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Osteoporosis, one of the most serious and common complications of diabetes, 
has affected the quality of life of a large number of people in recent years. 
Although there are many studies on the mechanism of diabetic osteoporosis, 
the information is still limited and there is no consensus. Recently, researchers 
have proven that osteoporosis induced by diabetes mellitus may be connected 
to an abnormal iron metabolism and ferroptosis inside cells under high glucose 
situations. However, there are no comprehensive reviews reported. Understanding 
these mechanisms has important implications for the development and treatment 
of diabetic osteoporosis. Therefore, this review elaborates on the changes in 
bones under high glucose conditions, the consequences of an elevated glucose 
microenvironment on the associated cells, the impact of high glucose conditions 
on the iron metabolism of the associated cells, and the signaling pathways of the 
cells that may contribute to diabetic bone loss in the presence of an abnormal 
iron metabolism. Lastly, we also elucidate and discuss the therapeutic targets of 
diabetic bone loss with relevant medications which provides some inspiration for 
its cure.
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1. Introduction

Osteoporosis, which is regarded as the most common bone illness worldwide, has the 
characteristics of low bone mass, bone tissue’s microarchitectural deterioration, and declined 
bone strength (1). It has been determined that diabetes-specific bone characteristics, such as 
deficiencies in glucose/insulin metabolism, the buildup of advanced glycosylated end products 
(AGEs), and a lack of bone microvasculature, may constitute a novel syndrome that can 
be categorized as diabetic osteoporosis (DOP) (2). DOP has eclipsed other diabetes-related 
illnesses as the major cause of death and mutilation, substantially affecting patients’ quality of 
life and inflicting a substantial financial burden on their families and society (3–6). Current 
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glucose-lowering therapeutic measures mainly consist of metformin 
and sulfonylureas. However, their efficacy might be  enhanced. 
Meanwhile, a few therapies targeting diabetic mellitus were 
discovered to increase the possibility of fractures, such as 
Thiazolidinediones (TZDs) and possibly sodium-glucose 
cotransporter-2 (SGLT2) (2, 7, 8). Investigating the mechanisms 
underlying DOP can contribute to the development of new 
therapeutic strategies, despite the fact that researchers do not fully 
comprehend these mechanisms. Recent studies have demonstrated 
that the onset of Type 2 Diabetic Osteoporosis (T2DOP) may 
be  correlated with the buildup of peroxides and reactive oxygen 
species (ROS) resulting from ferroptosis. It is also investigated that 
some signal molecules and signal pathways, such as NRF2/HO-1/
GPX4 and SLC7A11 can ameliorate the above symptoms, providing 
novel possible therapeutic targets and research directions for 
T2DOP (9–11).

Iron metabolism is the process of iron being absorbed, 
transported, distributed, stored, utilized, transformed, and excreted in 
living organisms. The metabolism of iron is of great significance for 
cells. It has been discovered that iron can switch between its ferric 
(Fe3+) and ferrous (Fe2+) forms, allowing it to take and give electrons 
with relative ease (12). Therefore, iron metabolism is crucial to the 
regular functioning of several intracellular processes, and the 
disturbance of iron homeostasis could potentially increase the risks of 
many diseases. For example, iron deficiency is perceived as one of the 
most prevalent causes that induces anemia, while iron overload is 
recognized as one of the main culprits of heart diseases, bone diseases, 
and cognitive level-related diseases (13–17). As a significant 
mechanism for disease exploration, iron metabolism has gotten 
attention from plenty of research in exploring the relationship between 
iron metabolism and bone metabolism and the underlying pathways 
that induce osteoporosis (18–20).

Iron metabolism also impacts bone homeostasis through 
ferroptosis, which is a kind of iron-dependent cell death characterized 
by an aggregation of lipid peroxides and ROS (21). Ferroptosis has 
been found to be  associated with the pathophysiology of diverse 
ailments, which includes malignant tumors, ischemic diseases, 
neurodegenerative diseases, as well as metabolic disorders. Substances 
that are induced by ferroptosis performs the ability to diminish the 
activated state of glutathione peroxidase 4 (GPX4) via multiple routes, 
resulting in a significant decrement in oxidation resistance and 
oxidative death in cells eventually. ROS buildup has a significant 
impact on the creation and survival of osteoblastic cells and their 
differentiation into osteocytes, thus, oxidative stress might be a major 
contributor to T2DOP. Wang et al. discovered ferroptosis in T2DOP 
rats’ bone tissue, and therapies with ferroptosis inhibitors dramatically 
could reduce the stress of oxidation and ameliorates the symptoms of 
osteoporosis, although the underlying mechanisms were still far from 
fully understood (19).

Furthermore, findings from existed publications been proved that 
some medications that targeting on iron metabolism, including 
melatonin, Qing’e pills (22), and Artesunate (ART) (23) could relieve 
the systems of T2DOP to some extent, indicating the necessary to 
deeply invest in the research of iron and bone metabolism. Therefore, 
this review intends to systematically summarize the research progress 
of iron metabolism and diabetic bone loss, the underlying mechanisms 
exploration, and clinical therapies for the comprehensive evidence of 
further study.

2. Bone fragility in diabetes

According to the International Diabetes Federation, the alarming 
number of diabetics worldwide has surpassed 537 million as of 2021, 
and the most striking features of diabetes include chronically higher-
than-standard fasting and random blood glucose, which either 
induce insulin deficiency [Type 1 diabetes mellitus (T1DM)] due to 
damage to pancreatic beta cells or progressive insulin secretion 
defect [Type 2 diabetes mellitus (T2DM)] from insulin 
resistance (24).

Diabetic complications could significantly increase the patient’s 
risk of morbidity and mortality. Long-term diabetes is known to 
cause macrovascular and microvascular damage to the heart, brain, 
nerves, eyes, and kidneys, while significantly less attention has been 
given to the musculoskeletal system. The high glucose (25) 
environment brought on by these two factors could further 
potentially affect the bone metabolism, bone loss or even 
osteoporosis (26). Osteoporosis is defined as bone mineral density 
(BMD) at the femoral neck that is 2.5 standard deviations (SD) or 
more below the mean for young female adults (T-score less than or 
equal to −2.5 SD (27)), on the basis of dual-energy X-ray 
absorptiometry (DXA). Osteoporosis induced by diabetes mellitus, 
sometimes referred to as diabetic bone disease, is a chronic disease 
that subsequently increases bone fragility and fracture risk owing to 
a decrease in bone density and damage to the bone microstructure 
(28, 29). Research found that patients with diabetic bone disease are 
at a higher risk of long-term bone pain, motor dysfunction and 
fractures (30). More than 35% of individuals with Type 2 diabetes 
displayed bone loss, with 20% meeting the diagnostic criteria 
for osteoporosis.

Diabetic bone loss is characterized by altered bone density, altered 
bone turnover, reduced bone microarchitecture, and increased 
fracture risk. Multiple independent research demonstrate that the 
BMD of diabetic individuals may be decreased, constant, or even 
enhanced. The femur and vertebrae are the major sites of elevated 
BMD in patient with T2DM (31–33). Generally, having unnecessarily 
abundant energy and being overweight are the main causes of the rise 
in BMD in T2DM patients. Adaptive changes in the bone that enable 
the body to sustain a heavier load may also contribute to the increment 
of BMD (34, 35). Nonetheless, despite greater mean BMD and T-score 
values, there is increasing evidence that the T2DM-associated 
increased fracture risk is related to decreased bone quality, which may 
be termed “diabetic osteopathy” (36–38). The apparently contradictory 
finding is based on the changes in bone turnover, decreased bone 
microarchitecture, accumulation of AGEs, muscular weakness, anti-
diabetic medication, etc., which might have the possibility to enhance 
the fracture risk of T2DM patients (39). Patients with T2DM usually 
display aberrant bone microstructure, particularly in the cancellous 
bone, with both a reduction in the number of trabeculae and 
morphological defects (40); also they also have a considerably 
decreased number of trabeculae and trabecular thickness in the 
femoral head compared to non-diabetic patients (41). Thinner cortical 
bones and higher porosity show a direct correlation with a decreased 
breaking load. Compared to the general population, individuals with 
T2DM had a 3% drop in radial cortical bone density and a 25% 
increase in cortical bone porosity (42); a smaller cross-sectional area, 
more cortical porosity; and a lower cortical vertebral BMD in the tibia, 
but not the radius with the assistance of HR-pQCT (43).
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3. Bone cell biology in high glucose 
condition

Resorption and creation of bone are two essential components of 
bone remodeling. A major element in the development of osteoporosis 
is an imbalance in bone reconstruction. Bone remodeling, the 
coordinated activities of bone-resorbing osteoclasts and bone-forming 
osteoblasts, is required for continuous bone turnover and regeneration. 
Diabetes may affect all types of bone cells and promote adipose tissue 
formation in bone marrow. In this part, we  intend to describe 
separately for four different cells in bone microenvironment in the 
context of HG: mesenchymal stem cells, osteoblasts, osteoclasts, and 
osteocytes (Figure 1).

3.1. Mesenchymal stem cells in HG 
condition

Osteoblasts are derived from multipotent mesenchymal stem 
cells (MSCs), which may move to the site of impairment, proliferate, 
and differentiate (44). MSCs may be separated from peripheral blood 
and nonhematopoietic tissues such as adipose tissue, trabecular bone, 
dermis, dental pulp, synovium and lung, despite the fact that bone 
marrow is assumed to be the primary source of these precursor cells 
(45). As the most significant MSCs obtained from bone marrow, bone 
marrow-derived mesenchymal stem cells (BMSCs) play crucial roles 
in bone tissue regeneration. Different microenvironments such as 
high glucose levels, inflammation, and hypoxia, would change the 
physiological functioning of stem cells (46). Recent study has shown 

that osteoporosis was associated with an increase in circulating MSCs 
with low osteogenic potential, highlighting the importance of BMSCs 
for successful bone remodeling and/or repair in vitro (47). A number 
of studies have shown that the biological activities of BMSCs were 
modified by chronic exposure to a diabetic pathogenic environment 
(48, 49).

In addition, the serine/threonine kinase glycogen synthase kinase-3, 
also known as GSK-3, contains two remarkably homogeneous isoforms, 
GSK-3a and GSK-3b, which is a broadly expressed enzyme (50). 
GSK-3b inhibition could increase bone density (51). In high glucose 
microenvironments, GSK-3b activation as well as Wnt pathway 
suppression impede BMSC migration and proliferation, however, 
lithium chloride, an inhibitor of GSK-3b, may restore the functionality 
of BMSCs (46), according to Zhang et  al. Moreover, Yu’s study 
demonstrated the activation of GSK3b in diabetic osteoporosis and its 
deleterious osteogenic affected BMSCs in a high glucose milieu through 
the β-catenin/Tcf7/Ccn4 signaling axis inhibition, and thus provide 
unprecedented perspectives into diabetes osteopathy (48).

Furthermore, as a common denominator of the numerous 
osteogenic signaling pathways, it’s suggested to strictly mange the ROS 
levels for MSCs to undergo osteogenic differentiation (52). It is reported 
that usage of deferoxamine in vitro, the anti-osteogenic impact of 
superparamagnetic iron oxide nanoparticles was abolished, indicating 
that the free form of iron is significant to the inhibition of MSCs from 
differentiating into osteoblasts (53). Balogh et al. also approved that iron 
specifically prevents BMSCs from differentiating into osteoblasts 
without affecting adipogenic or chondrogenic differentiation (54).

In summary, high glucose condition shows an impact on 
mesenchymal stem cells and suppresses its differentiation process.

FIGURE 1

Bone cell biology in high glucose condition.
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3.2. Osteoblasts in HG condition

Osteoblasts, which serve as bone-forming cells, originate from the 
sequential activity of transcriptional factors on mesenchymal 
precursors to osteoprogenitor lineages and eventually differentiate 
into osteocytes. Osteoblasts produce extracellular proteins such as 
osteocalcin, alkaline phosphatase, and type I collagen, the latter of 
which accounts for more than 90% of bone matrix protein. The 
extracellular matrix is initially secreted as unmineralized osteoid and 
becomes gradually mineralized when calcium phosphate concentrates 
as hydroxyapatite (55).

It has been demonstrated that the high glucose conditions in 
T2DM severely impair the biological functions of osteoblasts, resulting 
in an increase in the density of mitochondrial bilayers and a decrease 
in the number of mitochondrial cristae, and leading to the 
accumulation of ROS as well as lipid peroxides causing the cells to 
exhibit excessive oxidative stress as well as lipid peroxidation, and 
causing the cells to exhibit excessive oxidative stress and lipid 
peroxidation, accelerating apoptosis and autophagy of osteoblasts. It 
is reported that the proliferation and differentiation of osteoblasts 
could be inhibited by excessive glucose in alveolar bone through the 
caspase-1/GSDMD/IL-1 pathway, indicating the opposite effects from 
usage of caspase-1 inhibitors in vivo and in vitro (56).

HG condition could also affect osteoblasts by modulating iron 
metabolism as well. It was identified that iron overload reduces 
MC3T3 cell viability and causes apoptosis, in which they reported that 
an excess of iron may partially suppress osteoblast activity, and disturb 
the differentiation and mineralization processes of osteoblasts (57). 
What’s more, the pathogenesis of T2DOP was significantly influenced 
by the osteogenic activity of osteoblasts, which was negatively 
influenced by iron overload caused by the increased expression of 
DMT1 in osteoblasts (58, 59).

In summary, HG condition not only suppress the differentiation 
process of osteoblasts, but also strongly affected its osteogenic function.

3.3. Osteoclasts in HG condition

Osteoclasts are end-differentiated multinucleated cells of the 
monocyte/macrophage lineage with unique function of resorbing 
bone matrix (60). Osteoclasts break down bone by secreting acids and 
proteolytic enzymes such cathepsin K, also known as CTSK, which 
break down matrix components like collagen during osteoclastogenesis 
(61, 62). As was known, monocytes could only differentiate into 
osteoclasts in vitro when co-cultured with cells comprising stromal 
cells and osteoblasts (63). Because osteoclasts and osteoblasts’ 
respective bone resorbing and building processes are closely 
correlated, an adult’s bone mass is generally steady. However, in many 
disease states such as osteoporosis, metastatic bone cancer, and 
inflammatory arthritis, the delicate balance is disturbed by an increase 
in osteoclast bone resorption activity (60).

Various studies have revealed that the high glucose condition has 
a certain promotion effect on the differentiation of osteoclasts, which 
can strengthen their bone resorption ability (64, 65). Clinical studies 
showed that osteoclastogenesis was more frequently accelerated by 
diabetes mellitus: (a) enhanced levels of tartrate-resistant acid 
phosphatase, a sign of increased osteoclast activity, were found in the 
blood of patients with T2DM (66); (b) tartrate-resistant acid 

phosphatase levels were higher in blood among T2DM patients (67). 
Studies on animals’ models further approved that diabetes patients 
have higher osteoclast activity (68, 69): compared to normoglycemic 
controls, osteoclastic bone resorption was increased in T2DM rats 
(70). TNF-a, macrophage-colony stimulating factor, receptor activator 
of nuclear factor kappa-B ligand (RANKL), as well as the vascular 
endothelial growth factor-A were all elevated in diabetic mice, which 
would differentiate and activate osteoclasts (71–73).

Furthermore, osteoclasts could also be significantly influenced by 
iron overload, which is induced by DM. It’s reported that ROS that 
arises from iron overload could activate the MAPK pathway, 
improving the differentiation capability and the bone resorption 
capacity of osteoclasts in bone metabolism (20). There’s also evidence 
showed that ferritin autophagy took place when cells were iron-
deficient, which makes them more susceptible to ferroptosis caused 
by intracellular Fe2+ (74, 75) Additionally, Mature osteoclasts require 
a greater amount of cytoplasmic free iron than other osteocytes. 
Hence, osteoclasts are more susceptible to ferroptosis (76, 77).

In summary, it implies that the HG condition can influence 
osteoclast activity, which may result in aberrant bone metabolism 
and osteoporosis.

3.4. Osteocytes in HG condition

Osteocytes are terminally developed osteoblasts that undergo 
substantial morphological changes when embedded in the mineralized 
bone matrix. It plays a key function throughout the homeostasis 
regulation of bone, with a main function to communicate with the 
surrounding environment (78, 79): (a) their numerous dendritic 
processes that protrude from the osteocyte soma in all directions and 
enter the ‘canaliculi’, which are tiny passageways by which the 
osteocytes could connect with other osteocytes and cells in the bone 
marrow or periosteum; (b) osteocytes in the interstitial tissue of the 
lacunar-canalicular structure come into touch with liquid, which 
enables these cells to function well. Consequently, the osteocyte 
lacunar-canalicular network provides a vast system that could detect 
changes in bone loading and regulate bone remodeling for the healthy 
skeleton, with the collaboration of other bone cells’ (osteoblasts and 
osteoclasts) activities (80).

Osteocytes may release various signaling substances in response 
to loading or unloading stimuli via the SOST/DKK/Wnt or the 
RANKL/Osteoprotegerin (OPG) axis. It may either promote bone 
resorption by producing RANKL and decreasing OPG, or decrease 
bone resorption by flipping the RANKL/OPG ratio. Osteocytes are 
also the substantial producers of Dkk1(the Lrp5/6 Wnt signaling 
inhibitor) and sclerostin (transcription product of the SOST genes) in 
connection to bone formation (78, 81, 82). It’s interesting to note that 
patients with T1DM and T2DM had higher serum levels of sclerostin 
(83, 84), indicating variations in glucose concentration may have 
impact on the cells most crucial for maintaining bone health as 
sclerostin is largely produced by osteocytes. Moreover, Blood glucose 
levels significantly above and below the normal range of 80–140 mg/
dl may have detrimental effects on osteocytes (85). Another study 
showed that diabetes caused osteocytes to alter over time and 
upregulate the sclerostin gene, that might be mediated by local glucose 
concentrations and could have a significant effect on the deterioration 
of bone quality (85–87).
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Furthermore, it’s suggested that inhibiting the ferroptosis pathway 
in diabetic mice prevented DOP and osteocyte death (10). Traditional 
cell death inhibitors such as Z-VAD-FMK and Nec-1 had no impact 
in rescuing osteocytes from the death induced by high glucose and 
high fat (HGHF) circumstances. Furthermore, they concluded 
excessive lipid peroxidation may be the primary source of cell damage 
in the diabetic milieu and that ferroptosis may be strongly associated 
with the underlying molecular process of cell osteocyte death. 
Altogether, high glucose level could induce longstanding changes in 
osteocytes via upgrading sclerostin expression and inducing 
ferroptosis, resulting in the imbalance of bone metabolism 
eventually (10).

In summary, the high glucose level in the blood caused by T2DM 
alters the dynamic equilibrium between bone formation and bone 
resorption in a normal organism, resulting to a variety of complications 
such as T2DOP.

4. Iron-related protein and bone 
formation in HG

Studies have approved that proteins involved in iron metabolism 
have a very clear connection to bone metabolism. Here we give some 
summaries. Table  1 summarizes iron-related proteins and bone 
metabolism in high glucose condition.

4.1. Ferritin

Zarjou et al. found that the ferroxidase activity of ferritin was 
responsible for the suppression of osteoblasts’ activities (75). By 
observing the effects of ceruloplasmin (a protein with ferroxidase 
activity but no iron sequestration ability) and examining the 
osteoblast-specific genes expression, they discovered that ferritin 
ferroxidase activity might inhibit the production and subsequent 
activity of alkaline phosphatase (ALP). Thus, the ferritin ferroxidase 
activity could not only inhibit the exclusive osteoblast product 
osteocalcin which in turn affect calcification, but also downregulate 
the osteoblast-specific genes such as core binding factor α-1, alkaline 
phosphatase and osteocalcin (75).

Additionally, it has been demonstrated that mitochondrial ferritin 
(FtMt) reduces oxidative stress and maintains intracellular iron 
homeostasis (25). If FtMt expresses excessively, it will lessen ferroptosis 
that happens in osteoblasts under HG environments, whereas if FtMt 
becomes silent, it can stimulate autophagy in mitochondrial via the 
ROS/PINK1/Parkin pathway, leading to an increase in osteoblasts 
ferroptosis (74). In T2DOP, FtMt was showed to prevent ferroptosis 
in osteoblasts by decreasing oxidative stress produced by excess 
ferrous ions, while FtMt deficiency increased mitophagy in the 
pathogenesis of T2DOP (74, 89).

4.2. HEP

Hepcidin (HEP), which is produced and secreted by liver cells, 
regulates iron homeostasis. It can connect to the ferroportin (FPN) 
receptor, which is a type of transmembrane protein, to prevent cellular 
iron from entering the bloodstream (11, 123). The sole iron output 

protein in vertebrates up to this point is FPN (90–92). If FPN 
activation induced by HEP is inadequate or inefficient, the organism 
may experience iron overload and perhaps iron deposition in the 
skeletons. Causing numerous ROS production, mitochondrial 
biogenesis, peroxisome proliferator-activated receptor gamma 
coactivator-1beta (PGC-1β) expression in osteoclasts and ultimately 
resulting in osteoporosis (93). In addition, there’s also a study 
concluding that BMP/SMAD signaling pathway was discovered to 
possess the ability to regulate the expression level of HEP (94). Xu 
et al. not only found that HEP stimulated osteoblast intracellular Ca2+ 
in a dose-dependent manner, but also revealed that the process 
mention above is facilitated by voltage-dependent L-type calcium 
channels, which indicated an unignorable effect that HEP had on bone 
metabolism (95).

4.3. Tfr2

In mammalian cells, there are two distinct transferrin receptors 
(Tfrs) (96). Transferrin receptor 1 (Tfr1) is predominantly expressed 
and binds to Fe3+-loaded holo-Tf with great affinity. Plasma iron flows 
attached to the iron transporter protein transferrin and is absorbed by 
endocytosis that mediated by Tfr1 under physiological circumstances. 
Tfr1 is regulated post-transcriptionally by intracellular iron status 
through the iron-regulatory protein system (97), resulting in elevated 
Tfr1 under low iron circumstances and diminished Tfr1 under high 
iron conditions (98). Bhaba’s reported that Tfr1absence resulted in a 
>50% drop in osteoclast lineage cells in the total osteoblasts 
intracellular iron concentration (99). However, Tfr1-deficiency had no 
impact on the iron levels in monocytes and pre-osteoclasts. It has been 
determined that mature osteoclasts procured extracellular iron mostly 
via using Tf and heme (99). This study found that iron uptake 
regulated by Tfr1 is a key iron acquisition route in osteoclast lineage 
cells, which significantly regulates bone remodeling of trabecular in 
the perpendicular and axial bones via female and male mice models 
(99). Also, the increased cytoplasmic iron generated by Tfr1 was 
approved to be  especially essential for mitochondrial energy 
consumption and cytoskeletal structure in osteoclasts, however, it still 
showed slight impact on the differentiation of osteoclasts (99).

Transferrin receptor 2 (Tfr2) is another crucial regulator of 
hepcidin, which is proposed to control iron homeostasis. Tfr2 is 
known for controlling systemic iron levels, but it also promotes 
healthy erythropoiesis (100–103). Tfr2 has recently been identified a 
novel extrahepatic function, controlling bone mass directly by 
osteoblasts in the research from Martina Rauner’s team (104). They 
reported that Tfr2, which is predominantly located in osteoblasts, 
governed bone production but had little effect on the systemic iron 
homeostasis. Furthermore, Tfr2 could also activate p38 MAPK 
signaling in osteoblasts, which leads to the induction of the Wnt 
inhibitor sclerostin and limits bone formation, hence, Tfr2 functions 
as a unique regulator of bone mass via modifying the BMP-p38 
MAPK-Wnt signaling axis (104).

4.4. IRP

Iron regulatory protein 1 (IRP1) and iron regulatory protein 2 
(IRP2) post-transcriptionally control the metabolism of iron in 
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TABLE 1 Iron-related proteins and bone metabolism in high glucose condition.

Protein Mechanism Effect in 
Ferroptosis

Basic foundation Origin and 
distribution  
in vivo

Biochemistry and 
molecular structure

References

Ferritin ROS/PINK/Parkin Ferroptosis in OB, 

osteocalcin and 

CBF-a1 inhibition

Primary iron storage proteins of most 

living organisms, members of a broad 

superfamily of ferritin-like diiron-

carboxylate proteins

Almost all body tissues 

especially liver cells and 

reticuloendothelial cells

Iron-free (apoferritin) 

molecule is a protein shell 

composed of 24 protein chains 

arranged in 432 symmetry.

2 types of chains (subunits): H 

or M (fast) and L (88), which 

differ in rates of iron uptake 

and mineralization.

(74, 75, 89)

HEP BMP/SMAD Increased ROS 

production, 

mitochondrial 

biogenesis, and PGC-

1β expression in 

osteoclasts

An antibacterial and antifungal protein Expressed in the liver Cysteine-rich, forms a 

distorted beta-sheet with an 

unusual disulphide bond found 

at the turn of the hairpin.

(90–95)

Tfr BMP/p38MAPK/

Wnt

Tfr1 is a key player in 

the uptake of iron-

loaded transferrin 

into cells, Tfr2 binds 

transferrin but with a 

significantly lower 

affinity than Tfr1

TfR1 may also participate in cell 

growth and proliferation

Tfr1: widely expressed

Tfr2: hepatocytes, 

hematopoietic cells, and 

duodenal crypt cells

Tfrs are homodimeric type II 

transmembrane proteins 

containing three distinct 

domains: protease-like, apical 

or protease-associated, and 

helical domains.

(96–104)

IRP Through post-

transcriptional 

regulation of iron 

metabolism-

related proteins to 

maintain cellular 

iron homeostasis

Decreased expression 

of bone formation 

markers such as 

TFRC and ferritin

Sustaining normal mitochondrial 

function

(105–107)

METTL3 Upregulating the 

ASK1/p38 

signaling pathway 

to induce 

ferroptosis

Induction of 

ferroptosis in OB

Regulating various processes such as 

the circadian clock, differentiation of 

embryonic and hematopoietic stem 

cells, cortical neurogenesis, response to 

DNA damage, differentiation of T-cells 

and primary miRNA processing, 

playing an important role in various 

kinds of tumors

Almost all body tissues (108–111)

DMT1 Suppression of the 

OB osteogenic 

function

Having a role in gastrointestinal uptake 

of metals and in transferrin dependent 

trafficking of iron and manganese, 

Cu2+, Cd2+

Widely expressed DMT1 is a 12-transmembrane-

domain protein, having at least 

four isoforms: two are derived 

from N-terminal alternatives 

and two are from C-terminal 

alternatives

(112–115)

HO-1 NRF2 and c-Jun/

HO-1

Catalyzing heme 

oxidation to produce 

a significant amount 

of free labile iron, 

inducing ferroptosis 

in osteocytes

Catalyzing heme degradationholds 

antioxidant, anti-inflammatory, 

cytoprotective, proliferative, and 

angiogenic properties

Expressed in low 

quantities under normal 

conditions except in 

tissues that involve the 

degradation of senescent 

red blood cells, such as 

the spleen, liver, and bone 

marrow

(89, 116–120)

GSH XC-system/GSH/

GPX4 axi

Reduced osteoblast 

ferroptosis and 

enhanced osteogenic 

activity.

Converting peroxide (R-OOH) into 

alcohol (R-OH) and decreasing the 

toxicity of lipid peroxides

Widely expressed (19, 121, 122)

HEP, hepcidin; Tfr2, transferrin receptor 2; IRP2, iron regulatory protein 2; METTL3, methyltransferase-like 3; DMT1, divalent metal transporter 1; HO-1, heme oxygenase-1; GSH, 
glutathione; OB, osteoblast.
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vertebrate cells (105). Zhang et al. demonstrated that iron drove the 
transcription of NADPH oxidase 4 (NOX4) by dissociating IRP1 and 
thereby depressed osteogenesis in bone metabolism. Mechanically, 
they revealed that the NOX4 locus includes iron-response element-
like sequences, which are bound by IRP1. Upon iron binding, IRP1 
dissociates from the IRE-like sequences, resulting in the activation of 
NOX4 transcription. Osteoblasts with increased NOX4 accumulate 
lipid peroxide and show obvious alterations in mitochondrial 
morphology and function (106). In mouse bone tissue after the 
deletion of IRP2, investigation has discovered the expression of the 
genes for the proteins that served as iron transporter (FLT, FPN1, and 
TFR1). This is a disease characterized by scant trabecular bone, which 
could induce the reduction of iron concentration and the 
downregulated expression of bone formation markers (107). 
Therefore, a lack of IRP2 may prevent the iron transporter from 
transferring, which results in a lack of iron and affects bone 
metabolism. However, additional research will be  required in the 
future to understand this conclusion because the underlying process 
is currently elusive.

4.5. METTL3

Methyltransferase-like 3 (METTL3), one of the m6A writers, is 
approved to play a role in the pathophysiology and growth of bone-
related disorders including osteoporosis, arthritis, and osteosarcoma 
(108). Nonetheless, there is controversy regarding the link between 
osteoporosis and METTL3 expression. For instance, one study found 
that overexpression of METTL3 in bone marrow monocytes protected 
mice against osteoporosis induced by estrogen deprivation, while 
disruption of METTL3 in mice destroyed bone formation, decreased 
osteogenic differentiation, and improved marrow obesity (109). 
Another study demonstrated a negatively regulatory role of 
METTL3 in osteogenesis process by activating NF-κB pathway, which 
was considered as a significant osteogenic differentiation inhibitor. 
And METTL3 was found to induce the expression of MYD88, an 
upstream regulator of NF-κB pathway, through control m6A 
methylation status of MYD88-RNA (110).

Furthermore, researchers have discovered that METTL3 may 
be  involved in high glucose and palmitic acid (HGPA)-induced 
osteoporosis via activating the ASK1/p38 signaling pathway, in which 
they noticed that METTL3 knockdown prevented HGPA-induced 
activation of ASK1/p38 signaling (111). The fact that the expression 
of the ferroptosis-inhibitory proteins GPX4 and SLC7A11 was 
markedly repressed further provided evidence that activating ASK1/
p38 pathway was responsible for the induction of ferroptosis (111).

4.6. DMT1

Divalent metal transporter 1 (DMT1) is a 12-transmembrane-
domain protein that is present in various tissues, such as bone, kidney, 
and duodenum. DMT1 transports lots of divalent cations (112). It is 
the main apical transporter in charge of absorbing intestinal Fe2+ and 
it is found to be widely expressed in endosomal compartments, in a 
place where it is in responsibility of exporting Fe2+ throughout the 
transferrin cycle (112, 113). As a result, iron overload and DMT1 
expression are closely connected. DMT1 plays a role in the absorption 

of other metals in addition to its role in the metabolism of iron and 
manganese, and it also involves in the transfer of Cu2+ and Cd2+ 
(114, 115).

Further studies proved that the overexpression of DMT1 could 
lead to iron overload in osteoblasts, thus suppressing the osteogenic 
function of osteoblasts. Liu et al. discovered that human hFOB1.19 
osteoblasts treated with ferric ammonium citrate (FAC) expressed 
more DMT1 compared with those untreated cells (58). Zhang et al. 
found that there were less of the autophagosome accumulation that 
was caused by FAC in DMT1-shRNA hFOB1.19 cells, which suggested 
that DMT1 controls the levels of Fe2+ in osteoblasts, which has an 
impact on the cellular accumulation of autophagosomes (59). In 
summary, DMT1 expression could enhance in the bone tissue of type 
2 diabetic condition, then DMT1 induces iron overload in osteoblasts, 
and ultimately affects the osteogenic function of osteoblasts.

4.7. HO-1

Heme oxygenase-1 (HO-1) is a cellular inducible oxidative stress 
regulator that oxidizes heme to produce biliverdin, carbon monoxide, 
and free ferrous iron (116). The role HO-1 plays in ferroptosis is still 
up for dispute at this time. Numerous studies showed that elevated 
HO-1 expression prevented oxidative stress in cells and prevented 
ferroptosis (37, 117, 118). For instance, Adedoyin et al. discovered that 
HO-1−/− cells demonstrated higher erastin-induced cell death when 
compared to HO-1+/+ renal proximal tubule cells (119). Other 
researchers, however, identified that excessive HO-1 caused organ 
failure and exacerbated ferroptosis (89, 120). According to Fang et al., 
inhibiting HO-1 expression reduced ferroptosis in cardiomyopathy in 
models in vivo and in vitro (89). Tang et al. noted that blocking HO-1 
activity should be a reliable way to prevent ferroptosis in the retinal 
pigment epithelium (120). It therefore demonstrated that HO-1 was a 
double-edged sword that functions differently in distinct tissues and 
disease models.

HO-1 plays important roles in bone metabolism. Yang’s team 
approved that the group with DOP had much more lipid peroxidation 
occurred in vivo via DOP mouse model, indicating that the high-
glucose microenvironment could induce osteocyte ferroptosis. Then 
they went further demonstrated the concrete mechanism of how high-
glucose microenvironment induced intracellular iron overload. In 
diabetic microenvironment, HO-1 transcription was activated 
upstream by the heterodimer of NRF2 and c-JUN and activation of 
HO-1 catalyzes heme oxidation produced a significant amount of free 
labile iron (10). What’s more, Ma’s finding also supports the theory 
that HO-1 might mediate HGHF-induced osteocyte ferroptosis (9). 
HO-1 activation and ferroptosis are both mutually causal and can lead 
to an endless loop of mutual promotion (10, 121).

4.8. GSH

Ferroptosis can also be induced by the depletion of glutathione 
(GSH) and the reduction in GPX4 activity (121). GSH is a protective 
substance in cells and the main substrate of GPX4, which can 
combine with lipid peroxide to reduce ROS, so as to play an 
important role in antioxidant. The body’s lipid antioxidant system 
is regulated by GPX4 as its principal regulator. To protect biofilm 
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systems against ferroptosis damage, GSH is employed as a cofactor 
to convert peroxide (R-OOH) into alcohol (R-OH) and decrease the 
toxicity of lipid peroxides. However, the body’s decreased GSH 
levels displays impacts on GPX4 activity, which is required for 
ferroptosis to occur. Numerous synthesis routes, such as glutathione 
synthetase (GSS) and nicotinamide adenine dinucleotide phosphate, 
are the source of GSH (121). A disulfide bond connecting the heavy 
chain SLC3A2 and the light chain SLC7A11 creates the cystine-
glutamate reverse transporter protein known as the XC-system. It 
mediates the 1:1 exchange of glutamate and cystine inside and 
outside the cell. The extracellular glutamate concentration influences 
the transport rate of the XC-system, and an elevated glutamate 
concentration inhibits cystine uptake and GSH production, which 
results in altering the GPX4 activity alteration and ferroptosis 
(11, 122).

This XC-system/GSH/GPX4 axis is one of the main pathways that 
HG induces ferroptosis. According to Zhao et al., system XC-mediated 
suppression of ATF3 activity resulted in the induction of osteoblast 
ferroptosis in high glucose conditions, and these occurrences aided in 
the pathogenesis of T2DOP (19). They found that ATF3 was 
upregulated by HG in vivo and in vitro, which reduced the expression 
of SLC7A11 and the amounts of intracellular GSH and extracellular 
glutamate (19). ATF3 inhibition then boosted GPX4 levels and 
decreased the buildup of ROS and lipid peroxides and these 
modifications reduced osteoblast ferroptosis and enhanced osteogenic 
activity. According to Ma et  al., osteoblasts from osteoporotic 
individuals with T2DM developed a lot of ferroptosis lipid peroxides. 
The down-regulated expression of GPX4 and SLC7A11 in osteoblasts 
mitochondria and the XC-system were correlated with these lipid 
peroxides (9).

In summary, high glucose condition induces the imbalance of iron 
metabolism (ferroptosis and iron overload) via abundant pathways 
like Nrf2/HO-1, METTL3, XC- system/GSH/GPX4. Some proteins, 
such as METTL3 and DMT1, also contribute dramatically to the 
regulation of iron metabolism. It indicated the necessary to explore 
deeply on the association between iron and bone metabolism and 
underlying pathways.

5. Iron-related signaling pathways and 
bone formation

5.1. NRF2/HO-1/GPX4

Figure  2 showed the association between iron overload and 
osteoporosis in osteoblast and osteoclast. Activating the NRF2/HO-1 
channel considerably lowers ferritin levels while reducing oxidative 
stress and it prevents ferroptosis and promotes bone production (124). 
The nuclear factor erythroid 2-related factor 2 (Nrf2) signaling 
pathway is directly downstream of ROS and controls the transcription 
of antioxidant response element-dependent genes to sustain cellular 
redox homeostasis and regulate oxidative mediators (125). Recent 
studies demonstrated that melatonin activated the Nrf2/HO-1 
pathway and increased levels of the antioxidant enzymes HO-1 and 
NAD(P)H dehydrogenase [quinone] 1 to prevent kidney damage 
caused by diabetes and exert neuroprotective effects (126, 127). 
Additionally, it has been noted that Nrf2 guarded cancer cells from 
ferroptosis brought on by erastin or RSL3 (128).

Researchers have found the NRF2/HO-1/GPX4 pathway had an 
impact on osteoblast. Ma et al. reported that activation the NRF2/
HO-1 channel considerably lowers ferritin levels while reducing 
oxidative stress. NRF2 initiates the cellular peroxidation and defense 
process by activating the downstream enzymes glutathione peroxidase 
and superoxide dismutase (SOD). Additionally, it eliminates 
hazardous elements like ROS, and further reduce the toxic effects to 
osteoblasts (9, 129).

Furthermore, in ferroptosis, the antioxidant system Nrf-2/HO-1 
could be  suppressed. In the absence of Nrf-2, the activity and 
expression of the GPX4 protein is reduced and the severity of iron 
death is enhanced. It indicates that both the Nrf-2/HO-1 antioxidant 
system and iron death may be regulated under inflammatory settings 
(130). Additionally, researchers found the Nrf2/GPX4 pathway played 
an important role in age-related osteoporosis. Using 18 female wild 
type and 16 Nrf2-knockout (KO) mice as experimental subjects, Kubo 
et al. found that old Nrf2-specific KO mice showed reduced bone 
mass, which significantly implied that chronic Nrf2 deficiency made 
a great contribution to the progression of osteoporosis specifically in 
aging females (131). Yang et al. determined that 1,25(OH)2D3 can 
delay age-related osteoporosis via activating Nrf2 antioxidant 
signaling pathway and inhibition of oxidative stress, which provided 
support for the significant impact Nrf2 signaling pathway had on 
age-related osteoporosis (132, 133). Moreover, by evaluating the effect 
of 1,25(OH)2D3 on the Nrf2/GPX4 signaling pathway in MC3T3-E1 
cells, other researchers also concluded that VDR activation inhibited 
osteoblast ferroptosis by activating the Nrf2/GPX4 signaling pathway, 
which indicates that there is a broad and profound link between the 
association of iron death and osteoblast (134).

5.2. NF-κB signaling pathways

To limit osteogenic development, nuclear factor κB (NF- κB) 
produces inflammatory molecules, suppresses Wnt signaling, and 
stimulates Smad and MAPK signaling pathways in osteoblasts. These 
changes caused by NF- κB mentioned above will ultimately activate 
ferroptosis (135, 136). Through its control over the production of a 
network of inducers and effectors that characterize responses to 
pathogens, NF-κB plays a crucial part in the cellular stress response as 
well as in inflammation (137). Inflammatory cytokines are released as 
a result of host defense mechanisms in reaction to inflammation, 
which activates the NF-κB pathway (138). Postnatal bone development 
requires BMPs, which also promote the expression of the matrix 
proteins osteocalcin and bone sialoprotein. Osteopenia, bone fragility, 
and spontaneous fracture are caused by a decrease in BMP activity 
(139, 140). The Wnt signaling system also promotes bone growth. 
When Wnt signaling is activated, β-nuclear catenin’s expression rises, 
which in turn causes osteocalcin and bone sialoprotein to express 
more strongly. Inflammation inhibits Wnt signaling by increasing the 
expression of Wnt antagonists such as Dkk1 or sclerostin (82).

NF-κB regulates transcription positively in practically every 
conditions. The latest research has shown that NF-κB may interfere 
with the transcription of gene and chemokines were suppressed when 
noncanonical NF-κB subunits bound to the κB sites (141, 142). 
Interferon-b expression at the degree of promoter is directly 
suppressed by the activation of noncanonical NF-κB (143). Thus, 
RelB-p52 heterodimers were formed because of the noncanonical 
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pathway activation, which caused NF-κB to have a detrimental impact. 
In Tarapore’s study, the researchers discovered that NF-κB was crucial 
for the decreased production of matrix proteins brought on by 
inflammatory reactions, which eventually affected bone formation. 
Activation of NF-κB inhibits the production of matrix proteins both 
Wnt- and BMP-stimulated. This suppression entailed b-catenin and 
Runx2 inhibition by binding to neighboring consensus sites and 
NF-κB, to directly interacted with the involvement of response 
elements in the promoter regions of bone matrix proteins (144). 
Furthermore, Other studies also found that significant impacts of 
NF-κB on bone formation, by approving that it stimulates 
inflammatory factors and stimulates Smad and MAPK signaling 
pathways in osteoblasts to prevent osteogenic differentiation (107, 
144, 145).

5.3. PI3K/AKT/FOXO3a/DUSP14

Iron overload significantly suppresses osteoblast proliferation and 
induces apoptosis through the PI3K/AKT/FOXO3a/DUSP14 channel, 
thus inhibiting bone formation in HG. It has been discovered that the 
PI3K/AKT signaling pathway contributes to signal transmission that 
is connected to cell proliferation, differentiation, invasion, and 
apoptosis (146). Specifically, researchers have reported that the 
proliferation and development of rat osteoblasts required activation of 
the PI3K/AKT signaling pathway (147).

The FOXO3a gene belonging to the FOXO subfamily. The 
transcription of FOXO3a is suppressed by pAKT, which regulates the 

phosphorylated process of FOXO3a. Members of the DUSP family are 
intimately connected to cellular proliferation as well. According to a 
prior study, DUSP4 promotes the growth and invasion of colorectal 
cancer cells. Xia et  al. discovered that iron overload reduced 
osteoblasts growth and promoted apoptosis greatly through the PI3K/
AKT/FOXO3a/DUSP14 channel (148). By noticing that the impact of 
iron overload in osteoblasts was greatly reduced by overexpressing 
DUSP14, their team demonstrated that through the inhibition of 
DUSP14 expression, iron overload may endanger the proliferation of 
osteoblasts. Additionally, iron overload enhanced p-AKT and 
p-FOXO3a expression in osteoblasts. FOXO3a could directly attach to 
the DUSP14 promoter and DUSP14 may therefore represent a unique 
element in the PI3K/AKT/FOXO3a pathway (149). In summary, 
PI3K/AKT/FOXO3a/DUSP14 signaling pathway is potentially in 
charge of cell defense in the presence of iron overload stress.

5.4. RIPK1/RIPK3/MLKL

In the iron overload-induced osteoblast apoptosis process, ROS 
could promote phosphorylation of RIPK1 and RIPK3 and create a 
positive vicious circle involving RIPK1/RIPK3/MLKL. Sufficient 
evidences suggest oxidative stress induced by iron overload is the 
primary factor in the pathophysiology of osteoporosis (150–152). It 
also appears that iron toxicity is intimately linked to cell death in 
illnesses from iron overload (153). Apoptosis and necrosis have been 
historically considered to be the two primary fundamental processes 
of cell death (154). ROS, as was already established, were crucial for 

FIGURE 2

Iron overload and osteoporosis in osteoblast and osteoclast.
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the apoptosis that was induced by iron overload in the osteoblasts. 
Nevertheless, Tian’s research revealed that necrosis may also 
be strongly related to the characteristics of osteoblasts death from iron 
overload (155). Similar occurrences have been observed in earlier 
research, which indicated that necrosis may be  the principal 
mechanism of cell death for osteoblastic cells in iron overload-
associated bone disorders (156).

The precise mechanisms through which iron overload induces 
osteoblastic cells to necrotize remains not fully understood. An 
example of planned necrosis is necroptosis, which is distinguished by 
morphological variations of necrosis and is greatly reliant on 
regulating RIPK1, RIPK3, and MLKL. The phosphorylated MLKL 
eventually goes to the plasma membrane via oligomerization and 
penetrates, and then triggers necroptotic cell death (157, 158).

Tian’s team firstly demonstrated how ROS were crucially regulated 
in iron overload-induced necroptosis and found that ROS brought on 
by iron overload encourage necroptosis by creating a positive feedback 
loop with the involvement of RIPK1/RIPK3. The results of Tian’s study 
showed a dose-dependent rise in RIPK1 and RIPK3 phosphorylation 
as well as total protein expression in the osteoblastic cells following 
exposure to FAC. Nonetheless, following FAC treatment, the 
osteoblasts’ protein expression of MLKL showed no appreciable 
change. The addition of Nec-1, GSK872, or NSA inhibited iron 
overload-induced necrotic cell death in osteoblasts. Their findings 
illustrated iron overload induced necroptosis in osteoblasts cells, at 
least partially through the RIPK1/RIPK3/MLKL pathway, and finally 
inhibited bone formation (155).

In summary, iron absorption, storage, and excretion abnormalities, 
together with the aberrant expression of iron-related proteins IRP2, 
FtMt, TFR1, TFR2, HEP, and ferritin ferroxidase, may result in 
alterations in iron content. Multiple signaling pathways like NRF2/
HO-1, PI3K/AKT/FOXO3a/DUSP14, RIPK1/RIPK3/MLKL, and 
NF-κB, are warranted be explored more for the targeted interventions 
of the imbalanced bone remodeling process.

6. Iron-related signaling pathways and 
bone resorption

Osteoclasts are multinucleated large cells that are differentiated 
from bone marrow monocytes and come from the hematopoietic cell 
lineage (64). Two essential cytokines, macrophage colony-stimulating 
factor (M-CSF) and receptor activator of nuclear factor-B ligand 
(RANKL), affects the development of monocytes into osteoblasts. The 
cytokine M-CSF regulates the process by which BMMSCs differentiate 
into preosteoblasts and their proliferation, whereas RANKL controls 
the process by which preosteoblasts differentiate into osteoblasts and 
the activity of mature osteoblasts (159). Furthermore, cytokines such 
as tumor necrosis factor (TNF) and interleukin (IL) (160) could 
regulate the formation of osteoblasts (161). It was shown that RANKL 
was also linked to the recruitment of the non-receptor tyrosine kinase 
and tumor necrosis factor-associated receptor (TNFR) (162). c-Src 
acts to activate signaling pathways involved in osteoclast differentiation 
and maturation, such as NF-κB signaling pathway (163), and MAPK 
signaling pathway while TNFR acts to activate the Akt signaling 
pathway, which in turn induces the expression of nuclear factor of 
activated T-cell (NFATc). NFATc is the core transcription factor of 
osteoclasts, which ultimately mediates osteoclast differentiation, 

fusion and degradation of inorganic and organic bone matrix (164). 
The common signaling pathways for osteoblasts include OPG/
RANKL/RANK, NF-κB, c-src-PIK3-AKT, MAPK, and CN-NFAT, all 
of which were approved crucial for controlling osteoclast development 
(165). However, the latest research revealed that the NF-κB signaling 
pathway and the MAPK signaling pathway were mostly responsible 
for T2DOP in the case of ferroptosis caused by HG conditions (20).

6.1. NF-κB signaling pathway

The intrinsic immune system’s NOD, LRR, and pyrin domain-
containing protein 3 (NLRP3) inflammatory vesicles recognize 
pathogens like viruses and bacteria, and activate inflammatory factors 
to mediate inflammation. It has been discovered that in osteoclasts, 
however, NLRP3 played a critical role in promoting osteoclast 
maturation and increasing bone resorption (166). A recent study 
showed that mice osteoclasts that expressed NLRP3 in particular did 
not undergo systemic inflammation. The amount of osteoclasts stayed 
the same, but the bone mass decreased by around 50% (165). The 
NLRP3 inflammasome performs a variety of tasks in both young and 
old persons. Bone loss in old mice lacking NLRP3 is increased through 
bone resorption rather than bone formation. Similarly, MCC950 
inhibited osteoclast development by reducing caspase-1 activation, but 
not observed in young mice. Moreover, the transcription factor 
NF-κB, could encourage the production of molecules that control the 
development of inflammatory vesicles with the NLRP3 gene (163). 
And it’s demonstrated that the ROS generated in the high glucose state 
led to the phosphorylation of MAPK-related proteins, which in turn 
activated the MAPKs pathway and subsequently the NF-κB pathway. 
This increased the expression of NLRP3 in the internal environment, 
which in turn promoted the maturation of osteoclasts and increased 
osteoclastic bone resorption (163).

6.2. ERK/JNK/p38 pathway

Three different signaling pathways of MAPK, MAPK kinase 
(MEK or MKK), and kinase of MAPK kinase (MEKK or MKKKK), 
make up the MAPK signaling system. Together, these three kinases 
that can be activated in any order, regulates a range of significant 
physiological and pathological reactions, including cellular 
development, differentiation, stress, and inflammatory responses 
(167). ERK, JNK, p38/MAPK, and ERK5 are the four primary 
branching points of the MAPK pathway. JNK and p38 have 
comparable roles in inflammation, apoptosis, and cell growth; and the 
ERK pathway primarily controls cell growth and differentiation; and 
Ras/Raf protein serves as its upstream signal. These kinases used in 
the branching route are all different and can be used as biomarkers in 
the pathway.

As a downstream branching pathway of the MAPK pathway, 
ERK/JNK/p38 pathway is another signaling pathway that might 
contribute to osteoporosis. Related studies have shown that the 
ERK/JNK/p38 pathway plays an important role in promoting the 
differentiation of preosteoclasts, promoting the survival of 
osteoclasts and inhibiting osteoclast apoptosis (164). In contrast, 
iron deficiency with moral hyperglycemia enhances the expression 
of ROS increases, which in turn increases the expression of RANKL, 
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thus promoting the ERK/JNK/p38 pathway for greater 
differentiation of pro-osteoclasts (164). This increases the bone 
resorption effect of osteoclasts, causing a disruption in the 
homeostasis of bone resorption and bone formation, which in turn 
leads to osteoporosis.

7. Therapeutic targets and drugs 
targeting iron metabolism for DOP

7.1. Preclinical monitoring: evaluating 
diabetes-specific risk factors for 
osteoporosis

In addition to the age-related risk factors and other established 
fracture causes, a comprehensive investigation of risk variables is 
required for the clinical examination of bone fragility in diabetes 
patients. Bone fragility is a distinct risk factor for fractures in both 
T1DM (168) and T2DM (169), and is substantially linked with the 
length of the condition. Individuals with T1DM are more likely to 
fracture more frequently and experience bone loss even when they are 
young (131, 170). Due to the fact that osteoporosis is a frequent 
complication of T1DM, DXA testing, and laboratory checks to 
identify additional risk factors, such as hypogonadism would 
be generally recommended by physicians. Hofbauer et al. advised 
testing for blood 25-hydroxyvitamin D (25[OH]D) in diabetics who 
were institutionalized (i.e., Living in a care facility such as a nursing 
home) or at risk of falls and fractures in order to identify a rapidly 
curable cause of falls and fractures. The initial bone assessment for 
determining fracture risk would also strongly be  taken into 
consideration in the testing.

Poor glycaemia control was identified strongly associated with 
increased bone fragility, with a HbA1c threshold of more than 9% 
(75 mmol/mol) in individuals with T2DM and more than 9% 
(63 mmol/mol) in individuals with T1DM (171). Moreover, routine 
assessments should be made of hypoglycemic episodes, which can 
result in cardiovascular events, falls, and fractures in both type 1 (172) 
and type 2 (173) of diabetes. Consequently, it is advised to maintain 
stringent glycemic control in individuals who are younger and have 
the condition earlier. Strict glycaemia control’s skeletal benefits in 
patients with long-term disease, diabetic comorbidities, and a history 
of falls must be  weighed against the elevated risk of falls and 
cardiovascular events brought on by hypoglycemia. Currently, 
sulfonylureas and thiazolidinediones are used cautiously in patients 
at risk of fractures, metformin, glucagon-like peptide-1 (GLP-1) 
receptor agonists, SGLT2 inhibitors, and DPP-4 inhibitors exhibits a 
safe bone profile for type 2 diabetes (174, 175). Moreover, Metformin 
was found to lower the incidence of fractures in T2D patients and 
increased bone mass and bone quality in ovariectomized (OVX) rats. 
The underlying mechanism contained decreased RANKL expression 
and osteoclast inhibition (176, 177). Another study demonstrated that 
metformin limits bone marrow stromal stem cells’ ability to produce 
succinate and lessens the stimulatory effects of succinate in promoting 
osteoclast development, and bone resorption (178); while a recent 
study reported that metformin usage did not increase BMD (179), and 
similar osteo-protective effect was also seen in non-diabetic OVX 
(180). Further studies are needed for the inconsistent findings in 
clinical practice.

7.2. General interventions and classic 
anti-osteoporosis drugs

This is a consensus that unless their serum 25(OH)D 
concentration is at least 20 ng/ml, all diabetics are recommended to 
take vitamin D supplements. In obese patients, calorie restriction to 
lower body weight is frequently used to halt the onset of diabetes 
mellitus; nevertheless, weight loss is considered to be  linked to 
decreased bone mass. Thus, it is strongly advised that people with 
T2DM and obesity control their weight by carefully supervised 
exercise (181), which could strengthen bones aid patients with 
diabetes mellitus in preventing bone loss. According to a meta-
analysis, people with T2DM who follow a Mediterranean diet rich in 
fresh fruits, vegetables, and fish have a lower incidence of fractures 
and microvascular sequelae (182). The unhealthy eating habits of high 
sugar and fat should be  quitted. Also, bad lifestyle choices like 
drinking too much alcohol and smoking need to be carefully avoided.

Some clinical trials illustrated that alendronate (183) and 
teriparatide (184) displayed some therapeutic effects in diabetes 
mellitus through post-hoc analyses. According to Langdahl’s study, 
teriparatide showed similar effects in lowering fracture risk for 
diabetic patients as general patients (185). Alendronate has been 
shown to reduce postmenopausal osteoporosis patients’ fasting 
glucose and insulin resistance in preclinical diabetes mellitus (186). 
Dagdelen et al. found that alendronate had a more muted effect on 
increasing forearm BMD in postmenopausal osteoporosis patients 
with diabetes mellitus than in postmenopausal osteoporosis patients 
without diabetes mellitus, but it had no appreciable difference in effect 
on BMD in the hip and vertebrae between the two patient groups 
(187). Some studies proved that the mechanism of postmenopausal 
osteoporosis is also related to iron metabolism. For example, the 
postmenopausal spine may be protected against bone loss by dietary 
iron (188). Ni et al. suggested and tried to testify that an alternative 
method of treating postmenopausal osteoporosis might be to induce 
ferroptosis in osteoclasts by inhibiting Hypoxia-Inducible Factors 
(HIF-1) and ferritin (189). A recently created anti-osteoporosis 
medication called Romosozumab, the first sclerostin inhibitor licensed 
by the U.S. FDA, targets sclerostin, has demonstrated remarkable 
effectiveness in treating postmenopausal osteoporosis (190). Now that 
Picicca et al. demonstrated that diabetes caused osteocytes to alter 
over time and upregulate the sclerostin gene, we  assumed that 
Romosozumab may be  a very effective drug in treating DOP 
reasonably, which is also a potential research direction (85).

7.3. Pharmacological regulating iron 
metabolism and anti-ferroptosis therapies 
for DOP

To the best of our knowledge, there remain no randomized 
controlled trials examining the effectiveness and security of anti-
ferroptosis medications in individuals with diabetes osteoporosis. And 
there are no specific medications to treat DOP currently, and many 
studies merely explored the potential treatment impact in animal tests, 
with many studies focusing on simply the prospective therapeutic 
targets. We know that the distance from animal studies to clinical 
trials is long and this would be a potential research direction, people 
are all looking forward to a potent drug for DOP.  Figure 3 showed the 
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drugs and potential therapeutic targets about iron metabolism in high 
glucose condition.

Iron affects several phosphate and bone illnesses, as was previously 
indicated (191). Iron homeostasis should always be maintained for 
healthy cellular activity. Many studies have revealed that the major 
feature of ferroptosis is iron excess-induced aberrant iron metabolism. 
Increased iron intake decreased stable iron, and iron outflow would 
together induce ferroptosis. The six-transmembrane prostate epithelial 
antigen 3 (STEAP3) transforms ferric iron to ferrous iron when the 
Tfr1 on the cell membrane binds to circulating iron. DMT1 then 
releases divalent iron into the cytoplasm’s labile iron pool (LIP). 
Notably, because of their significant LIP storage, lysosomes are 
considered to be  the major organelles responsible for cellular 
ferroptosis, which shows potentially desirable potential disease 
targets (192).

Moreover, iron overload-induced liver ferroptosis in transferrin 
knockout mice is greatly reduced by both treatments with Fer-1 and 
hepatocyte-specific Slc39a14 deletion (193). Deferoxamine, an iron 
chelator, inhibits ferroptosis, has been demonstrated its clinical 
potential. Bordbar et al. found that in comparison to other regimens, 
combination therapy with Deferasirox and Deferoxamine had the 
greatest effect on lowering blood ferritin, despite its negligible value, 
and decreasing bone loss in the lumbar spine and femoral neck (194). 
Accordingly, Fer-1, was found to be an effective ferroptosis inhibitor 
because of its ability to scavenge lipid (195). Emerging studies have 
indicated that ferroptosis is involved in metabolic disease, 
cardiomyopathy, neurodegeneration, ischemia–reperfusion injury, 

and the effects of cancer (89, 196). Targeting ferroptosis may be an 
effective strategy for treating DOP.

Yang et al. applied a mouse model of DOP and established the 
critical involvement of ferroptosis in DOP-induced osteocyte death 
both in vivo and in vitro (10). The increased expression of HO-1 
caused intracellular iron overload and heme breakdown, which 
subsequently triggered the oxidation of lipids. For this mechanism to 
work, nuclear factor-like 2 and c-direct JUN’s binding were required. 
Furthermore, inhibiting ferroptosis greatly reversed trabecular 
degeneration and osteoclast death. Iron atrophylinkage and HO-1 
activation are causally connected and may result in a self-feeding 
vicious cycle. These all offered prospective therapeutic targets for 
upcoming DOP therapy plans: ZnPP (an HO-1 inhibitor) and Fer-1. 
Intriguingly, treatment with Fer-1 consistently had a higher 
therapeutic outcome than that with ZnPP, indicating that using Fer-1 
to scavenge intracellular lipid peroxides may be  a more effective 
treatment plan for DOP. Furthermore, their study showed ZPP and 
Fer-1 therapy in diabetic mice also prevented lacunar emptying and 
osteocyte death in addition to restoring trabecular balance. In 
conclusion, stopping the ferroptosis pathway could prevent DOP and 
osteocyte mortality in diabetic mice.

In addition, System Xc, an amino acid antiporter that is made up 
of two subunits of the xCT light chain (catalytic subunit, encoded by 
the SLC7A11 gene), and the heavy chain (chaperone subunit, encoded 
by the SLC3A2 (197, 198)), mediates the exchange of extracellular 
cystine and intracellular glutamate on the cell membrane. The 
expression level of SLC7A11 is typically positively correlated with the 

FIGURE 3

Drugs and potential therapeutic targets about iron metabolism in high glucose condition.

https://doi.org/10.3389/fnut.2023.1178573
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Bao et al. 10.3389/fnut.2023.1178573

Frontiers in Nutrition 13 frontiersin.org

activity of the antiporter, playing a critical role in preventing 
ferroptosis caused by lipids. Because the light chain encoded by 
SLC7A11 is responsible for the primary transport activity, and the 
heavy chain subunit SLC3A2 primarily serves as a chaperone protein 
(19). Several research have demonstrated the therapeutic benefits of 
melatonin, which is a strong endogenous antioxidant. Thus, if 
melatonin may neutralize ROS, could this be a possible method by 
which melatonin treats DOP? Ma’s study might provide the solution 
(9). It has been demonstrated that melatonin can enhance bone 
microstructure both in vivo and in vitro by inhibiting osteoblasts’ 
ability to ferroptosis in which melatonin lowered ROS levels, elevated 
SLC7A11 levels, and boosted GPX4 activity by opening the NRF-2/
HO-1 antioxidant channel Also, it reduced the toxicity of lipid 
peroxides to shield the biofilm system from ferroptosis, enhancing 
osteoblast ‘s capacity for osteogenesis and bone microstructure (9). 
Another study discovered that melatonin can inhibit the ERK 
signaling pathway and lower osteoblast autophagy levels, delaying the 
pathological development of DOP (199).

In other disease-related osteoporosis, such as postmenopausal 
osteoporosis, there are some specific medicines or therapeutic 
schedules. For example, some researchers suggested that some special 
types of osteoporosis, anti-resorptive medication should be used after 
anabolic therapy, similar to the therapeutic sequence used to treat 
common osteoporosis (200). And the best BMD improvements were 
seen in postmenopausal women with osteoporosis who received these 
sequential medications in this order in clinical studies (201). However, 
this has not yet been established for those with diabetes, and there is 
no clinical trial to prove this therapy (190). But this can be a potentially 
effective treatment option. According to Zhang et  al. (93), 
postmenopausal osteoporosis is prevented by hepcidin-induced 
reductions in iron concentration and PGC-1 expression, which 
adversely affect osteoclast differentiation, so maybe hepcidin can play 
a role in treating DOP in the future?

8. Conclusion and outlooks

Long-term, poorly controlled diabetes commonly culminates in 
diabetic bone disease with fragility fractures, which has a considerable 
impact on socioeconomic and public health burdens. The advent of 
knowledge of the biological mechanisms and implicated pathways, 
coupled with improved multiscale imaging of bone, has made it 
feasible to gain new insights into the increased bone fragility in 
diabetes at many levels. In this review, we systematically summarize 
the diverse mechanism and pathways of ferroptosis in osteoblasts, 
osteoclasts, and other key cells, and attempt to comprehend the 
regulatory targets of interventions and treatments in clinical practice, 
applying the identified biomarkers as guides, aiming to highlight the 

near-term opportunities to elaborate the execution mechanisms and 
targeted therapeutics of iron metabolism and ferroptosis to 
T2DOP. For further research, it is necessary to clarify the diagnostic 
criteria for DOP in patients of varying ages and disease trajectories, 
and to reach a consensus. Although there have been some studies 
exploring the mechanism of iron metabolism and ferroptosis in 
diabetic bone loss, the mutual effect among these key proteins and 
pathways remains unclear, and the relative importance of each 
mechanism in the development of diabetic osteoporosis has not been 
explored, which is meaningful to find key therapeutic targets. Finally, 
there is no specific medicine to treat diabetic patient with osteoporosis, 
therefore developing new treatment strategy for patients with DOP is 
promising and significant. Advances in iron metabolism and 
ferroptosis are particularly noteworthy.
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