive relationships, while the BLASSO regression 
accommodates only additive and linear predictor‑outcome 
associations. In the simulations, we observed that the performance of 
both the BKMR and BSR strongly depends on the sample size and 
correlation structure.

When the data sample size was large, both the BKMR and BSR 
correctly selected the predictors associated with the outcome, 
except when the true relationship was extremely weak. With a 
small sample size, the predictors more strongly associated with the 
outcome were always selected by the BKMR. With a small sample 
size and when the predictor‑outcome relationship was weak, only 
the BKMR correctly selected the predictors, thus making the 
BKMR the most robust variable selection approach across 
scenarios. With a small sample size dataset and independently of 

the strength of predictor‑outcome associations, BSR showed high 
heterogeneity in the variable selection abilities because of strong 
influence the tuning d parameter. The BLASSO captured well 
strong linear and additive relationships between predictors and 
outcome. BLASSO variable selection ability was hampered by 
strong nonlinear associations or interactions. When there were 
high correlations between predictors, PIP values were more 
unstable for all models. In terms of prediction ability, no differences 
were observed between the BKMR and BSR (for each value of d 
considered), while the BLASSO seemed to be  characterised by 
higher average MSE values in most configurations. Despite the 
presence of highly correlated variables that are not associated with 
the outcome of interest, the models considered do not detect 
spurious relationships. This confirms their ability to handle 
situations of high correlation between predictors.

TABLE 3 Demographic characteristics of the population: overall population, training set, and validation set.

Overall (n = 755) Training (n = 604) Validation (n = 151) p-value

Age; mean (SD) 58.9 (12.8) 58.9 (13.0) 59.1 (12.4) 0.806a

Height; mean (SD) 156.7 (6.8) 156.7 (6.7) 156.6 (7.0) 0.799a

BMI; mean (SD) 43.8 (6.7) 43.9 (6.9) 43.2 (6.1) 0.233a

Type I (30 ≤ bmi < 35); n (%) 40 (5.3) 32 (5.3) 8 (5.3) 0.987b

Type II (35 ≤ bmi < 40); n (%) 202 (26.8) 161 (26.7) 41 (27.2)

Type III (bmi ≥ 40); n (%) 513 (67.9) 411 (68.0) 102 (67.5)

Weight at admission; mean (SD) 107.7 (18.9) 108.1 (19.3) 106.0 (16.7) 0.182a

Weight at discharge; mean (SD) 102.9 (17.7) 103.2 (18.1) 101.4 (15.8) 0.217a

Weight loss; mean (SD) −4.8 (3.1) −4.8 (3.2) −4.6 (2.3) 0.246a

Weight loss (%); mean (SD) −4.4 (2.4) −4.4 (2.5) −4.3 (2.0) 0.573a

The p‑value refers to comparisons between training and validation. a = tested by T‑test, b = tested by χ2 test. The p‑value refers to comparisons between training and validation. a = tested by 
T‑test, b = tested by χ2 test.

TABLE 4 Variables selected, with posterior inclusion probabilities (PIP) ≥ 50%, by the Bayesian kernel machine regression (BKMR), Bayesian 
semiparametric regression (BSR), and Bayesian Least Absolute Shrinkage and Selection Operator regression (BLASSO) models in explaining weight loss 
percentage during hospitalization in the FUOBAUXO cohort.

Type Variable BKMR BSR (d = 3) BLASSO

A Lean body mass (LBM) (kg) 99.9 81.7 82.6

A Waist circumference (cm) 59.8

A Hip circumference (cm) 85.4

A Body mass index (BMI) (kg/cm2) 98.1

A Heart rate (bpm)

C Systolic blood pressure (mmHg) 67.4

M Thyroid‑stimulating hormone (TSH) (IU/L) 99.3 100.0

M Glycated hemoglobin (mmol/mol)

M Creatinine (mg/dl) 55.8

M Total cholesterol (mg/dl) 54.6

M Calcifediol (IU/L) 66.8

M Fasting plasma glucose (FPG) (mg/dl) 71.1

M Uric acid (mg/dl) 77.2

I Erythrocyte sedimentation rate (ESR) (mm) 65.9 100.0

I C‑reactive protein (CRP) (mg/dl) 78.3

Type: Anthropometric (A), Biochemical (B), Cardiovascular (C), Metabolic (M), Inflammatory (I).
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Our case study had a sample size comparable to the large‑sample‑
size synthetic scenarios. When we applied all three models (BKMR, 
BSR, and BLASSO) to the case study, we observed that, out of all 

variables, the lean body mass was selected by all models. The selection 
of at least one anthropometric parameter, such as lean body mass, 
emphasised the importance of body composition in the process of 

FIGURE 6

(A) Bayesian kernel machine regression (BKMR) interaction plot for the selected predictors, showing the predictor-response function of a single 
predictor against the second predictor fixed at 0.25 and 0.75 quantiles (remaining predictors are fixed to the median value). (B) Heatmap of the 
posterior inclusion probabilities (PIPs), showing the interactions between the 39 predictors (listed in Supplementary Table S2 of the Supplementary material) 
identified by Bayesian semiparametric regression (BSR; PIP = 1 between TSH and ESR). LBM, Lean Body Mass; MCV, Mean Corpuscular Volume; ESR, 
Erythrocyte Sedimentation Rate; Gamma-GT, Gamma-glutamyltransferase; HDL, High Density Lipoprotein; LDL, Low Density Lipoprotein.
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weight loss. Several weight loss programs have resulted in short‑term 
success, but many patients fail in long‑term weight loss maintenance 
because of the loss of lean body mass that frequently and 
unintentionally occurs (18). There is a wide literature on the variation 
of body compartments during weight loss phases, which demonstrates 
that body composition improvement is mainly associated with the 
maintenance or increase of lean muscle mass (besides fat mass 
decrease) when dieting (19). The BLASSO selected other 
anthropometric measures; however, those variables were supposed to 
be strongly correlated with lean body mass, thus suggesting that they 
were false positives.

Both the BKMR and BSR identified the outcome “weight loss” as 
linked to TSH and the erythrocyte sedimentation rate (ESR), 
suggesting the existence of a nonlinear relationship between those 
variables and the outcome. Thyroid hormones have an essential and 
well‑known role in body weight regulation, mainly through energy 
expenditure modulation. Indeed, hyperthyroidism or hypothyroidism 
frequently lead to significant changes in body weight (20). Thyroid 
hormones are tightly linked to cholesterol levels, which may lead to an 
increase of androgen levels and facilitate weight loss. The ESR is an 
inflammation marker routinely used in clinical practice to estimate 
overall inflammation. Common metabolic abnormalities, such as 
obesity and metabolic syndrome, are pro‑inflammatory states that can 
be associated with increased ESR levels (21). Moreover, in morbidly 
obese patients, surgically induced weight loss is associated with a 
marked decrease in ESR and white blood cell count, which may 
indicate general inflammatory status improvements (22).

The BKMR identified five other variables associated with the 
outcome, but the BSR did not select them. Based on what we have 
learnt with the simulated scenarios, those variables may be weakly 
associated with weight loss, and further studies should investigate the 
effective role of those variables on weight loss.

In the case study, the BSR identified fasting plasma glucose as 
associated with weight loss. This variable was correlated with other 
metabolic variables selected by the BKMR, thus suggesting a 
connection between metabolic parameters and weight loss. This result 
was in part expected, given that the beneficial effects of decreased 
energy intake and weight loss in blood glucose control begin to occur 
rapidly during rehabilitation programs. The use in the case study of 
BKMR and BSR, models capable of handling situations with high 
correlation and complex relationships with the outcome, enabled the 
identification of important predictors belonging to different clinical 
groups by selecting only one or a few variables from each group. In 
contrast, BLASSO selected highly correlated variables largely 
belonging to a single clinical group, the anthropometric group, with 
the greatest possibility of identifying spurious relationships between 
predictors and outcomes.

A few limitations of our study should be  noted. Neither the 
synthetic nor real case scenarios considered the high‑dimensional 
framework, which can include more than 40 predictors and more than 
1,000 participants. Moreover, in the simulations, we did not consider 
departures from the normality assumption in the linear models. 
Although these approaches adapt very well to high‑dimensional 
biological or clinical contexts with different underlining distribution 
functions, further studies should assess the performance of those 
approaches under the more extended framework. Furthermore, 
considering the role played by the prior choice in the Bayesian variable 
selection, we selected two prior settings, which guaranteed a low and 

medium inclusion probability, a priori, of each component. However, 
further studies may need to assess the robustness of the results. Lastly, 
the real case scenario focused only on Caucasian women undergoing 
a weight loss program; for this reason, these results cannot 
be generalised to the entire population, to men, or to minorities who 
are more prone to develop metabolic conditions (i.e., Hispanics). 
Larger and more ethnically diverse studies should confirm our findings.

Conclusion

This is a first attempt to compare the performance of these 
innovative methods beyond typically environmental contexts and to 
provide practical usage information. In summary, the performance of 
all these methods depended on the sample size, the correlation 
structure, and the relationship between the predictors and the outcome.

The BKMR showed excellent performance in all scenarios, both 
with high and low correlation and sample size, identifying predictors 
strongly associated with the outcome and without false positives. It 
was also able to identify true weak relationships.

The performance of the BSR was also excellent in all different 
scenarios, but showed a very strong dependence on the choice of its 
own parameter, especially with a small sample size or high correlations 
between predictors, showing a higher variability in selection abilities.

The BLASSO performed poorly under nonlinear and synergistic 
scenarios but had good performance under the linear and additive 
scenarios. Our results suggest that both the BKMR and BSR may 
be employed in all scenarios, with attention in selecting an appropriate 
tuning parameter for BSR when sample size is small. The BLASSO 
should be preferred when it is possible to hypothesise the absence of 
interactions between predictors and in the presence of monotonous 
relationships and low correlations between predictors.
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