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Effect of ultrasonic treatment on
the quality of Mianning ham
Jiaju He, Wei Wang, Jiamin Zhang, Yanli Zhu, Wenli Wang,
Ting Bai, Lili Ji and Lin Chen*

Key Laboratory of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China

This paper investigates the optimal process for ultrasonic desalination of Mianning

ham. The study analyzed various factors such as ultrasonic treatment time,

temperature, and power to determine their impact on the rate of desalination

of hams. A single factor test was conducted to study the rate of desalination.

Further, A Box-Behnken experimental design was used to evaluate the effect

of Mianning ham desalination. The design examined the impacts of ultrasound

on the physicochemical properties, texture, and sensory of the ham. Response

surface processing group underwent oral processing to determine the optimal

ultrasonic treatment conditions with the highest acceptance level. The results

show that the best conditions were: ultrasonic time 84.56 min, ultrasonic

temperature 40.35◦C, and ultrasonic power 150.85 W. The average desalination

rate of the ham under the optimal conditions was 25.93% ± 0.69%, and the

hardness was 4.48 N ± 0.62 N. Overall, this process significantly improved the

desalination rate, texture, and sensory quality of Mianning ham, providing solid

theoretical support for desalination processing at the back end of ham.

KEYWORDS

ultrasonic, desalting technology, Mianning ham, response surface methodology, oral
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1. Introduction

Dry-cured ham is a meat product made by curing, washing, drying, and fermenting
the hind legs of pork (1). One of the top ten renowned hams in China is Mianning ham,
produced in Mianning County, Liangshan Prefecture, Sichuan Province, China. It is unique
because it is made of hind legs from high-quality Liangshan Wujin pigs and does not contain
nitrite during the fermentation process. Mianning ham is known for its tender texture, thin
skin, bright red color, and unique cured flavor, which makes it easy to preserve (2).

Excessive dietary intake of salt is a global health issue, and according to the World Health
Organization (WHO), adults’ daily salt intake should be less than 5 g per day. However, most
people consume between 5 and 12 g of salt each day. If salt consumption can be limited
to the recommended levels, the WHO approximates that globally, 2.5 million deaths could
be avoided yearly (3). Unfortunately, a lot of salt must be used in ham processing to boost
protein properties, enhance texture and flavor, and prevent ham spoilage by microorganisms
(4, 5). Lowering the salt content in cured ham enhances protein hydrolysis and modifies ham
texture, hue, and flavor (6).
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Ultrasonic waves can effectively reduce the curing time and
accelerate salt diffusion in meat product processing through
cavitation. Because of its effectiveness, ultrasonic technology
applications have been extended to numerous fields, such as
brining, marinating, cooking, and other food processing techniques
(7). Research studies have demonstrated that ultrasonic treatment
can influence the physicochemical properties of the product,
including but not limited to, hardness, water retention, and
flavor (8–10). However, the effects of ultrasonic processing
parameters, such as time, temperature, power, and other factors,
differ depending on the product itself (11). While the ultrasonic
technology has been predominantly studied in the ham processing
stage, its utilization in the post-ripening phase of ham production
remains unexplored (12).

Oral processing, the process of food being masticated,
moistened, and enveloped into boluses by saliva and then ingested,
plays a crucial role in the formation of food taste (13). Oral food
processing involves food dynamics, oral physiology, and sensory
psychology and has emerged as a burgeoning subfield of research
in food science in recent years (14). Response surface methodology
(RSM) is frequently used in food processing to ascertain the
most optimal processing conditions (15). This research aims to
investigate the physical and chemical properties and sensory
attributes of hams as performance indicators, optimize the process
parameters of ultrasonic treatment time, temperature, and power
using RSM, and subsequently analyze the sensory qualities of
the response group following oral processing to select the most
optimal process. The results will offer theoretical support for the
development of new Mianning hams.

2. Materials and methods

2.1. Sample

Mianning ham samples were obtained from selected
representative factories in Mianning County. The ham was
sliced into dimensions of 5 cm × 5 cm × 2 cm, and each sample
was supplemented with 1% ultrapure water before vacuum
packaging (16). Following vacuum packaging, the ham samples
were subjected to ultrasonic treatment using an ultrasonic machine.
The treated ham can be used immediately, or refrigerated at 4◦C
after surface wiping. For subsequent oral processing experiments,
the ultrasonically treated ham was boiled in water for 10 min and
then cut into 5± 1 g cubes (17).

2.2. Experimental design

2.2.1. Single-factor test
The primary influential factors of ultrasonic treatment on

ham quality are the ultrasonic time, ultrasonic temperature, and
ultrasonic power. An analysis was conducted to scrutinize the
effects of these three factors (ultrasonic time 40, 60, 80, 100,
120 min, ultrasonic temperature 20, 30, 40, 50, 60◦C, and ultrasonic
power 100, 125, 150, 175, 200 W) on the desalination rate of
Mianning ham using the desalination rate of ham as the index (11).

TABLE 1 Factor levels of response surface tests.

Variables Level

−1 0 1

A Ultrasonic time (min) 60 80 100

B Ultrasonic temperature
(◦C)

30 40 50

C Ultrasonic power (W) 125 150 175

2.2.2. Response surface testing
Based on the findings from the single-factor test, response

surface methodology was utilized to optimize the impact of three
factors: ultrasonic time, temperature, and power in Table 1, on
the physicochemical and sensory attributes of Mianning ham
to enhance its quality. The experimental design employed a
three-factor, three-level response surface optimization trial using
DesignExpert 8.0.6 software (18). The secondary response surface
analysis included linear term effects, interaction term effects, and
quadratic term effects, as illustrated in Equation (1).

Y = b0 + b1A + b2B + b3C + b4AB + b5AC + b6BC

+ b7A2
+ b8B2

+ b9C2(1) (1)

Y represents the dependent variable, while b0 denotes the
model constant or intercept. b1-b3 represent the linear term
coefficients, while b4-b6 depict the interaction term coefficients.
Similarly, b7-b9 represent the quadratic term coefficients.
A represents the ultrasonic treatment time, whereas B denotes the
ultrasonic treatment temperature, and C represents the ultrasonic
treatment power. Lastly, this study aims to optimize the ultrasonic
treatment conditions through regression analysis and 3D response
surface plots (19).

2.3. Physical and chemical testing

2.3.1. Color
The study employed a portable CR400 colorimeter with a

light source of D65, an observation angle of 10 degrees, mirror
component exclusion mode, and an 8 mm aperture, to determine
the brightness L∗, redness a∗, and yellowness value b∗ of ham
samples, measured from three distinct locations on the sample
surface, with each group of samples repeated thrice (20).

2.3.2. pH
The pH value of the ham samples was determined by directly

inserting a PH-3C-01 pH meter into the ham samples three times
for each group of samples.

2.3.3. Moisture activity
Extracting 3 g of diced sample and spreading it evenly onto the

dish designed for measuring water activity, the moisture activity
value of the sample was measured using the HD-3A model moisture
activity(aw) tester and recorded (21).

2.3.4. Cook loss
The initial weight of the ham was duly accounted for and

subsequently subjected to a duration of 10 min in boiling water.
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Post-cooking, the sample was dried of excess moisture and its
weight was re-measured (22).

The calculation of cooking loss rate was then determined
through the following formula: percentage of cooking loss = (initial
weight−final weight) / initial weight.

2.3.5. Salt content
Begin by weighing precisely 5 g of the sample in a crucible

designated for charring. Proceed to establish the ham ash volume
at 100 milliliters. Next, transfer 50 milliliters of the test solution
to a 250 milliliters conical flask, adding 50 milliliters of water and
1 milliliter of potassium chromate solution (5%). Finally, titrate the
mixture with a solution of silver nitrate (0.1%) (23). It is through
application of formula (2) that one may accurately calculate the salt
content.

X =
0.355 × (V−0.3)

250
× 100 (2)

X is the salt content of the food (%) and V is the volume
consumed by the silver nitrate titration.

2.4. Texture profile analysis (TPA)

To evaluate the physical properties of the samples, a TAXT
Plus mass spectrometer was utilized. The samples were cut into
1 × 1 × 1 cm squares, and the probe was compressed twice,
reducing the sample’s original height by 50%, at a speed of
120 mm/min. Subsequently, the hardness (N), adhesion (N∗mm),
cohesion, elasticity (mm), adhesive viscosity, and chewiness (N)
were calculated based on the average of three measurements for
each sample (24).

2.5. Oral processing

For sensory evaluation, a balanced gender distribution of
evaluators consisting of five males and five females, all of whom
possess a professional background in food, were formed into a
balanced team. It is essential that evaluators oral cavities be free
of any abnormalities and they are in good health. They must
abstain from smoking, consuming alcohol, or engaging in any other
behavior that may affect sensory testing for at least 2 h prior to
participating in evaluation. The evaluators within the same group
should participate in experiments such as temporal dominance of
sensations (TDS), oral treatment analysis, and bolus collection (25).

2.5.1. Bolus collection
The duration of each evaluator’s chewing and subsequent

swallowing was recorded as the 100% chewing time point, with
the aim of investigating the variations in the physical and chemical
properties, as well as the sensory characteristics of ham during
oral processing. Boluses from 20, 40, 60, 80, and 100% chewing
time points were collected for subsequent experiments. The boluses
were either evaluated immediately after collection or preserved
by wiping off any surface moisture and refrigerating at 4◦C.
Masticatory parameters, such as the duration of chewing and
the number of chews, were captured via camera during the oral
processing stage, and consequently analyzed (26).

2.5.2. Water and saliva content of the bolus
The swallowing points of the bolus were selected at intervals

of 20, 40, 60, 80, and 100%. Next, 5 g of the bolus sample is to be
weighed and placed in the moisture tester to determine the bolus’
moisture content, which is expressed as a percentage (%).

Saliva content can be calculated through the following formula,
as indicated in reference (27): Saliva content = moisture content of
the bolus - moisture content of the sample.

2.5.3. Dominance of sensations (TDS)
To that end, it is observed that TDS, a temporal sensory

analysis of food products, generates a series of perceptual attributes
classified as "dominant" at specific points or times in the dynamic
evaluation process. This analysis determines the strength of
the dominant rate of sensory attributes over time. Prior to
conducting the TDS evaluation, evaluators undergo training in the
appropriate sensory aspects of ham, including but not limited to, its
hardness, saltiness, juiciness, gumminess, sourness, and tenderness
(28). Assess the prevailing sensory characteristics perceived by
the evaluators upon commencing mastication of the samples.
They have ability to discern identical or contrasting sensory
attributes concurrently and desist from sensing any such attributes
momentarily prior to swallowing (29). Each assessor supplies three
samples, each evaluation session lasting 3 min, and necessitates oral
rinsing with pure water prior to every assessment.

2.6. Data analysis

The physicochemical, qualitative, and sensory data were
subjected to Analysis of Variance (ANOVA) utilizing the SPSS
software. Furthermore, T (Tukey’s) test was employed, and the
outcomes were deemed highly significant for p < 0.01, significant
for 0.05 > p > 0.01, and insignificant for p > 0.05. Each metric
was replicated thrice, and the results were plotted using Origin
software. Additionally, Design Expert V8.0.6 was utilized for
response surface analysis.

3. Results and discussion

3.1. Single-factor test results

The study presents the impact of ultrasonic treatment’s time,
temperature, and power on the desalination rate of Mianning ham,
as depicted in Table 2. The desalination rate initially increased
and then decreased with an increase in ultrasonic time, ultimately
stabilizing at the maximum value after 80 min. Time groups 1,
2, and 3 exhibited significant differences from time groups 4 and
5 (p < 0.05), whereas time groups 4 and 5 did not demonstrate
any noticeable difference (p > 0.05). In conclusion, the single-
factor test tentatively selected the ultrasonic time of 80 min. These
findings align with Zhang’s study (30). With the rise in ultrasonic
temperature, the desalination of Mianning ham exhibited an initial
increase followed by a decrease, culminating at its zenith at 40◦C.
The variations between Temp.1, 2, 3, 4, and 5 were statistically
significant (p < 0.05). The one-way ultrasonic temperature test
was provisionally elected at 40◦C. Upon increasing the ultrasonic
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TABLE 2 Effect of different ultrasonic conditions on desalting rate.

Group Treatment
conditions

Desalination rate

Time1 40 min 10.12± 0.44d

Time 2 60 min 17.00± 0.92c

Time 3 80 min 24.83± 0.72a

Time 4 100 min 23.11± 0.72b

Time 5 120 min 23.40± 0.60b

Temp. 1 20◦C 7.38± 0.62c

Temp. 2 30◦C 12.16± 0.75b

Temp. 3 40◦C 22.23± 0.60a

Temp. 4 50◦C 11.96± 0.46b

Temp. 5 60◦C 3.43± 0.86d

Power 1 100 W 9.67± 0.60d

Power 2 125 W 16.85± 0.60c

Power 3 150 W 24.23± 0.46a

Power 4 175 W 21.54± 1.53b

Power 5 200 W 22.23± 0.60b

Values are expressed as mean ± standard deviation; each 5 rows are grouped together,
different rows of lowercase letters in the same group indicate significant differences
(p < 0.05).

power, the desalination of Mianning ham displayed a gradual rise,
eventually stabilizing at its optimal capacity of 150 W. Notably,
there was a significant difference (p < 0.05) between power groups
1, 2, and 3 in comparison to power groups 4 and 5. However, there
was no notable discrepancy (p> 0.05) between power groups 4 and
5. It is worth mentioning that the single-factor tests, for the time
being, had selected the ultrasonic power of 150 W.

3.2. Response surface optimization

Response surface methodology (RSM), is a statistical technique
commonly employed in food research to optimize both single
and multi-factor response models. The results of the single-
factor experiments were carefully analyzed, and the Box-Behnken
experimental design was used to conduct the study. The ultrasonic
process was optimized to achieve the desired outcome, and the
changes in the quality of Mianning ham after ultrasonic treatment
were meticulously measured. The experimental protocol and
data for the 17 experimental combinations of the Box-Behnken
experimental design can be found in Table 3.

3.2.1. Water activity, pH
As depicted in Table 3, the water activity (aw) following

ultrasonic treatment was markedly lower in comparison to the
control group. The aw of the ham exhibits a declining trend with
an escalation in ultrasonic time, temperature, and power. The
ham’s muscle fiber structure is damaged by prolonged ultrasonic,
prompting the salt-soluble proteins to precipitate onto the ham’s
surface, leading to a reduction in its water activity (31).

In the ultrasonic treatment and control groups, there
was no substantial alteration in pH (p > 0.05) following
ultrasound treatment.

3.2.2. Color
Color represents a significant physicochemical parameter in

ham that carries a considerable impact on the economic efficiency
of this product. Mianning ham L∗, a∗ and b∗ exhibit marked
differences after ultrasonic treatment when compared to the control
group (p < 0.05). The response group reveals a decrease in L∗

with increasing ultrasonic power. The L-value of the treatment
with 175 W power is lower than that in the treatment group with
125 and 150 W. As ultrasonic power increases, a∗ decreases and
b∗ increases, which can be attributed to the amplification of the
cavitation effect that accelerates the oxidation of myoglobin in hams
by free radicals generated by water molecules, ultimately leading to
a change in color (32). The L∗, a∗, and b∗ of hams decrease with
an increase in ultrasound time. Prolonged ultrasound destroys the
muscle structure of the ham, thus causing myoglobin to undergo
destruction, giving the ham a brownish appearance. An increase in
ultrasound temperature reduces the ham L∗ but increases a∗ and
b∗. High temperature can lead to the inactivation of some critical
enzymes, which in turn reduces the enzymatic reaction and results
in a change of color (33).

3.2.3. Desalination and cook loss
The salt content in ham is a crucial determinant influencing

consumer preferences. Table 3 displays the desalination rate, which
exhibits an initial increase followed by a decrease with increasing
ultrasonic treatment time. Notably, the desalination rate of the
80 min treatment group was significantly higher (p < 0.05) than
that of the 60 min and 100 min treatment groups. Ultrasound
expedites the migration of salt from the interior of the ham to
its surface. Prolonged ultrasonic treatment, however, results in
an elevated concentration of salt on the surface, which in turn
impedes salt precipitation. According to reference (34) desalination
initially increases and then decreases. Table 3 demonstrates that
the increase in ultrasonic temperature leads to the initial increase
and subsequent decrease of ham desalination. This occurs because
the appropriate temperature accelerates the enzymatic reaction
responsible for salt migration from the interior to the surface of
the ham. Elevated temperatures, conversely, deactivate particular
enzymes and reduce the rate of salt ion migration. As the ultrasonic
power increases, the rate of salt ion migration also increases
(30).

The steaming loss rate of ham is shown in Table 3, the steaming
loss of response group 13, 14, 15, 16 and 17 was significantly higher
(p < 0.05) than the other treatment groups, Because ultrasonic
treatment leads to a significant reduction in the salt ion content of
the ham, which affects the solubility properties of the proteins in
the ham and increases cooking losses (35).

3.3. Texture profile analysis

The Table 4 presents the textural profile analysis of the ham.
As the ultrasonic temperature, time, and power increased, the
ham hardness decreased significantly (p < 0.05). The hardness of
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TABLE 3 Effects of different ultrasonic treatments on physicochemical properties of ham.

Group Time Temp Power aw L* a* b* pH Desalination
rate

Cook loss

min ◦C W % %

0 0 0 0 0.749± 0.01a 44.17± 0.30a 11.37± 0.30a 7.98± 0.33c 5.73± 0.09a / 22.88± 1.31d

1 60 30 150 0.744± 0.01a 43.53± 0.48a 9.51± 0.09b 9.30± 0.46b 5.77± 0.02a 19.55± 0.45c 26.32± 1.14c

2 100 30 150 0.732± 0.01b 43.16± 0.25b 9.39± 0.05b 9.23± 0.08b 5.70± 0.08a 22.21± 0.34b 28.79± 0.82b

3 60 50 150 0.737± 0.01b 43.26± 0.19b 9.54± 0.28b 9.39± 0.32b 5.78± 0.02a 20.43± 0.34b 27.87± 0.96b

4 100 50 150 0.730± 0.01b 43.09± 0.33b 9.51± 0.29b 9.33± 0.14b 5.77± 0.01a 22.21± 0.45b 28.78± 1.46b

5 60 40 125 0.727± 0.01c 43.03± 0.45b 9.55± 0.10b 9.27± 0.14b 5.75± 0.09a 19.05± 0.62c 26.86± 0.33c

6 100 40 125 0.725± 0.02c 43.63± 0.49a 9.44± 0.23b 9.13± 0.11b 5.78± 0.05a 21.12± 0.45b 28.66± 2.56b

7 60 40 175 0.724± 0.01c 42.99± 0.16b 9.31± 0.18b 9.56± 0.14a 5.78± 0.04a 19.84± 0.45c 26.71± 0.43c

8 100 40 175 0.717± 0.01d 43.12± 0.34b 9.26± 0.23b 9.49± 0.26b 5.78± 0.04a 21.52± 0.51b 27.98± 0.19b

9 80 30 125 0.734± 0.01b 42.93± 0.72b 9.23± 0.19b 9.50± 0.26b 5.78± 0.05a 20.14± 0.45b 27.75± 0.60b

10 80 50 125 0.728± 0.01c 43.39± 0.13b 9.33± 0.15b 9.54± 0.27a 5.79± 0.07a 19.35± 0.17c 26.15± 0.54c

11 80 30 175 0.730± 0.01b 42.79± 0.60c 9.30± 0.13b 9.49± 0.22b 5.76± 0.09a 19.25± 0.45c 26.69± 0.39c

12 80 50 175 0.719± 0.01d 42.91± 0.15b 9.15± 0.33b 9.48± 0.14b 5.75± 0.03a 20.93± 0.51b 27.63± 0.54b

13 80 40 150 0.725± 0.01c 43.14± 0.31b 9.55± 0.29b 9.25± 0.19b 5.74± 0.03a 26.16± 0.45a 30.72± 0.51a

14 80 40 150 0.727± 0.01c 43.24± 0.29b 9.39± 0.24b 9.26± 0.18b 5.73± 0.01a 25.77± 0.34a 30.86± 0.50a

15 80 40 150 0.729± 0.01c 43.47± 0.35b 9.46± 0.10b 9.39± 0.19b 5.75± 0.02a 26.16± 0.45a 30.50± 0.60a

16 80 40 150 0.728± 0.01c 43.03± 0.51b 9.49± 0.24b 9.35± 0.27b 5.73± 0.02a 25.96± 0.78a 30.56± 0.66a

17 80 40 150 0.729± 0.01c 43.33± 0.01b 9.49± 0.31b 9.22± 0.46b 5.73± 0.03a 26.06± 0.62a 30.59± 0.33a

Data are expressed as mean± standard deviation; lowercase letters in different rows in the same column indicate significant differences (p < 0.05), as in Tables 4–6. *Expresses the representation of luminance, redness and yellowness values in the colorimetric values.
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TABLE 4 Effect of different ultrasonic treatment on texture of ham.

Group Time Temp Power Hardness Springiness Cohesiveness Gumminess Chewiness Resilience

min ◦C W N mm N N*mm

0 0 0 0 17.95± 0.69a 0.754± 0.03a 0.749± 0.04a 8.55± 0.22a 4.03± 0.49a 0.166± 0.06a

1 60 30 150 8.62± 1.51b 0.442± 0.03b 0.481± 0.04b 4.09± 0.49b 1.77± 0.02c 0.145± 0.01b

2 100 30 150 6.15± 0.24c 0.346± 0.07c 0.423± 0.03c 3.37± 0.14b 1.48± 0.14c 0.103± 0.02b

3 60 50 150 4.99± 0.18d 0.652± 0.04a 0.631± 0.02a 2.78± 0.21c 3.54± 0.65b 0.204± 0.03a

4 100 50 150 3.24± 0.21e 0.715± 0.03a 0.581± 0.01b 3.18± 0.58b 2.93± 0.50b 0.186± 0.01a

5 60 40 125 8.58± 0.48b 0.438± 0.03b 0.502± 0.02b 3.96± 0.32b 1.53± 0.37c 0.125± 0.02b

6 100 40 125 6.65± 1.56c 0.579± 0.07b 0.574± 0.02b 3.41± 0.49b 1.95± 0.06c 0.169± 0.01a

7 60 40 175 8.23± 0.28b 0.623± 0.11a 0.598± 0.08a 4.23± 0.46b 1.99± 0.19c 0.181± 0.06a

8 100 40 175 5.86± 0.18c 0.664± 0.08a 0.622± 0.02a 3.79± 0.51b 2.76± 0.74b 0.196± 0.02a

9 80 30 125 7.20± 0.80c 0.276± 0.04c 0.387± 0.03c 4.14± 0.52b 2.49± 0.59b 0.105± 0.01b

10 80 50 125 3.60± 0.23e 0.591± 0.09b 0.596± 0.02a 3.46± 0.43b 2.22± 0.23b 0.195± 0.02a

11 80 30 175 5.82± 0.58c 0.608± 0.04b 0.559± 0.05b 3.01± 0.53c 1.77± 0.13c 0.181± 0.01a

12 80 50 175 3.48± 0.23e 0.525± 0.01b 0.579± 0.01b 2.91± 0.33c 1.53± 0.16c 0.198± 0.01a

13 80 40 150 4.79± 0.45d 0.562± 0.09b 0.542± 0.03b 2.53± 0.32c 1.36± 0.54c 0.173± 0.04a

14 80 40 150 4.62± 0.42d 0.563± 0.05b 0.569± 0.04b 2.49± 0.73c 1.36± 0.29c 0.184± 0.02a

15 80 40 150 4.79± 0.53d 0.565± 0.03b 0.576± 0.04b 2.66± 0.45c 1.74± 0.24c 0.173± 0.02a

16 80 40 150 4.96± 0.39d 0.559± 0.02b 0.581± 0.05a 2.43± 0.44c 1.87± 0.25c 0.230± 0.04a

17 80 40 150 4.63± 0.60d 0.563± 0.03b 0.546± 0.04b 2.65± 0.41c 1.68± 0.31c 0.175± 0.04a

*Units of chewiness. The superscript letters represent significant differences; the same letters are not significantly different, and different letters represent a limiting difference.
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ham showed a negative correlation with ultrasonic time. However,
prolonged ultrasonic treatment reduced the protease activity and
hindered proteolysis, leading to an increase in the hardness of
ham. A rise in ultrasound temperature did not entirely trigger the
enzymatic activity in the ham at lower temperatures, ultimately
leading to an increase in ham hardness. At higher temperatures,
the loss of water in the muscle protein of ham resulted in less
hardness (36). The increase in ultrasonic power and the amplified
cavitation effect of ham caused a loss of internal moisture, leading
to a reduction in ham hardness. The elasticity, cohesiveness,
and chewiness of the ham were significantly decreased after
ultrasonic treatment. The enzymes diffuse more evenly and quickly
with the assistance of ultrasound, resulting in enhanced collagen
and elastin hydrolysis in the ham muscle fibers. Simultaneously,
the gluing effect of ham formed molecular bonds between the
precipitated material and muscle, which contributed to an increase
in hardness. The decrease in salt concentration limits the solubility
of muscle proteins and affects binding capacity and stability
(37).

3.4. Response surface optimization and
modeling

Response surface modeling was executed to investigate the
ultrasonic treatment of Mianning ham, and the coefficient of
determination (R2) along with the lack of fit were selected
to examine the adequacy of the response model. The purpose
of the lack of fit test is to determine whether the chosen
model is in accordance with the observed data. The model
is deemed appropriate if the p-value of the lack of fit
is more than 0.05. The coefficient of determination (R2),
representing the proportion of variation due to the response
surface model, should be more than 95% for a well-fitted model
in experimental settings (38). Upon scrutinizing the results, it
was observed that the R2 values of the response variables, namely
desalination rate and hardness, were greater than 95%, and no
significant lack of fit was detected. Consequently, the model
devised for the desalination rate and hardness of the ham is
deemed reasonable.

Table 5 displays the analysis of variance (ANOVA) for
the desalination rate and hardness of ham, with A, B, and
C denoting the ultrasonic treatment time, temperature, and
power, respectively. The Pareto chart (Figure 1) depicts the
significance of the effect of each ultrasound treatment factor,
with the length of the bars representing their proportion,
and the vertical coordinates ordered from top to bottom by
degree of influence. The Pareto chart analysis is instrumental
in determining the magnitude of the response variable’s impact
(39).

As depicted in Table 5, the linear impacts of the autonomous
variables A, B, and C, along with the interaction effects of AB
and BC, as well as the quadratic impacts of AA, BB, and CC,
had a considerable (p < 0.05) influence on the desalination rate
of Mianning ham. Similarly, the linear effects of the independent
factors A, B and C, the interaction effects of AB and BC, and
the secondary effects of AA, BB and CC significantly (p < 0.05)
impacted the hardness of Mianning ham. The regression equation

for predicting the value of each response variable on changing the
response surface variable is as follows.

Desalinationrate = −173.000722+ 1.01565 × A+ 1.897 × B

+ 1.56356 × C−0.00111125 × A × B

− 0.000197333 × A × C + 0.00246767

× B× C−0.00556492A2
−0.02695 × B2

− 0.00547501 × C2 (3)

Hardness = 74.171−0.71265 × A+ 0.1322 × B−0.49738

× C + 0.0009 × A × B−0.00031 × A × C

+ 0.00126 × B × C + 0.00419625A2
−0.006865

× B2
+ 0.0015256 × C2 (4)

After generating the model polynomial equations for the
dependent and independent variables of interest, the 2 response
surface sets are optimally combined. Upon inspection of the
Pareto chart (Figure 1A) and the significance analysis in Table 5,
it was discovered that ultrasonic time has the most significant
impact on the desalination rate, followed by ultrasonic power and
finally ultrasonic temperature. Figure 1B and Table 5 reveal the
significance analysis of hardness, with ultrasound temperature,
ultrasound time, and ultrasound power being the influencing
factors in descending order. The R2 values for desalination
rate and hardness were 99.84 and 99.73%, respectively. F-values
were 479.62 and 282.06. The P-values were all less than 0.05
and the P-values for the lack of fit were greater than 0.05.
This indicates that the response surface model is capable of
better responding to the predicted values of the regression
equation.

A three-dimensional response surface plot of the effect of
each factor on the desalination rate and hardness of the ham
after ultrasonic treatment was obtained using software analysis
(Figure 2).

The graphical representation of the desalination rate surface
plot (Figures 2A–C) is displayed. Figure 2A illustrates that as time
and temperature increased, while maintaining a constant power of
150 W, the desalination rate also increased, reaching a peak value
of 26.15%. Any further increase in time and temperature resulted
in a decline in the desalination rate. Furthermore, Table 3 provides
evidence that power has a significant impact on the desalination
rate of hams. As displayed in Figure 2B, at a fixed temperature of
40◦C, the increase in time and power resulted in a decrease in the
desalination rate after it reached a maximum of 26.15%. Figure 2C
demonstrates that the desalination rate decreases after reaching a
maximum of 26.15% when temperature and power are increased
at a fixed time of 80 min. The results of the aforementioned
experiments demonstrate that time has a crucial linear impact
within the studied range of 60–100 min, rather than a quadratic
effect. Additionally, the maximum power for the desalination rate
at a time of up to 84.56 min was 150.85 W (Figure 2A), and
the maximum temperature for the desalination rate at time up to
84.56 min was 40.35◦C (Figure 2B).

As shown in Figure 2E, increasing time and power at a fixed
temperature of 40◦C resulted in a constant decrease in hardness
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TABLE 5 Analysis of variance of regression model and significance test of regression coefficients.

Source Sun of squares Df Mean square F-ratio P-value

Desalination rate

Model 122.72 9 13.64 479.62 <0.0001

A: Time 8.39 1 8.39 295.23 <0.0001

B: Temp 0.39 1 0.39 13.88 0.0074

C: Power 0.44 1 0.44 15.46 0.0057

AB 0.20 1 0.20 6.95 0.0336

AC 0.039 1 0.039 1.37 0.2802

BC 1.52 1 1.52 53.55 0.0002

A2 20.86 1 20.86 733.83 <0.0001

B2 30.58 1 30.58 1075.70 <0.0001

C2 48.98 1 48.98 1722.77 <0.0001

Residual 0.20 7 0.028

Lack of fit 0.090 3 0.030 1.10 0.4463

Pure error 0.11 4 0.027

Cor total 122.92 16

R2 = 99.84%

Hardness

Model 47.34 9 5.26 282.06 <0.0001

A: Time 8.57 1 8.57 459.58 <0.0001

B: Temp 19.47 1 19.47 1044.06 <0.0001

C: Power 0.99 1 0.99 53.31 0.0002

AB 0.13 1 0.13 6.95 0.0336

AC 0.096 1 0.096 5.15 0.0575

BC 0.40 1 0.40 21.28 0.0024

A2 11.86 1 11.86 636.16 <0.0001

B2 1.98 1 1.98 106.42 <0.0001

C2 3.83 1 3.83 205.29 <0.0001

Residual 0.13 7 0.019

Lack of fit 0.052 3 0.017 0.89 0.5189

Pure error 0.078 4 0.020

Cor total 47.47 16

R2 = 99.73%

with a maximum value of 8.87 N. Table 4 shows that temperature
had a significant effect on the hardness of the ham. Figure 2D shows
that at a fixed power of 150 W, the increase in time and temperature
causes the hardness to decrease and then increase to a maximum
value of 8.87 N. Figure 2F shows that at a fixed time of 80 min,
the increase in temperature causes a constant decrease in hardness
with a maximum value of 8.87 N. The increase in power leads
to a decrease and then an increase in hardness, with a maximum
value of 8.87 N. Combined with the analysis of Figures 2D–F and
Table 4, the change in temperature in the study range of 30–50◦C
has an important linear, rather than quadratic, effect of time. When
the temperature was 35.37◦C, the maximum response of power
was 130.08 W (Figure 2D), the maximum response of time was

60.67 min (Figure 2F), and the maximum value of hardness was
8.87 N.

In summary, the optimal desalination rate process conditions
after response surface optimization were 84.56 min of ultrasonic
time, 40.35◦C of ultrasonic temperature, and 150.85 W of ultrasonic
frequency, at which the ham desalination rate was 26.15%.
The optimal hardness process conditions after response surface
optimization were 60.67 min of ultrasonic time, 35.37◦C of
ultrasonic temperature, and 130.08 W of ultrasonic power, at which
time the ham hardness was 8.87 N. In order to select the process
conditions with high consumer acceptance, the two corresponding
groups mentioned above were subjected to subsequent oral
sensory experiments.
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FIGURE 1

Pareto diagram of the significance of ultrasonic treatment factors on the desalination rate (A) hardness (B) of Mianning ham.

FIGURE 2

Response surfaces of desalinization rate (A–C), hardness (D–F), after ultrasonic treatment.

3.5. Oral processing

3.5.1. Oral processing parameters
The group subjected to oral processing experiments was the

ultrasound experimental group, which underwent response surface
optimization. The experimental group US1 was treated with an
ultrasonic time of 84.56 min, ultrasonic temperature of 40.35◦C,
and ultrasonic frequency of 150.85 W. On the other hand, the
experimental group US2 was subjected to an ultrasonic time of
60.67 min, ultrasonic temperature of 35.37◦C, and ultrasonic power
of 130.08 W. Both US1 and US2 were cooked in boiling water

for 10 min, cut into cubes weighing approximately 5 ± 1 g, and
subsequently processed orally.

Mastication is the regular movement of the jaw that grinds
food into a bolus that can be reached for swallowing, a process
known as oral processing of food. Table 6 describes the masticatory
parameters as well as the salivary content during oral processing.

Table 6 shows, the greater difference in swallowing time and
number of chews between US1 and US2 treatment groups may be
related to the salt content of the samples. As shown in Table 3, the
desalination rate of US1 was significantly higher (p < 0.05) than
that of US2. US1 chewed more and chewed longer than US2 and
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TABLE 6 Oral processing parameters of US1 and US2.

Group Chewing time Number of
chews

Chewing
frequency

Chewing rate Moisture
content of

bolus

Saliva content

s g/s chew/s % %

20%US1 7.94± 0.88e 8.3± 1.25e 1.59± 0.18e 1.04± 0.09b 58.39± 1.06d 10.54± 1.06d

40%US1 15.88± 1.75d 17.7± 1.77d 3.18± 0.35d 1.12± 0.09a 62.93± 1.15c 15.08± 1.15c

60%US1 23.82± 2.63c 26.1± 2.92c 4.76± 0.53c 1.10± 0.05a 67.31± 1.04b 19.45± 1.04b

80%US1 31.76± 3.50b 35.1± 4.20b 6.35± 0.70b 1.11± 0.05a 69.19± 1.17a 21.33± 1.17a

100%US1 39.71± 4.38a 44.6± 5.72a 7.94± 0.88a 1.12± 0.04a 71.05± 1.70a 23.19± 1.70a

20%US2 7.23± 0.76e 7.0± 0.82e 1.45± 0.15e 0.97± 0.05b 56.16± 1.14d 10.79± 1.14d

40%US2 14.45± 1.51d 16.0± 1.41d 2.89± 0.30d 1.11± 0.07a 60.64± 0.95c 15.27± 0.95c

60%US2 21.68± 2.27c 24.7± 2.21c 4.34± 0.45c 1.14± 0.05a 66.15± 1.40b 20.78± 1.40b

80%US2 28.90± 3.03b 32.3± 2.83b 5.78± 0.61b 1.12± 0.04a 68.38± 1.02a 23.01± 1.02a

100%US2 36.13± 3.79a 40.9± 4.12a 7.23± 0.76a 1.13± 0.03a 70.10± 1.38a 24.73± 1.38a

The superscript letters represent significant differences; the same letters are not significantly different, and different letters represent a limiting difference.

chewed more frequently. This is consistent with Omkar’s study (40).
The mastication rates of US1 and US2 were at 1.12 chews/s and
1.13 chews/s, indicating that ultrasound treatment did not result in
a change in mastication frequency (41). Prolonged chewing leads to
an increased sense of satiety, which helps consumers control food
intake for weight loss (42).

During the chewing process, the water content of all bolus
increases. The initial moisture content was 47.86 ± 1.01% for US1
and 45.37 ± 1.15% for US2. Even though the initial moisture
content of US1 and US2 were different, the difference in moisture
content at the 100% chewing time point was not significant.
suggesting that saliva compensates to some extent for the difference
in initial moisture content during ham chewing, which is consistent
with Rizo’s study (43). Saliva content increases with the chewing
process. The salivary content of US1 and US2 was similar at 20
and 40% of chewing time points, but US2 had higher salivary
content than US1 at 60, 80, and 100% of chewing time points. It
is possible that there is little difference in the perception of sensory
attributes such as US1 and US2 salinity in the pre-chewing period,
resulting in comparable salivary intake in the pre-chewing period.
To compensate for the water content of 100% chewing time, so the
saliva content of US2 is higher than that of US1 in the late chewing
period (40).

3.5.2. Dominance of sensations (TDS)
Temporal dominance of sensations is a sensory description

method that requires the evaluator to be able to continuously
indicate the dominant sensation. The evaluator’s "dominant sense"
was defined as the sense of time to get attention. The TDS is able to
collect a range of sensory properties felt at different points in time
throughout the chewing process. The sensory characteristics of ham
are mainly hardness, saltiness, juiciness, gumminess, sourness and
tenderness (44).

Figure 3 depicts the differences in the perception of Mianning
ham from first chewing to swallowing US1 and US2 with different
ultrasound treatments, as the different ultrasound treatments
resulted in differences in ham quality. For US1 (Figure 3A),
the sensory dominance within 10 s of chewing was related to

hardness; the sensory dominance within 10–25 s of chewing time
was juiciness; the sensory dominance within 25–35 s of chewing
was softness; and the sensory dominance attribute for the last 5 s
of chewing time was gumminess. The salty taste in US1 perception
kept decreasing after 5 s of chewing, but the salty taste perception
increased slightly again at 25–35 s of chewing time, and the sour
taste also peaked at about 35 s of chewing time perception. This may
occur because the chewing time is about to reach the swallowing
point and the flavor is more easily perceived in the ham (45).

For US2 (Figure 3B), the overall sensory perception was similar
to that of US1. However, the dominant rate of hardness is longer
than US1 time as shown in Figure 3B. Because the hardness of the
US1 ultrasound-treated group was lower than that of US2. US2 salty
and sour flavors were perceived higher than US1. US2 sourness
dominated the senses for 25–30 s. The overall perceived intensity
of saltiness was higher than that of US1 because the desalination
rate of US2 was lower than that of US1, which had higher degree
of protein hydrolysis, resulting in a saltier and more acidic ham
sample. The final swallowing phase softness and gumminess US1
and US2 showed similar perceptions. Because the water content of
the food mass was similar at the time of reaching the end point of
swallowing, resulting in similar softness and adhesive properties in
the TDS images (46).

The response surface optimized US1 and US2 groups were
analyzed for oral processing, and the chewing time and chewing
frequency were higher in the US1 group than in the US2 group; the
US1 group was more likely to produce satiety; and the perception
of salty and sour tastes was lower in the US1 group than in the
US2 group. In summary, the US1 group was more acceptable than
the US2 group, so the US1 group was selected. The ultrasonic
treatment conditions were ultrasonic time of 84.56 min; ultrasonic
temperature of 40.35◦C; and ultrasonic power of 150.85 W.

3.6. Validation experiments

On this basis, verification experiments were conducted on
the desalination rate and hardness of ham. Using the optimized
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FIGURE 3

Temporal dominance of sensations (TDS) curves for US1 (A) and US2 (B).

TABLE 7 Validation experiments.

Response Predicted Observed

Desalination rate (%) 26.15± 0.00 25.93± 0.69

Hardness (N) 4.54± 0.00 4.48± 0.62

ultrasonic treatment conditions, the ultrasonic time was 84.56 min;
the ultrasonic temperature was 40.35◦C; and the ultrasonic power
was 150.85 W. The validation results are shown in Table 7, and
the predicted values are similar to the validated results. It is shown
that the response surface methodology is effective for modeling
and optimizing the production operation of ultrasonic treatment
of Mianning ham.

4. Conclusion

The study found that ultrasound treatment did not affect the
pH of the Mianning ham, but it decrease the water activity (aw)
of the ham, particularly with higher ultrasonic time, temperature,
and power. Additionally, an increase in ultrasonic power resulted
in a decrease in color, as evidenced by a reduction in L∗ and
a∗, and an increase in b∗. Furthermore, the L∗, a∗, and b∗

values of the ham decreased with increasing ultrasonic time. An
increase in ultrasound temperature caused a decrease in L∗ and
an increase in both a∗ and b∗. The desalination of the ham
initially increased and then decreased with increasing ultrasonic
treatment time, temperature, and power. Similarly, the steaming
loss of the ham first increased and then decreased with an increase
in ultrasonic time, temperature, and power. Finally, the hardness,
elasticity, cohesiveness, chewiness and overall texture of the ham
gradually decreased as the ultrasonic treatment time, temperature
and power increased.

The chewing time and chewing frequency of US1 group were
higher than US2, and prolonged chewing was more likely to
produce satiety. The TDS curve for US1 was lower than US2 for
ham salty and sour perceptions, and US1 was a more suitable choice
for consumers. The ultrasonic conditions for optimal acceptance
were: ultrasonic time 84.56 min, ultrasonic temperature 40.35◦C
and ultrasonic power 150.85 W. Verification experiments by
this condition yielded a desalination rate of 25.93% ± 0.69%

and a hardness of 4.48 N ± 0.62 N. In summary, the model
obtained by optimization of ultrasonic desalination technology
is suitable for the desalination process of Mianning ham. Thus,
providing a theoretical basis for future desalination techniques
for dry cured hams.
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