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Anthocyanins, total phenols, soluble sugar and fruit shape plays a significant role 
in determining the distinct fruit quality and customer preference. However, for the 
majority of fruit species, little is known about the transcriptomics and underlying 
regulatory networks that control the generation of overall quality during fruit 
growth and ripening. This study incorporated the quality-related transcriptome 
data from 6 ecological zones across 3 fruit development and maturity phases 
of Chardonnay cultivars. With the help of this dataset, we were able to build a 
complex regulatory network that may be used to identify important structural 
genes and transcription factors that control the anthocyanins, total phenols, 
soluble sugars and fruit shape in grapes. Overall, our findings set the groundwork 
to improve grape quality in addition to offering novel views on quality control 
during grape development and ripening.
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1. Introduction

Fruit quality and flavor are crucial factors that influence consumer preference and 
market competitiveness. However, in the last fifty years, breeding efforts have mainly 
concentrated on enhancing fruit yield and disease resistance, rather than quality and 
flavor traits. As a result, commercially produced fruits have been perceived by consumers 
as lacking their distinctive quality and flavor (1, 2). Molecular breeding for quality-
regulating genes may be a potential solution to restore lost quality flavors. However, 
accurately measuring quality flavor phenotypes can be challenging since they are heavily 
influenced by environmental factors and may not always be easily quantifiable (3). 
Chardonnay is mostly used to make white wine, which is mostly pale gold in color. The 
charm of Chardonnay lies in its changeable style and wide adaptability (4). The wines 
made from Chardonnay usually have the smell of pineapple, green apple or pear, it has a 
slightly sweet taste which is more suitable for Chinese tastes (5). However, the cultivation 
of Chardonnay grapevine is easily affected by a variety of external environments, 
cultivating high-quality, good-flavored Chardonnay grape is a prerequisite for making 
wines that taste good and are popular with consumers (6).
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Grape fruit shape is an important appearance quality of grapes 
and is considered to be one of the main selection criteria for breeding 
(7). Consumers judge the yield, quality and nutritional value of fruits 
based on their size and shape. The shape of a fruit is commonly 
measured using the fruit shape index, which is the ratio of the 
longitudinal diameter of the fruit to its transverse diameter (8). Sugar 
is the basic substance for the growth and development of wine grape 
fruit, and the basic raw material for quality and flavor substances (9). 
Soluble sugar is an important factor of fruit quality, it includes 
fructose, glucose and sucrose in grape berries. The main function of 
sugar is to ferment into ethanol, which determines the alcohol content 
of wine. In addition, the formation of aroma substances is also related 
to sugar, it can form higher alcohols, esters and aldehydes in wine, 
making different wines have unique aroma characteristics (10).

Grape fruit contains a significant amount of phenolic compounds, 
including hydroxycinnamic acid and flavonoids. These compounds are 
considered secondary metabolites and play a crucial role in determining 
the quality of wine. Hydroxycinnamic acids, such as coumaric acid, caffeic 
acid, ferulic acid, cinadic acid and their derivatives, are known to 
accumulate in both grape skin and pulp (11). Grapes contain three major 
classes of flavonoids, namely proanthocyanidins, anthocyanins, and 
flavonols. Proanthocyanidins, also known as condensed tannins, are 
polymers of flavan-3-ol monomeric units like catechin, epicatechin and 
epicatechin-3-o-gallocatechin. These compounds are mainly found in 
grape skins and seeds. On the other hand, flavonols and anthocyanins are 
only detected in the berry skins. (12). All of these substances have crucial 
physiological roles in the growth of grape berries, including the scavenging 
of free radicals, pigmentation and co-pigmentation, UV radiation 
protection, and defense against fungi (13, 14). Additionally, their 
contributions to red wine color, bitterness, astringency and antioxidant 
properties have drawn a lot of attention in recent years in order to better 
understand the mechanisms that control phenolic biosynthesis and 
anthocyanin synthesis in grapes as well as their potential health 
benefits (15).

The metabolic dynamics and underlying regulatory mechanisms of 
high-quality tastes throughout grape development and ripening were 
examined in this study. We selected three growth stages (40 DAP, 80DAP 
and 120DAP) of Chardonnay cultivars from six ecoregions in Ningxia, 
China. We created a regulatory network that controls grape fruit shape, 
soluble sugars, total phenols and anthocyanins accumulation by fusing 
quality-related studies with transcriptome analysis. In addition, 
we  identified proteases and transcription factors that regulated key 
pathways. This study laid the groundwork for the advancement of grape 
quality and offered a new concept for the regulation of wine grape quality.

2. Materials and methods

2.1. Plant material and measurements

Grapevine (Vitis vinifera L. Chardonnay) at different 
developmental stages were collected from six ecoregions in Ningxia 
Province, China. The six ecological zones are HJZ, ZHYS, CC, XG, 
XLS and HSB. Fruits were taken out between 40 days following the 
early flowering period (DAP) and 120 days, which included 80 days, 
at various developmental phases. And named them as the enlargement 
period (40 DAP), the color transition period (80 DAP) and the 
maturity period (120 DAP). Small chunks of the fruit’s flesh (without 

the skin or seeds) were sliced up and quickly frozen in liquid nitrogen 
before being kept at −80°C for additional transcriptome study. Every 
experiment was broken down into three biological replicates, with 15 
uniformly sized fruits in each repeat.

Throughout fruit development and ripening, fruit weight, vertical 
and horizontal diameter and soluble solids content (SSC) were 
monitored. A drop of the mashed fruit’s supernatant was placed on a 
digital hand-held refractometer (Atago, Tokyo, Japan) to determine 
SSC. At each stage, measurements were taken using three 
biological duplicates.

2.2. Determination of berry total sugars, 
total phenols and anthocyanins 
components

Soluble sugars were analyzed according to the method described (16). 
A sample of 0.5 g of liquid nitrogen-pulped berry pulp was weighed, 1.5 
mL of 80% ethanol was added, it was centrifuged at 12,000 rpm for 10 min, 
the supernatant was removed and filtered through a 0.22 μm aqueous filter 
head into a sample bottle for measurement. The chromatographic 
conditions for the determination of the soluble total sugar were as follows: 
Prevail Carbohydrate ES 5 μ column (100 mm × 4.6 mm, 5 μm); mobile 
phase: V (acetonitrile): V (water) = 80:20; column temperature: 50°C; flow 
rate: 1.0 mL/min; injection volume: 20 μL. The chromatographic 
conditions for the determination of the organic acids were as follows: 
column. Discovery C18 column (25 cm × 4.6 mm, 5 m); mobile phase was 
50 mM K2HPO4 solution, pH adjusted to 2.4 with phosphoric acid; column 
temperature 30°C; flow rate 0.5 mL/min; injection volume 2  μL; detection 
wavelength was 210 nm. The sugars analyses were performed using three 
biological replicates.

Total phenolic were determined by HPLC (17). Weigh 1.0 g of the 
sample, grind the sample with liquid nitrogen in a centrifuge tube, use 
10 mL of 80% methanol as the extraction solution. Then ultrasonic 
extraction is 20 min, extracted in a constant temperature water bath 
shaker at 25°C for 12 h, filtered with a 0.45 μm filter, and stored at 
−40°C for later use. The chromatographic conditions as follows: 
HPLC 1260 (Agilent, United  States), Waters Xterra RP18 
(100 mm × 4.6 mm, 3.5 μm) column, mobile phase A is water-formic 
acid (1,000: 2), mobile phase B is acetonitrile-A (80: 20), flow rate 
0.6 ml· min−1, column temperature: 30°C, injection volume: 20 μL.

Total anthocyanins were determined by LC–MS (18). Weigh 1.0 g 
of berry peel with liquid nitrogen into a centrifuge tube, add 10 mL of 
0.1% hydrochloric acid-methanol extract, ultrasonically extract for 
20 min, centrifuge at 4°C for 15 min, and aspirate the supernatant. The 
liquid was filtered through a 0.22 mm organic column. The extracted 
anthocyanins were analyzed by LC–MS (G2-XS QT, Waters), 
chromatographic column: 2.1 × 100 mm ACQUITY UPLC BEH C18 
column; flow rate was 0.4 mL/min; injection volume was 2 μL. Buffer 
A is 0.1% formic acid in water, and buffer B is 0.1% formic acid-
acetonitrile solution. The total phenolic and total anthocyanins 
analysis was performed with three biological replicates.

2.3. RNA sequencing and data analysis

Frozen fruit was used to extract total RNA and the Illumina HiSeq-
2000 platform was used to create mRNA libraries for each sample and 
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sequence the results. After online sequencing, all relevant data was 
converted into raw data for data analysis. To acquire clean reads, low 
quality, linker contamination and reads with unknown base N content 
were removed. Clean reads were mapped to the V. vinifera reference 
genome1 by using HISAT2 (19). Transcripts per million (TPM) was 
determined after featureCounts was used to count the mapped fragments 
for each gene. Genes were deemed to be expressed if their averaged TPM 
had three replications. Using the DESeq software, differential expression 
genes (DEGs) were identified based on the counts of each transcript 
across libraries (20). A p-value <0.05 and | log2 (fold change) | > 1 were set 
as thresholds for significant differential expression. The cluster Profiler R 
package was used to perform gene ontology (GO) and Kyoto encyclopedia 
of genes and genomes (KEGG) pathway annotations with thresholds of 
FDR < 0.05 and P-value < 0.05, respectively (21). Functional annotation 
of all DEGs was also performed by using MapMan (Vvnifera 145)2 (22). 
The NCBI repository has the RNA-seq raw data from this paper under 
the accession number GSE231025.

2.4. WGCNA and gene network 
visualization

The weighted gene co-expression network analysis (WGCNA) 
tool in R was used to create co-expression network modules from 
DEGs after removing undetectable or relatively low expression genes 
(TPM < 10).  The co-expression modules were obtained using 
automatic network construction function (blockwiseModules) with 
default parameters, apart from the soft threshold power of 12, 
TOMtype was signed, TOMsimilarity_Threshold was 0.485 and 
minModuleSize was 20. On eigengenes, the initial clusters were 
combined. Each module’s Eigengene value was determined and used 
to search for associations with the weight, vertical and horizontal 
diameters, concentration of soluble solids, soluble sugars, total 
phenolic and total anthocyanins produced during fruit development 
and ripening. The software Cytoscape and TBtools were used to 
visualize the networks and heat map (23, 24).

2.5. Real-time quantitative PCR analysis

Using a Plant RNA Purification Reagent (Invitrogen), total 
RNA from fruit at various growth and ripening phases was isolated 
in according with the manufacturer’s instructions. The DNase 
(TAKARA, Dalian, China) enzyme was used to degrade the 
genomic DNA. The Hifair II 1st Strand cDNA Synthesis SuperMix 
for RT-qPCR (YEASEN, Shanghai, China) was used to create the 
cDNA and SYBR Green (Vazyme, Nanjing, China) was used in the 
RT-qPCR amplification processes using an ABI 7500 Real-Time 
quantitative PCR System (Applied Biosystems, United States). The 
grape Actin gene was used as an internal control in the analysis of 
three biological replicates. The primers for RT-qPCR are listed in 
Supplementary Table S8.

1 ftp://ftp.ensemblgenomes.org/pub/release-23/plants/gtf/vitis_vinifera/

2 http://mapman.gabipd.org/web/guest/mapmanstore

3. Results

3.1. Berry quality components during fruit 
development and ripening of Vitis vinifera 
L. Chardonnay

To investigate the berry quality components-associated 
transcription regulatory network during grapevine different 
developmental processes, 3 stages including enlargement period (40 
DAP), the color transition period (80 DAP) and the maturity period 
(120 DAP) of Vitis vinifera L. Chardonnay were selected from six 
ecoregions in Ningxia Province, China (Figure  1A; 
Supplementary Figure S1). In three stages, the six regions’ grape single 
fruit weight, fruit longitudinal diameter, fruit transverse diameter and 
soluble solids all gradually increased. The above measurement 
indicators are slightly different in different ecological zones, which 
may be related to the different environments (Figure 1B).

Fruit single-grain weight, fruit longitudinal diameter and 
transverse diameter are the main factors affecting grape shape and 
yield. In this experiment, we used measuring tools to measure the fruit 
single grain weight, longitudinal diameter and transverse diameter of 
Chardonnay grapes at three development and maturity stages in six 
different ecological zones. It was found that the change trends of the 
above three indicators in different ecological zones were consistent, 
and the specific performance was that the indicators of Chardonnay 
grapes were the smallest in the expansion period, the indicators in the 
color transition period were in the middle and the indicators in the 
maturity period were the largest (Figure  1B). The measurement 
indicators in different ecological zones are slightly different, which 
may be related to the different environmental climates in the regions.

The primary ingredients in grapes that give them their distinct 
flavor are soluble solids and soluble sugars. We employed a gas 
chromatography-mass spectrometry system (GC-MS) based 
metabolic analysis approach to track changes in soluble sugars using 
gas chromatography (GC) and a digital hand-held refractometer to 
measure soluble solids in order to examine flavor dynamics during 
grapevine development and ripening. It was found that the soluble 
solids did not change significantly during the enlargement and the 
color transition periods, but the content increased significantly during 
the maturity period, indicating that the accumulation of soluble solids 
in Chardonnay grape was completed in the maturity period. The 
change of soluble sugar content was significant in two of the six 
ecological zones (CC and XG). Compared with the enlargement 
period, the soluble sugar content showed a geometric multiple 
increase at the maturity period, especially in the two ecological zones 
CC and XG, which may be related to the climate environment of an 
ecological zone and artificial management (Figure 1B).

There are a lot of polyphenolic compounds in grapes. Wine undergoes 
fermentation, which increases the polyphenol content, stabilizes the 
composition and greatly boosts antioxidant potential. Grape anthocyanin 
content is frequently used as a significant factor to assess the quality of 
wine since it has a significant impact on grape color. In this experiment, 
total phenols content was generally higher at the enlargement period and 
lower at the maturity period, contrary to the trend of other physiological 
measures in this experiment (Figure 1B). The variation of anthocyanin 
content in the six ecological zones was irregular, it is noteworthy that in 
the HSB ecological zone, the variation was significant during the 
enlargement and color change periods, which may be related to the fact 
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FIGURE 1

Three development stages of Chardonnay grape fruit were selected for analysis. (A) Grapevine (Vitis vinifera L. Chardonnay) at different developmental 
stages were collected from six ecoregions in Ningxia Province, China. (B) Single fruit weight, vertical and horizontal diameters, soluble solids, soluble 
sugars, total phenols and total anthocyanins were measured in three developmental stages of grape fruit. The values shown are mean ± standard 
deviation. E enlargement period. V color transition period. M maturity period.
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that the anthocyanin content of grapes is highly susceptible to 
temperature, light, and phytohormones.

3.2. Genetic basis of dynamic changes 
during fruit development and ripening of 
Vitis vinifera L. Chardonnay

RNA-seq data were produced for 18 different developmental and 
ripening stages in order to examine the genetic basis of grape 
development and ripening. 6.65 Gb clean reads were produced on 
average after adaptor reads, unclear reads and low-quality reads were 
eliminated. The grapevine reference genome was then mapped by 
more than 85.66% of high-quality reads from various sample types, of 
which 82.12% or more were mapped uniquely genome, of which 
82.12% or more were mapped uniquely (Supplementary Table S1). 
Transcripts per million (TPM) readings’ indications of expression 
levels revealed significant interactions between biological replicates. 
Transcriptional values greater than 1 were present for more than half 
of the genes. The level of sample repeatability was assessed in line with 
the R2 value in order to examine the accuracy of the data and get a 
general idea of variances across all samples. TPM measurements were 
also used in the principal components analysis (PCA). Principal 
component (PC) 1 accounted for 57.6% of the variance and PC2 for 
33.1% of it, according to the combined analysis of variance, which 
identified 90.7% of the variance among the 18 groups (54 samples). 
Overall, the information provided demonstrated that there was little 
to no variation among all sample replications and that high-quality 
sequencing data and biological duplicates are highly reproducible 
(Supplementary Figure S2; Supplementary Table S2). In total, 25,133 
genes were found to be expressed in 18 different developmental and 
ripening stages (Supplementary Table S3).

Figures 2A,B and Supplementary Figure S3 show a number of up- 
and down-regulated DEGs identified at two adjacent periods during 
enlargement, color transition and maturity responses in six ecoregions. 
Notably, ‘carbon metabolism’, ‘glycolysis / gluconeogenesis’, ‘circadian 
rhythm  - plant’, ‘biosynthesis of amino acids’, ‘carbon fixation in 
photosynthetic organisms’ and ‘citrate cycle (TCA cycle)’ were the main 
pathways functioning during enlargement – color transition periods. 
‘circadian rhythm - plant’, ‘photosynthesis’, ‘glycolysis/gluconeogenesis’ 
and ‘biosynthesis of amino acids’ were the main pathways during color 
transition and maturity periods. Besides, ‘galactose metabolism’, ‘flavonoid 
biosynthesis’, ‘phenylalanine metabolism’, ‘fructose and mannose 
metabolism’, ‘carbon fixation in photosynthetic organisms’ and other 
photosynthesis-related pathways were enriched GO and KEGG terms 
that were worthy of attention in the transcriptome (enlargement and 
maturity periods) (Supplementary Tables S4, S5).

3.3. Generation of transcriptional 
metabolic regulatory network

To gain further insight into the regulation of the transcriptional 
metabolism changes throughout grapevine development and ripening, 
WGCNA was performed to investigate the co-expression networks of 
DEGs. After filtering, in total 18,847 genes were used for further 
analysis and co-expression network in grapevine cultivars 
(Supplementary Table S6). The highest connectivity is achieved at a 

power value equal to 12 (Supplementary Figure S4). A total of 6 
co-expression modules were identified based on their similar 
expression patterns. The module-trait correlation heat map showed 
that the accumulation of lightcoral module transcripts was 
significantly positively correlated with the shape and flavor changes of 
grape, including fruit single-grain weight, longitudinal diameter, 
transverse diameter, soluble solids and soluble sugar. The 
darkolivegreen4 module was associated with the above factor 
significant negative correlation. In contrast, the accumulation of 
transcripts in the darkolivegreen4 module was significantly positively 
correlated with grape total phenolics and anthocyanins. The lightcoral 
module was significantly negatively correlated with total phenolics 
and anthocyanins (Figure 2C).

3.4. Mining for differentially expressed 
genes in grape fruit shape regulation and 
flavour networks

While consumers are satisfied with the traditional supply of 
fruit, they are turning to new, exotic and high-quality products (25). 
It is therefore particularly important to produce excellent varieties 
with beautiful appearance, high nutrition and high efficiency (26). 
The shape of the grape fruit is one of the most important factors in 
consumer selection. We  have identified a number of important 
DEGs in grape shape in the lightcoral module and darkolivegreen4 
module, including 12 IQ-DOMAIN proteins, 7 MADS-box 
transcription factors, 3 indole-3-pyruvate monooxygenases, 2 EIN3-
binding F-box proteins and ethylene receptors and one myb-related 
protein and brassinosteroid-6-oxidase (Supplementary Table S7). 
Then, the heat map enrichment of the above differential genes was 
carried out and it was found that the high expression was mainly 
concentrated in the grapevine enlargement periods, there was no 
expression or weak expression in the color transition and maturity 
periods (Figure 3A).

Soluble sugars are among the most important components 
contributing to the characteristic flavor of grape, it includes sucrose, 
fructose and glucose. Interestingly, the accumulation of soluble sugars 
was highly correlated with the lightcoral and darkolivegreen4 
modules. To generate the regulatory network associated with soluble 
sugars metabolism, we examined the structural genes involved in 
soluble sugar metabolic pathway identified in the lightcoral and 
darkolivegreen4 modules. We identified 25 soluble sugar-metabolizing 
genes including 6 invertases (INV), 3 sucrose synthases (SUS), 4 
hexokinases (HK), 10 fructokinases (FK) and 1 ADP glucose 
pyrophosphorylase in the lightcoral and darkolivegreen4 modules 
(Supplementary Table S7) whose expression was highly correlated 
with the accumulation of the soluble sugars. Most of the genes were 
highly expressed in the grapevine enlargement and the color transition 
periods, but lower in the maturity period (Figure 3B).

3.5. Production of grape phenolics and 
anthocyanins regulatory network

Chardonnay grapes are one of the main sources of wine grape 
varieties. Phenolic substances are crucial to the color and astringency 
of wine. They can endow grapes and wine with stable and high-quality 
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color, full and rich taste, which is also the key to the health function 
of wine (27). Therefore, it is very meaningful to explore the changes 
of total phenols in grape. The phenolic acids in grapes are mainly 

derived from intermediate products of the shikimate pathway, other 
phenolics are produced from the end product of the shikimate 
pathway L-Phenylalanine via the phenylpropanoid biosynthetic 

FIGURE 2

Transcriptome analysis of three periods of grapevine fruit development and maturity. (A,B) Different ecological regions were significantly enriched in 
the top 5 KEGG vocabulary and at least two top 5 GOs in the three developmental periods. (C) A dendrogram of co-expression modules (clusters) 
identified by WGCNA at fruit development and ripening stages. The main branches make up 6 modules of different colors. Additionally, a heatmap of 
the physiological shape correlation of the modules is shown. Each row corresponds to a module represented by a different color. Each column 
corresponds to a physiological index. Red indicates that clusters are positively correlated with tissue. Blue indicates a negative correlation.
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pathway and the flavonoid biosynthetic pathway. In this study, 
we examined key structural genes related to the above-mentioned 
phenolic substance production pathway in the lightcoral and 

darkolivegreen4 modules, including 3-deoxy-D-arabino-
heptulosonate-7-phosphate synthase (DAHPS), 3-dehydroquinate 
synthase (DHQS), quinate dehydrogenase (QDH)，shikimate kinase 

FIGURE 3

The key regulatory network for changes in morphology, color and flavor transcripts during grapevine development and ripening. (A) Heat map of key 
genes regulating grape shape. (B) Metabolic pathways of soluble sugars and expression patterns of involved genes. INV, invertase; SUS, sucrose 
synthase; HK, hexokinase; AMY/BMY, α−/β-amylases; FK, fructokinase; AGPase, ADP glucose pyrophosphorylase; SPS, sucrose phosphate synthetase. 
(C) Heat map of transcriptional expression of genes regulating grape phenolic compounds. (D) Gene expression patterns of the anthocyanin 
biosynthetic pathway in grape. PAL, Phenylalanin ammonia-lyase; C4H, Cinnamate-4-hydroxylase; 4CL, 4-coumarate: coenzyme A ligase; CHS, 
Chalcone synthase; CHI, Chalcone isomerase; F3H, Flavanone3-hydroxylase; F3’H, Flavanone 3′-hydroxylase; F3’5’H, Flavanone 3’5’-hydroxylase; DFR, 
Dihydroflavonol 4-reductase; FLS, Flavonol synthase; LDOX, Leucoanthocyanin dioxygenase; UFGT, UDP glucose:flavonoid 3-O-glucosyltransferase; 
AOMT, O-methyltransferase.
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(SK)，5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), 
chorismate synthase (CS), anthranilate synthase (AS) and prephenate 
dehydratase (PDT) (Supplementary Table S7). These structural genes 
showed different expression patterns during the development and 
ripening of grapevine, with generally high expression in the maturity 
period and low expression in the enlargement period (Figure 3C).

For wine grapes, anthocyanin content is often used as an important 
criterion for evaluating its quality (28). Since flavonoids and 
phenylalanine compounds are the main contributors to grape 
anthocyanins (29), we tried to generate regulatory networks for the 
metabolic pathways of the two compounds, screened the key structural 
genes involved in the above metabolic pathways in the lightcoral and 
darkolivegreen4 modules and found 8 phenylalanine ammonia-lyases 
(PAL), 1 chalcone synthase (CHS), 6 flavanone 3-hydroxylases (F3H), 
1 flavonoid 3′ hydroxylase (F3’H), 8 flavonoid-3,5′-hydroxylases 
(F3’5’H), 1 dihydroflavonol 4-reductase (DFR), 1 UDP-sugar flavonoid 
glycosyltransferase (UFGT) and 4 caffeoyl-CoA O-methyltransferases 
(AOMT). At the same time, in network regulation, we also found a 
transcription factor MYB, which plays an important role in the 
regulation of anthocyanins (Supplementary Table S7). Among the 8 
PALs, one gene was generally highly expressed in all periods of 
Chardonnay grapes, two genes were highly expressed in grapevine 
maturity period and weakly expressed in the color transition and 
enlargement periods. Among the 8 F3’5’Hs, 5 genes were highly 
expressed in the grapevine color transition and maturity periods and 3 
genes were generally low expressed in the three grapevine development 
periods. Among the 6 F3’Hs, 2 genes were highly expressed in most 
periods. Four caffeoyl-CoA O-methyltransferases were weakly 
expressed or not expressed in the three developmental periods of 
grapevine (Figure 3D).

3.6. RT-qPCR validation

For RT-qPCR investigation, 10 DEGs were randomly chosen in 
order to validate the RNA-Seq results Supplementary Table S8. gene-
specific RT-qPCR primer pairs are listed. The RT-qPCR and RNA-Seq 
data at various phases of development and maturation had similar 
expression patterns, according to the expression results, indicating the 
reliability of the RNA-Seq expression data.

4. Discussion

Originally from Burgundy, France, the Chardonnay grape is a 
world-renowned variety for making excellent white wines. It has been 
introduced to China from France since 1979 and has subsequently 
started to be widely promoted and planted in China (30). The taste 
and quality of the grapes have a significant impact on the wine’s 
quality. In our study, Chardonnay grapes were collected from six 
different ecological zones in Ningxia Province, China. we monitor 
their growth and development and measure physiological indicators 
such as single fruit weight, longitudinal diameter, transverse diameter, 
soluble sugars, total phenols and total anthocyanins at the 
enlargement, color transition and maturity periods. In addition, 
transcriptome sequencing is also an important tool to monitor gene 
expression during different growth and developmental stages of 
Chardonnay grapes. We sequenced the transcriptomes of grapevine at 

different growth and developmental stages and correlated phenotypic 
traits to identify structural genes and transcription factor that regulate 
the growth and development of grapevine.

4.1. Chardonnay regulation of fruit shape 
genes in Chardonnay grapes

Fruit shape is an important appearance quality of grapes. Due to 
different preferences of consumers, fruit shape greatly affects people’s 
choice of grapevine varieties (31). Economically important traits such 
as yield, quality and nutritional value are judged on the basis of fruit 
size and shape (8). The genotype and environmental factors play a 
major role in determining grape shape, although growing practices 
also play a role. In our study, seven classes of key structural genes and 
transcription factors affecting grape shape development were 
identified (12 IQ-DOMAIN proteins, 7 MADS-box transcription 
factors, 3 indole-3-pyruvate monooxygenases, 2 EIN3-binding F-box 
proteins and ethylene receptors, one myb-related protein and 
brassinosteroid-6-oxidase) (Supplementary Table S7; Figure  3A). 
Scaffold proteins interact or combine with various proteins at specific 
locations such as cell membrane, cytoplasmic matrix or nucleus to 
form anchoring complexes, play an important role in signal 
transduction (32, 33). As scaffolding proteins, IQDs play important 
roles in plant growth and development (34). Wu et al. (35) reported 
that SUN/IQD can regulate cell division to prolong tomato growth, in 
IQD5-1 mutants, microtubule stability is reduced, resulting in 
disordered microtubules in cotyledon cells and reduced staggering in 
squamous cells. IQD5 plays a crucial role in regulating Arabidopsis 
leaf morphogenesis (36). MADS-box protein widely exists in 
eukaryotes and is an important class of transcription factors (37). Its 
gene is involved in the regulation of plant growth and development 
from root to flower and fruit (38). Dong et al. (39) showed that tomato 
with SlMADS1 gene silenced at fruit ripening, the amount of ethylene 
produced during the process is about 2 to 4 times that of the wild type. 
Terol et al. (40) found a MADS-box gene in Citrus clementina that 
may be involved in fruit regulation, specifically, the expression level in 
early-maturing varieties is lower than that in late-maturing varieties. 
In addition, cell growth is regulated by hormones such as auxin, 
gibberellin and brassinosteroids (41–43). Brassinolide can also change 
the shape of the fruit (44). Studies have shown that GW5 plays a role 
in the brassinosteroid signaling pathway to regulate the grain width 
and weight of rice (45); BR level changes have an effect on ovary 
growth and cell division in the early stage of cucumber fruit 
development (46). Interestingly, we  found that IQD protein, 
MADS-box protein and brassinosteroid-6-oxidase were significantly 
expressed during the enlargement period of Chardonnay grapes and 
weakly expressed or not expressed during the color transition and 
maturity periods (Figure 3A). Therefore, we hypothesized that the 
shaping of fruit shape is mainly completed during the enlargement 
period during the growth of Chardonnay grapevine.

4.2. Regulatory network of sugar 
metabolism in Chardonnay grape

Sugar is closely related to fruit yield and quality. Different types 
of soluble sugar have different sweetness and the difference in soluble 
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sugar content and ratio has a decisive impact on taste characteristics 
and sensory quality (47–49). Sugar metabolism is the center of the 
whole biological metabolism of plants, plants have evolved to form a 

complete sucrose–sucrose (Suc-Suc) cycle metabolism system, which 
regulates the utilization, storage and homeostasis of intracellular 
sugar (50). The sugar metabolism regulation network is complex and 

FIGURE 4

Validation of RNA-seq by RT -qPCR. The column chart and the main longitudinal coordinate represent the relative expression of quantitative real-time 
PCR (RT -qPCR), while the broken line diagram and the secondary longitudinal coordinate represent the TPM value of RNA-seq.
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involves many enzymes and transporters (51). The improvement of 
fruit sweetness quality has always been an important goal in fruit 
breeding. It is important to investigate the genetic control mechanism 
of sugar content in fruits and to explore the molecular markers and 
key genes for fruit sweetness quality breeding (52). Sucrose can 
produce fructose and glucose under the action of invertase and 
sucrose synthase. In our study, most of invertase and sucrose synthase 
were highly expressed during the enlargement period, which 
indicated that the accumulation of sugar in grapevine mainly 
occurred in Early growth and development (Supplementary Table S7; 
Figure 3B). Interestingly, Xu et al. (53) reported that insertion of a 
transposon in the rice vacuolar invertase gene OsVIN2 resulted in 
the emergence of a small-grain mutant sgs1 with increased sucrose 
content and decreased hexose levels in sgs1 (54). Cassava 
MeCWINV3 regulates sugar partitioning from source to sink and 
affects storage root yield by maintaining sugar balance in cassava 
(55). The activity of sucrose synthase was higher in the early stage of 
grapevine development and its activity decreased in ripening (56). 
Islam et al. (57) identified six sucrose synthases in citrus, which play 
an important role in regulating sugar accumulation in fruits. Fructose 
and glucose produce fructose-6-phosphate (F6P) and glucose-6-
phosphate (G6P) under the action of fructokinase and hexokinase, 
respectively. Yang et al. (58) showed that MdFRK2 is the key gene for 
fructose phosphorylation in apples and the homeostasis and signaling 
of fructose content can regulate sugar metabolism and content. 
Transient overexpression of FpHXK1 and its kinase-deficient mutants 
had different effects on the contents of glucose, sucrose, anthocyanins 
and total phenols in strawberry fruit (59). F6P can re-synthesize 
sucrose under the catalysis of sucrose phosphate synthase (SPS). 
McIntyre et al. (60) verified that the SPS gene can improve the ability 
of sucrose synthesis through expression in sugarcane. Overall, 
we monitored the sugar metabolism network during the growth and 
development of Chardonnay grapevine, in which various enzymes 
and transporters play important roles.

4.3. Regulatory network of total phenols in 
Chardonnay grape

Grape phenolics are widely present in the fruit, leaf and branch 
tissues and are the main components that influence the skin, the 
colour of the wine and the backbone of the wine (61). There are a 
large number of phenolic substances in grape, which are closely 
related to grape postharvest transportation and storage, preservation, 
disease resistance, wine color, flavor and other quality indicators 
(62). Phenolic substances are one of the important secondary 
metabolites in plants. A variety of metabolic processes in plants 
involve the synthesis of phenolic substances, among which the 
shikimic acid pathway is the primary pathway for the synthesis of 
phenolic substances (63, 64). In our study, the regulation of proteases 
related to the shikimate metabolic pathway was our focus and eight 
regulatory proteases were found, including DAHPS, DHQS, QDH, 
SK, EPSPS, CS, AS and PDT. The cluster enrichment of 8 related 
proteases found that they were mainly expressed significantly during 
the grapevine maturity period (Supplementary Table S7; Figure 3C). 
DAHPS is the initial enzyme of the shikimate synthesis pathway, 
catalyzing the synthesis of 3-deoxy-arabinoheptulose-7-phosphate 
from phosphoenolpyruvate and erythrose-4-phosphate (65). In Anji 

white tea, the expression levels of CsDAHPS gene also differed 
significantly at different developmental stages of the leaves, 
indicating that the gene responds to the whitening phenomenon in 
Anji white tea, while the expression of CsDAHPS gene enables tea 
trees to resist pathogenic infestation, improving the resistance of tea 
trees to stress (66). SK was able to catalyse the conversion of 
mangiferous acid to phosphoric acid-3-mangiferous acid. The 
expression of OsSK1 and OsSK3 was specifically increased at the 
spike tassel stage compared to pre- and post-tassel expression, 
suggesting that SK may influence floral organ development by 
controlling the mangiferic acid metabolic pathway (67). EPSPS 
mediates the synthesis of aromatic amino acids and some secondary 
metabolites in the mangiferous acid pathway. Overexpression of 
EPSPS increased stress resistance in Arabidopsis thaliana (68). In 
summary, the eight proteases not only affect the formation of grape 
phenols, but may also play an important role in plant stress resistance 
and floral organ development.

4.4. Regulatory network of anthocyanins in 
Chardonnay grape

As the largest branch of the flavonoid family, anthocyanins affect 
the color, taste nutritional value of wine and directly determine the color 
of grapes (23). Anthocyanins and tannins combine to form 
anthocyanin-tannin complexes, which soften the tannins in the wine, 
reduce its bitterness and roughness and make the taste more mellow. 
Anthocyanins can also scavenge free radicals, and their antioxidant 
activity is higher than that of vitamin C and vitamin E (69). In addition, 
anthocyanins have high anti-mutation, anti-cancer and anti-
hyperglycemic activities, which endow wine with high nutritional value. 
The anthocyanins in wine grapes are a kind of flavonoid polyphenolic 
compounds with C6-C3-C6 as the basic skeleton, which are combined 
with sugar by glycosidic bonds (70, 71). Its biosynthesis goes through 
the synthetic pathway of phenylpropanoids and flavonoids (72). In our 
study, the ‘flavonoid biosynthesis’, ‘phenylalanine metabolism’ pathways 
were significantly enriched in Chardonnay grapes during the 
enlargement and the maturity periods (Figure  2A; 
Supplementary Figure S3). We focused on monitoring the biosynthesis 
pathway of phenylalanine and flavonoids, and found that a variety of 
proteases participated in the regulation of anthocyanin synthesis, 
including 8 PALs, 1 CHS, 6 F3Hs, 1 F3’H, 8 F3’ 5’Hs, 1 DFR, 1 UFGT 
and 4 AOMTs (Supplementary Table S7; Figure 3D). PAL is the key 
rate-limiting enzyme in the metabolism of phenylpropanoids. Xu et al. 
(73) treated grapes with N2O and found that the up-regulated expression 
of 12 PAL genes enhanced the metabolic activity of phenylalanine in 
grape, thereby increasing the anthocyanin content of grapes. Chen et al. 
(74) found that the tea tree CsPAL4 gene was preferentially expressed 
in young leaves and buds. Through the correlation analysis of 
anthocyanin components in purple leaf tea, it was found that CsPAL4 
was closely related to the accumulation of different anthocyanins. F3’H 
and F3’5’H can catalyze the hydroxylation of dihydrokaempferol to 
dihydroquercetin and dihydromyricetin (75). Robinson et al. (76) used 
F3’H and F3’5’H gene silenced transgenic grapes to study the effects of 
these two genes on grape anthocyanins and the results showed that the 
decrease in the expression of a single gene in the two did not change the 
anthocyanin content, but led to changes in the composition ratio of 
anthocyanins. AOMT catalyzes the monoglycoside methylation of 
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anthocyanins and delphinidins to produce glycosides of 
methylanthocyanidins, methyldelphinidins and delphinidins (77). DFR 
reduces dihydroflavonols to corresponding colorless anthocyanins (76). 
During fruit development, CHS is mainly distributed in the pericarp 
and vascular bundles, it is located in the cytoplasm, nucleus, cell wall, 
chloroplast, chromoplast and rough endoplasmic reticulum (78). The 
increase of CHS activity was consistent with the accumulation process 
of flavonoid content (79). In addition, the anthocyanin metabolic 
network is also regulated by regulatory factors such as 
MYB. MYB-related genes play a crucial role in the regulation of grape 
anthocyanin biosynthesis, mainly regulating the expression of 3GT (80). 
In our study, a MYB transcription factor was significantly expressed 
during Chardonnay enlargement period (Figure  3D). These results 
suggest that the related protease and transcription factor MYB in the 
phenylalanine and flavonoid biosynthetic pathway may regulate the 
production of grape anthocyanins.

5. Conclusion

Here, based on our transcriptome database, we constructed the 
differential expression of Chardonnay grapevine cultivars at various 
growth and developmental phases in six ecological zones of Ningxia, 
China. We  monitor its growth and development and measure 
physiological indicators such as swelling stage, discoloration stage, 
single fruit weight at maturity stage, longitudinal diameter, transverse 
diameter, soluble sugar, total phenols and total anthocyanins. Based 
on WGCNA correlative physiological data, we focused on Chardonnay 
grape shape changes, soluble sugar synthesis, total phenolic metabolic 
network and anthocyanin synthesis. The shikimic acid metabolic 
pathway, carbon skeleton biosynthesis, cell wall synthesis, 
phenylalanine metabolism, flavonoid biosynthesis and other reaction 
pathways were enriched in different growth stages of grapevine. 
We excavated some structural genes and transcription factors that may 
focus on regulating grape shape development, soluble sugar synthesis, 
total phenol metabolism network and anthocyanin synthesis network, 
which will provide a basis for the next step to monitor grape quality 
at the molecular level.
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