
Frontiers in Nutrition 01 frontiersin.org

Predicting weight loss success on 
a new Nordic diet: an untargeted 
multi-platform metabolomics and 
machine learning approach
Kristina Pigsborg 1*, Valdemar Stentoft-Larsen 2, 
Samuel Demharter 2, Mona Adnan Aldubayan 1,3, Alessia Trimigno 4, 
Bekzod Khakimov 4, Søren Balling Engelsen 4, Arne Astrup 5, 
Mads Fiil Hjorth 5, Lars Ove Dragsted 1 and Faidon Magkos 1

1 Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark, 
2 Abzu ApS, Copenhagen, Denmark, 3 King Saud bin Abdulaziz University for Health Sciences, College of 
Applied Medical Sciences, Riyadh, Saudi Arabia, 4 Department of Food Science, University of 
Copenhagen, Frederiksberg, Denmark, 5 Obesity and Nutritional Sciences, Novo Nordisk Foundation, 
Hellerup, Denmark

Background and aim: Results from randomized controlled trials indicate that no 
single diet performs better than other for all people living with obesity. Regardless 
of the diet plan, there is always large inter-individual variability in weight changes, 
with some individuals losing weight and some not losing or even gaining weight. 
This raises the possibility that, for different individuals, the optimal diet for 
successful weight loss may differ. The current study utilized machine learning to 
build a predictive model for successful weight loss in subjects with overweight or 
obesity on a New Nordic Diet (NND).

Methods: Ninety-one subjects consumed an NND ad libitum for 26  weeks. Based 
on their weight loss, individuals were classified as responders (weight loss ≥5%, 
n  =  46) or non-responders (weight loss <2%, n  =  24). We  used clinical baseline 
data combined with baseline urine and plasma untargeted metabolomics data 
from two different analytical platforms, resulting in a data set including 2,766 
features, and employed symbolic regression (QLattice) to develop a predictive 
model for weight loss success.

Results: There were no differences in clinical parameters at baseline between 
responders and non-responders, except age (47  ±  13 vs. 39  ±  11  years, respectively, 
p  =  0.009). The final predictive model for weight loss contained adipic acid 
and argininic acid from urine (both metabolites were found at lower levels in 
responders) and generalized from the training (AUC 0.88) to the test set (AUC 
0.81). Responders were also able to maintain a weight loss of 4.3% in a 12  month 
follow-up period.

Conclusion: We identified a model containing two metabolites that were able 
to predict the likelihood of achieving a clinically significant weight loss on an 
ad libitum NND. This work demonstrates that models based on an untargeted 
multi-platform metabolomics approach can be used to optimize precision dietary 
treatment for obesity.
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Introduction

Obesity has reached pandemic proportions over the last decades 
and is a major risk factor for several co-morbidities including 
cardiovascular diseases, dyslipidemia, hypertension, insulin resistance, 
type 2 diabetes, non-alcoholic fatty liver, and cancer (1–5). Scientists 
have long searched for the optimal diet to treat obesity, and the view 
on which diet is best has shifted over time (6). The 1980s and 1990s 
have seen a focus on low-fat diets whereas recently, the focus has been 
placed on limiting sugar consumption and carbohydrates in general, 
but also on adopting a more plant-based, fiber-rich diet.

Different diets have variable efficacy in reducing body weight in the 
short term, but none of them is superior to others in the long term; in 
fact, no diet can provide an average efficacy above 10% (7–10). However, 
there is a large inter-individual variation in response to the same dietary 
treatment, with different individuals experiencing different rates of 
weight loss and eventually some achieving large amounts of weight loss 
and others having none or even gaining weight (11–13). It is, however, 
possible, that different groups of individuals will succeed on different 
diets, emphasizing the need for precision nutrition (14). The reasons for 
this inter-individual variability in weight loss responses are not well 
known but likely have a metabolic nature (15). Differences in metabolic 
processes might be reflected in the metabolome, as metabolites are the 
end-products of cellular regulatory processes and their levels in different 
biological matrices reflect the biological response to genetic, microbial, 
or environmental changes (16–18).

Metabolomics – like all other ‘omics’ techniques – produces 
extensive datasets and a wealth of information, but at the same time 
presents the challenge of high dimensionality of datasets, where the 
number of variables far exceeds the number of subjects. Moreover, no 
analytical platform is able to capture the whole metabolome wherefore 
a multi-platform approach is increasingly applied to larger intervention 
studies. Moving from large and complex datasets to a better 
understanding of metabolic responses to facilitate future application in 
clinical settings requires sophisticated data analytics tools such as 
machine learning techniques. Nevertheless, most machine learning 
algorithms produce black-box models that can be  difficult to 
understand and interpret. Symbolic regression is particularly suitable 
for scenarios where the number of features in the model should be kept 
at a minimum when their interpretation and interactions are of primary 
interest; this is exemplified by the QLattice algorithm, which has shown 
promising results with small datasets (19, 20) and in the context of 
omics-based biomarker identification (21). This is, to our knowledge, 
the first time QLattice has been utilized in human nutrition research.

In the present study, we acquired and analyzed metabolomics 
datasets at baseline from the Shop Model for Optimal Dietary 
Adherence (SHOPUS) study (22) and used QLattice on a combination 
of several metabolomics datasets and clinical study data to predict 
weight loss success for subjects with overweight or obesity following 
a New Nordic diet (NND).

Methods

Study design and participants

The SHOPUS study was a 26 week unblinded, parallel, randomized, 
controlled dietary intervention trial (ClinicalTrials.gov number 

NCT01195610). The study has been reported in detail previously (22). 
Briefly, subjects with increased waist circumference (>94 cm for men 
and >80 cm for women) were randomized in a 3:2 ratio to either the 
NND or the control diet (Average Danish Diet, ADD), respectively. In 
total, 181 participants were assigned to the two diet groups and after 
26 weeks, 91 and 56 participants completed the study in the NND and 
ADD arms, respectively (see Supplementary Figure S1). Participants 
were encouraged to maintain their regular physical activity habits 
throughout the intervention period.

Ethics statement

The ethics committee of the Capital Region of Denmark approved 
the trial (H-3-2010-058) and written informed consent was obtained 
from each subject before participation. The study was carried out in 
accordance with the principles of the Declaration of Helsinki and was 
pre-registered at clinicaltrials.gov (NCT01195610).

Responders and non-responders

Subjects who completed the study were classified as “responders” 
if they had lost ≥5% of their initial body weight or “non-responders” 
if they lost <2% of their initial body weight (23). Subjects who lost 
between 2%–5% of their initial body weight were not included in the 
primary analysis (see Figure 1).

Intervention diet

Subjects followed guidelines for eating in accordance with NND 
principles and collected (free of charge) all their groceries in the shop 
developed specifically for the study within the premises of the 
Department of Nutrition, Exercise and Sports at the University of 
Copenhagen. Over the 26 weeks, the diets were consumed ad libitum 
but the intention was for participants to lose weight. The NND (24) was 
a whole-food dietary paradigm characterized by higher contents of 
dietary fiber, whole grain, fruit, nuts, and vegetables, whereas the ADD 
was designed to match the macronutrient composition of an average 
Danish diet (22). All participants underwent a 1 week run-in period on 
the ADD to get familiar with the supermarket shop. Throughout the 
subsequent 26 weeks, participants had regular consultation meetings 
with a dietician for guidance on diet and behavior, in addition to 
cooking classes and workshops. Dietary intake was assessed using 3 day 
weighed food records at week 0 and week 26 where participants reported 
all consumed foods and beverages throughout three consecutive days 
including one weekend day. Compliance with the diet was evaluated by 
the study dieticians on a scale from 1 = “very bad” to 5 = “very good” 
during the visit days, based on the extent to which participants 
integrated the dietary advice into their everyday diet. On the same scale 
and time points, the participants rated their satisfaction with the diet.

Clinical outcomes

Height was measured at screening and fasting body weight was 
measured at baseline, week 12 and week 26. Waist and hip 
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circumferences, resting blood pressure, and body composition (fat 
mass and lean mass, by using dual-energy x-ray absorptiometry) were 
also measured at the three time points. Fasting blood samples were 
drawn at baseline and week 26 and analyzed for triglyceride, total 
cholesterol, high-density lipoprotein (HDL)-cholesterol, low-density 
lipoprotein (LDL)-cholesterol, glucose, and insulin. Insulin resistance 
was evaluated by using the homeostasis model assessment (HOMA-
IR) score, calculated as follows: fasting plasma glucose 
(mmol/L) × fasting plasma insulin (mU/mL)/22.5 (25). Furthermore, 
a 2 h oral glucose tolerance test (OGTT, 75 g glucose diluted in 250 mL 
water) was conducted at baseline and week 26, from which the 
Matsuda index of insulin sensitivity was calculated as follows: 10,000/
square root of {[fasting glucose (mg/dL) × fasting insulin (mU/
mL)] × [mean glucose (mg/dL) × mean insulin (mU/mL)]}, where 
“mean” refers to the average concentrations during the OGTT (26). 
Participants also performed a 24 h urine collection before each of the 
three visits. After the intervention period (week 26), they had 
follow-up visits with a dietician at weeks 52 and 78 where body weight 
was measured again (in a non-fasted state). During the 52 week 
follow-up, all subjects were encouraged to continue following the 
NND and to exercise more, but with no reinforcement (27).

LC–MS untargeted metabolomics profiling 
and data preprocessing

Urine and plasma samples were profiled with untargeted 
metabolomics approaches on an ultra-performance liquid 
chromatography (UPLC) system coupled to quadrupole time-of-flight 
(Premier QTOF) mass spectrometer (MS) (Waters Corporation, 
Manchester, United Kingdom) in both positive and negative ionization 
modes, as previously described for urine (28) and plasma (29) samples 
at the Department of Nutrition, Exercise and Sports (University 
of Copenhagen).

The different LC–MS datasets were preprocessed individually in 
R (ver. 4.2.1) using the package XCMS (30) with the parameters listed 
in Supplementary Table S1 for both plasma and urine data in both 
positive and negative ionization modes. Here, a list of features was 

produced and defined in a three-dimensional list containing retention 
time (RT), mass-to-charge ratio (m/z), and the measured signal 
intensity (peak height). Lists of different features were obtained after 
preprocessing and irrelevant features in each dataset were removed 
before statistical data analysis by the following criteria: (1) features 
present in blank samples, (2) features eluting before 0.3 min or after 
6.5 min, (3) features present in <30% of samples in each subgroup, (4) 
potential duplicate features or isotopes annotated by the CAMERA 
package (31), and (5) features showing a coefficient of variance >0.7 in 
the quality control samples. Intra-batch correction within each plate 
was performed to reduce the effect of analytical drift and no inter-
batch correction was performed, as this was deemed unnecessary (see 
Supplementary Figures S2A–D).

Metabolites measured by LC–MS were putatively annotated 
using their m/z, RT, and mode, and then annotated at level 1 as 
described by the Metabolomics Standard Initiative (32) when spectra 
were identical for authentic standards and the metabolites 
(Supplementary Figures S3, S4), recorded by UHPLC (Waters 
Acquity)-coupled tandem mass spectrometry (Vion IMS QTOF mass 
spectrometer, Waters Corporation, Manchester, United Kingdom) at 
ionization energies of 10, 20 and 30 eV, as described in 
Supplementary Table S2.

NMR metabolomics analysis and 
preprocessing

One-dimensional (1D) proton nuclear magnetic resonance (1H 
NMR) spectroscopic analysis of urine and plasma samples was 
performed at the Department of Food Science (University of 
Copenhagen) using a Bruker Avance III 600 spectrometer (Bruker 
Biospin Gmbh, Rheinstetten, Germany) operating at a Larmor 
frequency of 600.13 MHz for protons, equipped with a double tuned 
cryo-probe (TCI) set for 5 mm sample tubes and a cooled autosampler 
(SampleJet). Proton NMR spectra were acquired on all plasma samples 
using the Carr-Purcell Meiboom-Gill (CPMG) experiment (which 
provides semi-quantitative data) (33) and urine samples were 
measured using the NOESY-presat pulse sequences from Bruker’s 

FIGURE 1

Percentage weight change of the participants completing the 26  weeks intervention following a New Nordic diet. Responders had a weight loss ≥5% 
(green area) and non-responders had a weight loss <2% (pink area).
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library (possible urine dilution differences were taken into account by 
normalizing to unit length for urine) (34). The plasma experiments 
were performed at 310 K and the urine experiments at 300 K. The 
automation program controlling sample measurements included the 
acquisition routines for locking, automatic tuning and matching, 
shimming, pulse calibration, and optimized pre-saturation power for 
each sample, as well as automatic data processing including Fourier 
transformation (FT) of FID, with a Lorentzian line-broadening of 
0.3 Hz before FT, phasing, and baseline correction (Topspin ver. 2.1 
and 3.5 PL6; Bruker Biospin Gmbh, Rheinstetten, Germany). Raw 
NMR spectra were converted to a metabolite concentration table 
using SigMa software (35). The processing included reference 
alignment towards the TSP signal at 0.0 ppm, pre-alignment of larger 
spectral regions using the icoshift method (36) followed by interval 
recognition. Spectra were divided into smaller regions of Signature 
Signals (SS) of known human blood metabolites, Signals of Unknown 
Spin systems (SUS), and BINS representing complex regions 
containing unresolved signals of more than one metabolite. After 
interval recognition, SigMa quantified SS and SUS variables using a 
one-component Multivariate Curve Resolution (MCR) model with 
non-negativity constraints (37, 38), and BINS were quantified using 
integration by summation.

Statistical analysis

Statistical comparisons between responders and non-responders 
were performed by a two-sample, unpaired t-test if data were normally 
distributed or by a Mann–Whitney test if data were not normally 
distributed. Health outcomes and metabolites from the model were 
tested for correlation by using Spearman coefficients. A value of p 
<0.05 was considered significant. The statistical analysis was 
performed in R (ver. 4.2.1).

Data integration and machine learning 
strategies

The final dataset for the predictive model was composed of 7 data 
sets: urine and plasma samples analyzed with LC–MS in both positive 
and negative mode, urine and plasma samples analyzed with NMR, 
and metadata (Figure 2). A total of 2,766 features were included in the 
final data set. Subjects with >5 missing values of the features were 
removed from the dataset; for subjects with ≤5 missing values, the 
missing values were imputed with a mean value of the feature’s 
intensity for the remaining subjects.

Before training the model, the dataset was split so that 60% was 
used as a training set and the remaining 40% was left out and used as 
a test set. Furthermore, the training and test datasets were stratified to 
conserve the ratio of responders to non-responders as the responders 
represented about two-thirds of the total sample. Predictive modeling 
was constructed by QLattice in Python (ver. 3.0.4) using the Feyn 
package (39). QLattice is a novel machine learning method based on 
symbolic regression (40). Symbolic regression is a subfield of machine 
learning that seeks to discover mathematical expressions that 
represent a relationship between input variable X and a target variable 
Y without any prior information on the functional form of the 
relationship (21).

The model was set up to solve the classification problem of 
separating responders from non-responders (responder = 1, 
non-responder = 0) using the Bayesian information criterion (BIC) to 
ensure that the resulting models generalize well from the training set 
to the test set (21). Due to the low number of subjects relative to the 
high number of variables and the associated risk of false discovery, 
complexity restrictions were put on the size of the mathematical 
expressions. Specifically, the maximal complexity configuration in the 
QLattice was tested with settings of 3, 4, or 5 corresponding to the 
combined number of inputs and mathematical operators allowed 
(such as add, multiply, log, etc.). The different datasets were tested 
individually and also as a merged dataset. Furthermore, receiver-
operating characteristic (ROC) curve analysis was performed to assess 
the discriminative accuracy of the models. The area under the curve 
(AUC) is a quantitative measure of the predictive ability and varies 
from 0.5 for a random prediction to 1.0 for a perfect prediction.

Results

Phenotyping and characteristics of 
responders and non-responders and 
effects of NND

Among subjects randomized to NND, 46 were categorized as 
responders with a body weight loss between 5.0 and 18.8% of their 
initial weight, and 24 were categorized as non-responders with a 
weight change between −1.9% (weight loss) to +4.1% (weight gain) 
(see Figure  1). At baseline, the two groups were comparable in 
anthropometric measures, glycemic control, and lipid profile, but 
differed in age with responders being ~8 years older than 
non-responders (Table 1).

The responders lost 8.3 ± 3.3 kg during the intervention, of which 
7.5 ± 2.7 kg was fat mass and 0.5 ± 1.3 kg was lean mass, while the 
non-responders gained 0.5 ± 1.8 kg (they lost 0.3 ± 1.7 kg fat mass and 
gained 1.0 ± 1.2 kg lean mass). Most other health outcomes related to 
weight loss were not different at baseline between responders and 
non-responders but differed after the intervention (Table  2). 
Accordingly, fasting glucose, insulin, and total and LDL-cholesterol 
concentrations decreased more in responders than in non-responders. 
Furthermore, urine nitrogen levels increased slightly for both groups 
but mostly for the responders (p = 0.09 for the change) but this did not 
result in significant differences between groups after the 
26 week intervention.

Predicting the success of weight loss on 
the new Nordic diet

QLattice was employed to develop a predictive model for weight 
loss solely based on baseline variables (i.e., prior to the intervention). 
The symbolic regression approach identified adipic acid and argininic 
acid two metabolites (both measured in urine by LC–MS) as the 
components of the model yielding the best discrimination between 
responders and non-responders as measured by the AUC. The best 
model is a logistic regression with an additional interaction of the two 
metabolites (Figure 3A). The model shows that lower levels of both 
adipic acid and argininic acid increase the likelihood of having 
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successful weight loss on the NND (Figure 3B). The function of the 
model can be written as:

 

. .0.013 adipic acid 0.048 argininic acid 9.4

..0.013 adipic acid 0.048 argininic acid 9.4
eResponse

1 e

− +

− +=
+

The model performed robustly from the training dataset with 
a ROC-AUC of 0.88 to the test dataset with a ROC-AUC of 0.81 
(Figure 3C) and a precision of 0.89 and 0.82, respectively. Each of 

the metabolites individually did not predict the response better 
than they did together (adipic acid AUC 0.69 and argininic acid 
AUC 0.77). In a sensitivity analysis, when testing the performance 
of the model after 12 weeks (as opposed to 26) and with a cut-off 
of 2% weight loss for responders (as opposed to 5%), we obtained 
a ROC-AUC of 0.71 and a precision of 0.84. Finally, other 
machine-learning tools such as Random Forest, Extreme Gradient 
Boosting, k-means cluster, and partial least squares-discriminant 
analysis were also tested, but did not perform better than 
the QLattice.

FIGURE 2

Data sets used in this study: label information corresponding to each subject (0  =  non-responder and 1  =  responder), metadata including clinical 
variables, metabolomics measurements of LC–MS (both positive and negative ionization mode) and NMR analysis.

TABLE 1 Baseline characteristics of the responders (≥5% weight loss) and non-responders (<2% weight loss) following a new Nordic diet for 26  weeks.

Responders (n  =  46) Non-responders (n =  24) p-values

Sex, %females 71.7 66.7 0.67

Age, y 47.3 ± 13.0 39.4 ± 11.0 0.01

Anthropometry

  Body weight, kg 89.9 ± 16.3 91.5 ± 18.0 0.72

  Body mass index, kg/m2 30.6 ± 4.6 30.0 ± 4.4 0.59

  Waist circumference, cm 100.0 ± 12.2 100.7 ± 12.8 0.84

  Hip circumference, cm 111.2 ± 9.7 109.8 ± 11.2 0.78

  Fat mass, kg 37.2 ± 11.1 37.3 ± 11.4 0.99

  Body fat, % 41.2 ± 8.0 40.2 ± 6.3 0.55

  Systolic blood pressure, mmHg 125 ± 14 122 ± 14 0.45

  Diastolic blood pressure, mmHg 82 ± 9 82 ± 9 0.60

Glycaemic markers

  Fasting glucose, mmol/L 5.3 ± 0.5 5.2 ± 0.4 0.27

  Fasting insulin, pmol/L 60 (42-83)a 72 (40–103) 0.51

  HOMA-IR 2.5 ± 1.7 3.0 ± 2.5 0.31

  2 h glucose, mmol/L 5.8 ± 1.5 5.9 ± 1.8 0.71

  Matsuda index 5.4 ± 2.7 5.4 ± 3.4 0.97

Lipid profile markers

  Triglycerides, mmol/L 1.0 (0.7–1.4)a 1.0 (0.7–1.2) 0.88

  Total cholesterol, mmol/L 4.9 ± 0.9a 4.5 ± 0.9 0.09

  HDL cholesterol, mmol/L 1.2 ± 0.3a 1.2 ± 0.3 0.92

  LDL cholesterol, mmol/L 3.2 ± 0.9a 2.8 ± 0.7 0.07

Urine nitrogen, g/day 14.5 ± 4.0 15.5 ± 3.8 0.35

Data are presented as means ± SD or median (IQR). BMI, body mass index; HDL, high-density lipoprotein; LDL, low-density lipoprotein.an = 45. p-values are shown only for descriptive 
purposes and not for hypothesis testing. The homeostatic model assessment of insulin resistance (HOMA-IR) was calculated as fasting plasma glucose (mmol/L) × fasting plasma insulin (mU/
mL)/22.5. The matsuda index was calculated as 10,000/sqrt{[fasting glucose (mg/dL) × fasting insulin (mU/mL)] × [mean glucose (mg/dL) × mean insulin (mU/mL) concentrations during oral-
glucose-tolerance test]}.
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Associations at baseline and changes in 
response to NND

As expected, adipic acid and argininic acid were both negatively 
correlated to the weight loss response (i.e., successful or not; r = −0.35, 
p = 0.03, and r = −0.49, p = 0.001, respectively). The two metabolites 
did not show any strong correlation to any of the clinical outcomes at 
baseline (Figure 4). A list of the 10 most correlated features for both 
metabolites is shown in Supplementary Tables S3, S4. Here, α-keto-δ-
guanidinovaleric acid showed the strongest correlation to argininic 
acid (r = 0.71).

When weight change after 26 weeks for the responders and 
non-responders was evaluated as a continuous variable, there was no 
relationship with adipic acid (r = −0.15, p = 0.22) but argininic acid 
was inversely correlated to weight change (r = −0.40, p < 0.001), also 
after adjusting for age (r = −0.35, p = 0.004).

Levels of adipic acid and argininic acid for the responders and 
non-responders at baseline, week 12, and week 26 are depicted in 
Figure 5. The measured intensities of adipic acid and argininic acid 
at baseline were lower for responders than for non-responders 
(Figure 5, p = 0.001 and p = 0.0002, respectively). The level of adipic 
acid remained stable over time in both groups (responders 
p = 0.212; non-responders p = 0.696), whereas argininic acid 

increased by 48% in both groups (responders p = 0.00001; 
non-responders p = 0.003).

Dietary intake and compliance with the 
NND

There were no differences in the dietary intake between 
responders and non-responders at baseline after the 1 week run-in 
period. Dietary intake changes during the intervention are shown in 
Table 3. As expected, both groups followed the same pattern of eating 
more fiber and polyunsaturated fat in addition to less saturated fat and 
added sugar. The mean (±SD) compliance to the NND evaluated by 
the dietitians was 4.46 ± 0.56 for all subjects (4.56 ± 0.55 and 4.27 ± 0.55 
for the responders and non-responders, respectively, p = 0.052).

Differences between responders and 
non-responders during follow-up

The difference in weight loss between responders and 
non-responders was significant even before the end of the intervention 
(i.e., at week 12) and remained significant throughout the follow-up 

TABLE 2 Changes in weight loss-related health outcomes over the 26  week intervention.

Responders (n  =  46) Non-responders (n =  24) p-values

Anthropometry

  Body weight, kg −8.3 ± 3.3*** 0.5 ± 1.8 <0.00001

  BMI, kg/m2 −3.0 ± 1.6*** 0.1 ± 0.5 <0.00001

  Waist circumference, cm −7.5 ± 3.9*** 0.4 ± 4.1 <0.00001

  Hip circumference, cm −5.3 ± 5.1*** −0.3 ± 5.1 0.0005

  Fat mass, kg −7.5 ± 2.7*** −0.3 ± 1.7 <0.00001

  Lean mass, kg −0.5 ± 1.3** 1.0 ± 1.2*** <0.001

  Body fat, % −5.2 ± 2.4*** −0.5 ± 1.4 <0.00001

  Systolic blood pressure, mmHg −7 ± 8*** −4 ± 9 0.16

  Diastolic blood pressure, mmHg −5 ± 7*** 1 ± 7 0.001

Glycaemic markers

  Fasting glucose, mmol/L −0.3 ± 0.3*** −0.1 ± 0.4 0.03

  Fasting insulin, pmol/L −23 ± 38***a 0 ± 21 0.009

  HOMA-IR −0.9 ± 0.8*** −0.1 ± 1.6 0.03

  2 h glucose, mmol/L −0.0 ± 1.3 0.1 ± 1.5 0.73

  Matsuda index 1.6 ± 2.1*** −1.0 ± 2.4 <0.00001

Lipid profile

  Triglycerides, mmol/L −0.1 ± 0.2**a 0.0 ± 0.3 0.12

  Total cholesterol, mmol/L −0.4 ± 0.7**a 0.1 ± 0.4 <0.001

  HDL cholesterol, mmol/L 0.0 ± 0.2a 0.0 ± 0.2 0.99

  LDL cholesterol, mmol/L −0.4 ± 0.6**a 0.1 ± 0.4 <0.001

Urine nitrogen, g/day 1.8 ± 6.3 1.2 ± 4.6 0.64

Data are presented as means ± standard deviation or median (IQR). BMI, body mass index; HDL, high-density lipoprotein; LDL, low-density lipoprotein.an = 45, *p < 0.05, **p < 0.005, and 
***p < 0.0005 changes from baseline. The homeostatic model assessment of insulin resistance (HOMA-IR) was calculated as fasting plasma glucose (mmol/L) × fasting plasma insulin (mU/
mL)/22.5. The matsuda index was calculated as 10,000/sqrt{[fasting glucose (mg/dL) × fasting insulin (mU/mL)] × [mean glucose (mg/dL) × mean insulin (mU/mL) concentrations during oral-
glucose-tolerance test]}.
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(Figure  6, week 12: p < 0.00001, week 26: p < 0.00001, week 52: 
p < 0.00001, week 78: p = 0.002). Non-responders had no significant 
change in body weight during the intervention period (26 weeks) but 
experienced a significant weight gain at 6 and 12 months of follow-up 
(from 0.6 to 2.8% weight gain, p = 0.03 and p = 0.004, respectively). 
Overall, at the end of the follow-up period, responders maintained a 
weight loss of 4.3% (p = 0.002) compared to baseline, whereas 
non-responders had a weight gain of 2.8% (p = 0.03). The difference 
between the responders and non-responders was 7.1% (p = 0.002) by 
the end of the 26 week intervention and this was maintained 
throughout the following 52 week follow-up period (Figure 6).

Discussion

In this study, we investigated the feasibility of predicting weight 
loss after 26 weeks of NND consumed ad libitum among Danish 
subjects with obesity. In the original trial, a significant weight loss 
difference of 3.2 kg was found between the NND and ADD groups, 
and the average weight loss in the NDD group was 4.7 kg (22). 
Nevertheless, individuals varied widely in their responses, from 
losing >15% of initial body weight to gaining weight. This is in line 
with observations from other randomized controlled trials 
investigating the weight loss efficacy of different diets (11, 12). 
When combining the clinical baseline data with untargeted 

metabolomics urine and blood baseline data, QLattice – a symbolic 
regression machine learning tool – was able to identify a model 
with two metabolites, urinary levels of adipic acid and argininic 
acid, that in combination provided a predictive signature for 
discriminating weight loss responders and non-responders at 
baseline. Lower levels of both metabolites in urine predicted greater 
weight loss success following the NND, and this was also observed 
at 12 weeks. Such a model may serve as a biomarker signature and 
might be used to optimize weight loss success and is and could be a 
central step applying precision nutrition in practice.

Adipic acid and its potential involvement in 
body weight regulation

Adipic acid (C6H10O4) is a medium-chain fatty acid formed during 
the β-oxidation of longer-chain dicarboxylic acids derived from 
ω-oxidation of fatty acids with the same chain length in the 
microsomes (41). The β-oxidation of the longer dicarboxylic acids 
takes place in mitochondria and peroxisomes with the end product 
being succinyl-coenzyme A (CoA), which can enter the tricarboxylic 
acid cycle (TCA) and produce succinate (41). Of the dicarboxylic 
acids, adipic acid seems to be the major metabolic end-product (42) 
and is known to be present in the blood circulation, but has also been 
detected as intestinal metabolite (43).

FIGURE 3

(A) Model signal path for the success of weight loss on an NND diet, (B) 2D response of the model predictions with training and test data overlaid. The 
decision boundary separates the response areas. The dots represent the subjects of the classified responders (green) and non-responders (pink) 
whereas the background represents the model’s prediction (1  =  responder, 0  =  non-responder), and (C) Receiver operator characteristic (ROC) for 
training and test set.
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FIGURE 5

Levels of adipic acid and argininic acid for responders (green) and 
non-responders (pink) at baseline, week 12 and week 26. Error bars 
represent SEM. *p  <  0.05 between responders and non-responders at 
baseline. ††p  <  0.01 and †††p  <  0.0001 are changes from baseline to 
week 26 within each group over the time of intervention.

Studies have shown that levels of dicarboxylic acids – including 
adipic acid – are increased in patients who are ketotic due to diabetes 
or in those with congenital defects in fatty acid metabolism; adipic 
acid levels also tend to be higher in non-ketotic diabetes, but not 
significantly (42). There were no subjects with diabetes included in our 
study, however, some of the participants had prediabetes both among 
the responders and the non-responders. Within each group, there was 

no difference in weight loss between those with normal glycemic 
status (NGS) and those with prediabetes, but those with prediabetes 
had a greater decrease in fasting blood glucose following the NND no 
matter if they were responders (prediabetes −0.5 ± 0.3 mmol/L and 
NGS −0.2 ± 0.3 mmol/L, p = 0.004) or non-responders (prediabetes: 
−0.8 ± 0.7 mmol/L and NGS 0.0 ± 0.3 mmol/L, p = 0.0009). 
Accordingly, the high-fiber NND had a greater effect on glycemic 
control among those with prediabetes independent of weight loss, 
which corroborates our previous reports (44).

Higher levels of fecal adipic acid and other TCA cycle intermediates 
in the gut have been observed in Chinese subjects with obesity 
compared to subjects with normal weight (43). It has been speculated 
that the Prevotella enterotype – where the Prevotella spp. (P) are in 
higher abundance than the Bacteroides spp. (B) – promotes weight loss 
as a result of increased appetite-suppressing hormones such as 
glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) through the 
production of propionate on a diet rich in fiber (45). In a subset of the 
subjects (n = 18), fecal samples were earlier analyzed (46) from which 
80% of the non-responders’ enterotype was dominated by a low 
P/B-ratio, whereas 62% of the responders’ enterotype was dominated 
by a high P/B-ratio. This might partly explain why the responders had 
better weight loss on the NND compared to the non-responders. These 
preliminary results add to a growing body of literature about the 
important role of the gut microbiome in body weight homeostasis 
under certain dietary regimens, but more studies are needed to 
establish a comprehensive understanding of the impact of intestinal 
microbiota on weight loss responses.

Lastly, it should be  mentioned that adipic acid is a possible 
environmental contaminant used in the food industry and 
metabolized by humans to some extent into glutamic, lactic, beta-
ketoadipic, and citric acids. Any unmetabolized adipic acid is excreted 
in the urine (47, 48). Levels of adipic acid did not change over our 
26 week dietary intervention period, which indicates that differences 
in urinary adipic acid between responders and non-responders likely 
result from differences in the inherent metabolic process and not from 
differences in dietary intake, and thus also not from differences in 
habitual diets between groups.

Argininic acid and its potential involvement 
in body weight regulation

Argininic acid (C6H13N3O3) is a by-product of the urea cycle. It has 
been proposed that arginine is converted to α-keto-δ-guanidinovaleric 
acid in vivo by transamination and further converted to argininic acid 
upon hydrogenation (49, 50). Tissue accumulation of argininic acid 
occurs in patients with hyperargininemia. Here, levels of 
guanidinosuccinate are decreased and α-keto-δ-guanidinovaleric and 
argininic acid concentrations are increased (51). Nevertheless, it has also 
been shown that argininic acid is hydrolyzed by arginase in the liver to 
produce urea (52). The responders had lower levels of argininic acid, 
α-keto-δ-guanidinovaleric as well as creatinine compared to the 
non-responders at baseline, which collectively suggests they also had 
lower levels of arginine. This, in turn, suggests a somewhat upregulated 
urea cycle, as impaired urea cycle flux leads to hyperargininemia (i.e., 
higher circulating arginine) (53). Urea cycle is an energy consuming 
process hence these results indicate that responders may be more primed 
for increased energy turnover and therefore greater energy expenditure 

FIGURE 4

Heatmap of adipic acid and argininic acid correlation with baseline 
levels of clinical variables using Pearson correlations. Intensity of the 
blue and red colors indicate the strength of negative and positive 
correlations, respectively. *p  <  0.05 and **p  <  0.005. HOMA, 
homeostatic model assessment for insulin resistance; HDL, high-
density lipoprotein; LDL, low-density lipoprotein.
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than non-responders. This would promote a more negative energy 
balance in response to dieting and consequently, more weight loss.

At baseline, the responders and non-responders were comparable, 
with the exception that responders were older than non-responders. 
Interestingly, previous studies have also found that age is a determinant 
of weight loss success, with older individuals typically losing more 
weight than younger individuals after the same treatment (54–56). It 
is not entirely clear if the mechanism behind this observation is 
biological, or behavioral (e.g., better compliance). The levels of 
argininic acid in our study correlated with the weight change even 
after adjusting for age, so we can rule out that argininic acid is simply 
a biomarker for older age-related greater weight loss.

The almost 50% increase in the urinary levels of argininic acid in 
both groups after the intervention suggests that this increase is likely not 
a direct result of weight change, but more likely related to features of the 
NND per se. Both groups had a greater intake of protein throughout the 

intervention with no difference between them (p = 0.33) which may 
partly explain the increased levels since meat is a good source of 
arginine (57). Also, one of the characteristics of the NND is a greater 
intake of nuts (22, 24), which are also a good food source of arginine 
(58). This hypothesis is supported by the finding that experimental 
supplementation with creatine increases argininic acid and α-keto-δ-
guanidinovaleric (59). Thus these dietary factors may help explain the 
increase in the levels of argininic acid after the NDD in both groups.

Compliance, weight maintenance, and 
model validation

Overall compliance with the NND was high, but was somewhat 
higher among the responders than the non-responders. As observed in 
previous studies (9–11), adherence to any diet is important for weight 

TABLE 3 Changes in energy intake, energy density, and macronutrient intake from weeks 0 to 26 on the basis of the individual 3  day weighed dietary 
records for responders and non-responders.

Responders (n  =  46) Non-responders (n =  24) p-valuesa

Estimated energy requirement, MJ/db 10.7 ± 1.6 11.1 ± 1.8 0.31

Energy intake, kJ/d −1863 ± 2016*** −764 ± 4,058 0.17

Energy density, kJ/100 g −87.7 ± 113.3*** −61.8 ± 111.7* 0.42

Protein, % of energy 1.7 ± 2.7*** 0.9 ± 3.1 0.33

Carbohydrate, % of energy 0.4 ± 6.9 1.8 ± 7.1 0.45

  Fiber, g/10 MJ 7.6 ± 9.7*** 6.4 ± 8.6** 0.65

  Added sugar, % of energy −1.9 ± 2.7*** −1.4 ± 3.9 0.54

Total fat, % of energy −3.3 ± 5.8** −3.2 ± 5.9* 0.96

  SFA, % of energy −5.2 ± 2.7*** −4.4 ± 3.6*** 0.32

  MUFA, % of energy −1.5 ± 4.1* −2.0 ± 3.6* 0.66

  PUFA, % of energy 2.6 ± 2.3*** 1.9 ± 2.6** 0.32

Data are presented as mean ± standard deviation. *p < 0.05, **p < 0.005, and ***p < 0.0005.aBetween the responders and non-responders by using Student’s t test.
bOn the basis of weight and height at baseline by using the Schofield equation, and multiplied by a physical activity level of 1.5.

FIGURE 6

Changes in body weight (in percent from initial weight) for the responders (green) and the non-responders (pink) during 26  weeks of intervention (full 
line) followed by an additional 52  week follow-up period (dashed line). Error bars represent SEM.
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loss as it builds on good habits, but compliance with calorie restriction 
remains the most important factor. In an earlier paper, we investigated 
dietary compliance with the NND based on the patterns of urinary 
metabolites (60). A number of subjects were found to be non-compliant, 
however, in the present study, we  did not observe any direct link 
between compliance and extent of weight loss, as the “non-compliant” 
subjects were equally distributed between our two groups. Among 
subjects who were misclassified by the prediction model, three of them 
showed high levels of NND food biomarkers in their urine and would 
be seen as being highly compliant, nevertheless, the current model 
predicted them to be non-responders. This underlines that factors other 
than compliance affect the individual response to the NND.

Studies often report short-term weight loss success after a variety 
of diet interventions, but in most cases, subjects tend to regain the lost 
weight after the intervention (61). In our study, we  found that 
responders, having lost ≥5% of their initial weight after 26 weeks on the 
NND, were also able to maintain greater weight loss than 
non-responders 1 year later even though both groups regained some 
weight. We also observed that the subjects’ weight loss success was 
already evident after 12 weeks on the NND and could be predicted by 
the model, indicating that the effect was robust and internally valid at 
both earlier and later time points. This supports the observation from 
other studies where early weight loss has been a good predictor for later 
weight loss success (62). We also tested if the model could predict the 
weight changes among subjects following the ADD within the SHOPUS 
study (results not shown). The model did not perform well in that 
scenario, potentially due to lack of power but it might also be that the 
model is diet-specific and not a general weight loss prediction model.

Strengths and limitations of the study

The cut-offs to classify responders and non-responders were chosen 
arbitrarily to ensure a clear separation of the groups. Nevertheless, a 
weight loss of ≥5% is normally considered a clinically significant weight 
loss (23) whereas a cut-off of <2% is normally used to confirm weight 
stability (63). The use of the different – but complementary – analytical 
platforms and the use of both blood and urine samples from each subject 
is an advantage of the study, as no single approach is capable of capturing 
the phenotypic complexity of human metabolic profile (64). However, 
in retrospect, it can be questioned whether one analytical platform could 
have been sufficient as both metabolites came from the LC–MS dataset 
even though all data were included in the model development. This 
could not have been known beforehand, which is why all available data 
from all analytical platforms were included in our analysis. Our subjects 
were thus deeply phenotyped but the low sample size should be carefully 
considered when working with thousands of individual variables for 
effective data integration and machine learning (65). Even though 
we  built an internally robust method and used a separate test set, 
we cannot rule out that overfitting may have occurred. It should be noted 
that the adipic acid and argininic acid levels are relative intensities and 
not absolute values that can be used in clinical settings. For example, 
argininic acid increased in intensity after the NND in both groups, 
which in real-life settings can result in some non-responders being 
misclassified as responders if they habitually follow an NND-like diet.

In the present study, we were able to identify a simple model 
based on baseline data predicting the likelihood of achieving a 
clinically significant weight loss on an ad libitum NND using an 

untargeted multi-platform metabolomics and machine learning 
approach. Such models can be used to optimize precision dietary 
therapies for the treatment of obesity and are a central step in 
applying precision nutrition in practice. Understanding the predictive 
features of the weight loss response will help elucidate the interplay 
between metabolic processes, diet, and individual susceptibility and 
behaviour. However, there is a need to investigate similar datasets to 
evaluate whether the current findings may be generalized to other 
weight loss diets.
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