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Non-alcoholic fatty acid liver disease (NAFLD) is a reputed global health concern, 
affecting children and young adults. Accumulating evidence suggests that edible 
fungi polysaccharides have the potential to relieve NAFLD. Our previous study 
found that Auricularia cornea var. Li. polysaccharides (ACP) could improve 
immune by regulating gut microbiota. However, its NAFLD-alleviating potentials 
have been scarcely reported. This study analyzed the protective effects of 
Auricularia cornea var. Li. polysaccharides on high-fat diet (HFD)-induced 
NAFLD and mechanistic actions. We  first analyzed the histology and hepatic 
lipid profile of animals to evaluate this variant’s ameliorating effects on NAFLD. 
Then, antioxidant and anti-inflammatory potentials of ACP were studied. Finally, 
we  explored changes in the gut microbiome diversity for mechanistic insights 
from the gut-liver region. Results showed that supplementation with ACP 
substantially reduced homeostasis model assessment-insulin resistance (HOMA-
IR), body fat, liver index rates and weight gain (p < 0.05). This variant also improved 
HDL-C levels while decreasing triglyceride (TG), total cholesterol (TC), and low-
density lipoprotein cholesterol (LDL-C) levels which were initially triggered by 
HFD. ACP mediation also decreased the serum alanine aminotransferase (ALT) 
and aspartate aminotransferase (AST) levels considerably with H&E technique 
indicating that it can reduce liver lipid accumulation, thus lowering liver damages 
risks (p < 0.05). The antioxidant potentials of ACP were also demonstrated as it 
decreased the hepatic levels of malondialdehyde (MDA) and increased the activities 
of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase 
(GSH-PX). Proinflammatory markers like IL-6, IL-1β and TNF-α concentrations 
were decreased by ACP supplementation, accompanied with increased IL-4 
levels. Finally, ACP supplementation regulated the intestinal microbiota to near 
normal patterns. In all, ACP protects HFD-induced NAFLD by improving liver 
characteristics and regulating colonic flora composition, our findings assert that 
ACP can be a promising strategy in NAFLD therapy.
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Introduction

Nonalcoholic fatty liver disease (NAFLD), is a highly pervasive 
liver condition globally (25.24% incidence rate), common among 
young adults and children (1). In China, it is only second to viral 
hepatitis in chronic liver disease causes (2). Although, the mechanisms 
regulating its pathogenesis is still unclear, NAFLD symptoms range 
from simple steatosis to severe inflammation, with the possibility of 
cirrhosis (3). Following the ‘multiple hit’ hypothesis, the gut 
microbiome could be linked to the onset and development of NAFLD 
(4). Current NAFLD treatments such as medicinal intervention and 
bariatric surgery have several side effects, including increased weight 
and osteoporosis (5), raising the need to explore alternative methods 
for NAFLD alleviation.

Notable biosafety and industrial importance have been 
identified in polysaccharides from edible fungi (6). Moreso, it has 
been reported previously that polysaccharides could have 
immunomodulatory and antioxidant activities. Findings 
suggested that Auricularia polytricha aqueous extract 
supplementation showed protective material against NAFLD by 
attenuating inflammatory response, oxidative stress and lipid 
deposition (7). It was found that polysaccharides from Auricularia 
auricula and Auricularia polytricha could inhibit oxidative stress, 
nuclear factor kappa-B (NF-κB) signaling and proinflammatory 
cytokine production (8). It has been reported that Auricularia 
auricula polysaccharides demonstrated the regulatory effects of 
endogenous metabolism and gut microbiota composition (9). 
The results of showed that the Auricularia auricula polysaccharide 
interventions had a potential to improve hyperlipidemia with the 
modulation of gut microbiota structure (10). Recent studies have 
shown that dietary supplementation of Auricularia auricula-
judae polysaccharides could alleviate nutritional obesity in rats 
via regulating inflammatory response and lipid metabolism (11). 
It is thus possible that Auricularia polysaccharides could 
be useful in NAFLD prevention and treatment.

A genetically-stable variant of Auricularia cornea species 
known as Auricularia cornea var. Li could be produced in large 
amounts in China (12). Through several pathways, Wang et al. 
reported that this variant exerted hepatoprotective effects against 
the alcoholic liver diseases (13). Auricularia cornea var. Li. 
polysaccharides also has good antioxidant capacity, antinephritic 
effects, unique phenotype and potential medicinal properties 
(14). Our previous study found that Auricularia cornea var. Li. 
polysaccharides supplementation could improve immune by 
regulating gut microbiota (15). However, little is known about its 
NAFLD-alleviating potentials.

The objective of this work to analyze the protective effects of 
Auricularia cornea var. Li. polysaccharides on HFD-induced 
NAFLD and its related mechanism. The ameliorative effects of 
Auricularia cornea var. Li. polysaccharides on hepatic lipid 
profile and histological alterations, and inflammation cytokines 
in immunosuppressed rats were studied. In addition, the 
regulatory effect of Auricularia cornea var. Li. polysaccharides on 
the gut microbiota was analyzed. These findings will give further 
understanding regarding NAFLD pathogenesis and a framework 
exploring the possible application of Auricularia cornea var. Li. 
Polysaccharides in NAFLD therapy.

Materials and methods

Isolation and purification of Auricularia 
cornea var. Li. Polysaccharides

Auricularia cornea var. Li. was purchased from the edible 
fungus base in Heilongjiang province. The extraction methods of 
AAP are described by (16). Make a few changes. In short, first 
extract 20 g auriculae powder with 1 L deionized water at 90°C 
for 2 h. The total extract was concentrated to 1/3 of its original 
volume under reduced pressure and precipitated overnight with 
three-volume frozen 95% ethanol at 4°C. The protein content of 
precipitated solution was removed by Sevag method. The aqueous 
solution was dialyzed with deionized water for 3 days (7 kD), and 
the water was changed 3 times a day. Crude polysaccharides are 
obtained by concentration and freeze-drying. Purification was 
performed using anion exchange columns to separate the 
components of the crude polysaccharide, followed by further 
purification using gel columns and partial lyophilization of the 
final polysaccharide for further study.

Animals and experimental design

Thirty-six specific-pathogen-free (SPF) male Sprague–
Dawley rats (160 ~ 180 g) were supplied by the Shanghai Slack 
Laboratory Animal Co. LTD [Shanghai, China, SCXK (Shanghai) 
2012–0002]. All feeding was done in an animal room (22 ± 0.5°C 
and 55 ± 5%) with 12 h light/12 h dark cycles. Chow and water 
were made available ad libitum for the one-week acclimatization 
period. Afterward, rats were placed in three groups (n = 12 rats 
per group), including the control, HFD and Auricularia cornea 
var. Li. polysaccharides (ACP) groups. Rats in the control groups 
were fed with a regular diet throughout the experiment, while 
HFD group and ACP group fed with a HFD for 6 weeks. ACP 
(200 mg kg−1) solution was orally administrated to the rats in the 
ACP group, while equal volume of distilled water were 
administrated to the rats in the HFD group. Feed formulas are 
reported in Supplementary Table S1. Rats were humanely 
sacrificed after a 12 h fasting period. The blood was placed on 
ice for 2 h, and then the serum was obtained by centrifugation. 
The livers, epididymal adipose tissue and perirenal adipose 
tissue of rats were weighed and recorded, then stored at 
−80°C. The blood and small intestine were obtained for next 
experiments. The Ethics Committee of the First Affiliated 
Hospital of Heilongjiang University of Chinese Medicine 
approved all animal experiments and protocols (2022060801). 
Liver index and Body fat rate were calculated using the 
following formula:

 
Liver index liver weight g body weight g% / %.( ) = ( ) ( )×100

 
Body fat rate

epididymal adipose tissue g perirenal adip

%( )
( )= + oose tissue g

body weight g

( )[ ]
( ) ×/ %.100
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Liver histopathological analysis

Referring to the method of (17) with slight modifications. 
We placed all liver tissues in paraffin wax and made thin slices 5 μm 
thick，and then stained with hematoxylin and eosin (H&E). 
Histology of these sections were observed using a light microscope 
(Nikon E100, 200 × magnification).

Determination of TC, TG, LDL-C, and 
HDL-C in the liver

The liver tissues were homogenized in aseptic PBS (1: 9, w/v), 
succeeded by centrifugation at 10,000 r/min for 15 min at 4°C. The 
concentration of TC, TG, HDL-C, and LDL-C was detected using Rats 
ELISA kits (Roche Diagnostics GmbH, Mannheim, German) based 
on the instructions of the manufacturer.

Serum ALT, AST, FBG, and FINs 
determination

Serum ALT, AST, fasting plasma glucose (FBG)and fasting insulin 
(FINs) levels were obtained using mouse kits (Conodi Creatures, 
Fujian, China) by following the manufacturer’s directives. HOMA-IR 
was calculated using the following formula:

 HOMA IR FBG mmol L FINS mL− = ( )× ( )/ / / . .µU 22 5

Determination of the level of oxidative 
stress in the liver

Liver oxidative stress in the different groups were assessed by 
measuring malondialdehyde (MDA), superoxide dismutase (SOD), 
catalase (CAT), and glutathione peroxidase (GSH-PX) levels using 
commercial kits obtained from Jiancheng Creatures Co Ltd., 
(Nanjing, China).

Inflammatory cytokines measurement

Aseptic PBS (1:9 w/v) was used to homogenize liver tissues and 
centrifuged at 10,000 r/min for 10 min at 4°C. Afterward, the TNF-α, 
IL-6, IL-4 and IL-1β were detected using ELISA kits obtained from 
Conodi Creatures Co Ltd., (Fujian, China) by following the 
manufacturer’s instructions.

DNA extraction and 16S rRNA gene 
sequencing

Total bacterial genomic DNA was isolated from fecal samples 
using the Fast DNA SPIN extraction kits (MP Biomedicals, Santa Ana, 
CA, United States) according to the manufacturer’s instructions. 0.8% 
agarose gel electrophoresis was used to determine the DNA molecular 
size, and NanoDrop NC-2000 Spectrophotometer was used to 

quantify DNA. Afterwards, the bacterial 16S rRNA genes V3–V4 
region was amplified by polymerase chain reaction (PCR) with the 
forward primer 338F (5’-ACTCCTACGGGAGGCAGCA-3′) and the 
reverse primer 806R (5’-GGACTACHVGGGTWTCTAAT-3′). PCR 
amplicons were purified with Agencourt AMPure Beads (Beckman 
Coulter, Indianapolis, IN) and quantified using the PicoGreen 
dsDNA Assay Kit (Invitrogen, Carlsbad, CA, United States). The 
TruSeq Nano DNA LT Library Prep Kit (Illumina, United States) 
was used for library construction. Sequencing was performed 
using the MiSeq Reagent Kit v3 (Shanghai Personal Biotechnology 
Co., Ltd.,Shanghai, China) on the Illumina MiSeq platform. 
Following data unloading, we sieved out low-quality reads (reads 
containing N bases, 3 ‘end adapter, reads with average quality value 
≥20). Data obtained by pair-end sequencing was spliced into long 
tags using FastQ-Join software. Spliced tags were carefully filtered 
to obtain effective data (chimeras were also removed as described 
by (18)). Finally, the QIME software (v1.9.1) and UcLUST method 
were used to cluster OTU units (19) and align the representative 
sequence (20, 21).

Statistical analysis

All data were analyzed using SPSS 22.0 software (SPSS Inc., 
Chicago, IL, United States). Statistical analysis of Duncan’s multiple 
range tests after one-way analysis of variance (ANOVA). For all 
analyses, at p < 0.05, the differences were considered significant.

Results

Effects of ACP supplementation on body 
weight, liver index, body fat rate, and 
HOMA-IR of HFD-Fed rats

In Figure 1A, we observed that HFD substantially increased the 
final body weight, which was reversed in the ACP supplementation 
group. Liver index analysis results indicate that HFD induction gave 
a marked increase in the measured parameters which were reversed 
after ACP supplementation (Figure  1B). As expected, the HFD 
group had heightened body fat rates compared to the control group 
(p < 0.05), which was again ameliorated in the polysaccharide group 
(Figure 1C). The HFD group also showed increased HOMA-IR levels 
(p < 0.05) which was reversed to control group levels after ACP 
supplementation (Figure 1D). In conclusion, the addition of ACP 
normalized the increase in body weight, liver index, and body fat 
percentage in HFD-fed rats. At the same time, HOMA-IR 
was reduced.

Effects of ACP supplementation on lipid 
accumulation in the liver

We measured the liver TC, TG, LDL-C, and HDL-C using the 
ELISA kit. The HFD group showed elevated TG, TC, and LDL-C levels 
compared to the control group (p < 0.05) (Figures 2A–C). Moreover, 
the HDL-C levels were lowered (Figure 2D). Compared to the HFD 
group, LDL-C, TC and TG levels were significantly lower when ACP 
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was administered (p < 0.05), while HDL-CS levels were significantly 
increased (p < 0.05), returning to similar levels in the control group.

Effects of ACP supplementation on ALT 
and AST levels in the serum

We used the ELISA technique to assess liver function by evaluating 
the ALT and AST levels of rats. ALT and AST activities were 
significantly increased in the HFD group compared to the control 
group (p < 0.05) (Figures 3A,B). The increase in HFD-induced ALT 
and AST activity was significantly suppressed in the ACP 
supplemented group compared to the HFD group (p < 0.05).

Effects of ACP supplementation on 
histological alterations of the liver tissues

As shown in Figure 4, in the Control group, the structure of the 
hepatic lobule was clear, the hepatic cords was arranged neatly, no 
obvious expansion or compression of the hepatic sinuses was 
observed, and no obvious inflammation was observed. A large number 
of hepatocyte balloon degeneration, cell swelling, nuclei centered, 
cytoplasmic vacuolation (black arrow), multiple focal lymphocyte 
infiltration (yellow arrow), rare hepatocyte necrosis, and nuclear 
fragmentation (red arrow) were found in the tissue of HFD-fed rats. 

However, administration of ACP was effective in reversing this 
HFD-induced trend, suggesting that ACP acts as a positive 
hepatoprotective agent.

Effects of ACP supplementation on the 
oxidative stress

In this study, we measured selected oxidative stress indicators 
to evaluate the effect of ACP supplementation on NAFLD. As 
presented in Figure 5, compared with the control group, the rats in 
the HFD group showed higher MDA levels (p < 0.05), with much 
reduced SOD, CAT, and GSH-PX in the liver tissues (p < 0.05). 
However, MDA levels were significantly lower in rats receiving 
ACP intervention compared to the HFD group (p  < 0.05). 
Meanwhile, the levels of SOD, CAT, and GSH-PXs were 
significantly increased (p < 0.05). All these results suggest that ACP 
supplementation can effectively inhibit HFD-induced oxidative 
stress damage in NAFLD rats.

Effects of ACP supplementation on 
cytokine contents in the liver

Long-term use of HFD can cause persistent low-grade 
inflammation and contribute to NAFLD. Following analyses of 

FIGURE 1

Effect of ACP supplementation on body weight (A), liver index (B), body fat rate (C) and (D) HOMA-IR of HFD-fed rats. Control, control group; HFD, 
high fat diet group; and ACP, A. cornea var. Li. polysaccharides group. Values are expressed as mean ± SD (n = 12). Different superscript letters indicate 
significant differences (p < 0.05).
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selected cytokines, our results (Figure  6) showed that HFD rats 
exhibited heightened levels of IL-6, IL-1β and TNF-α concentrations 
compared to the control group (p < 0.05). Furthermore, IL-4 levels 

decreased. Compared with the HFD group, IL-6, IL-1β and TNF-α 
levels were significantly lower and IL-4 levels were significantly higher 
after ACP supplementation (p < 0.05), converging to the control group.

FIGURE 2

Effects of ACP supplementation on lipid accumulation in the liver in HFD-fed rats. Control, control group; HFD, high fat diet group; and ACP, A. cornea 
var. Li. polysaccharides group. (A) Hepatic triglyceride (TG) level. (B) Hepatic total cholesterol (TC) level. (C) Hepatic low density lipoprotein cholesterol 
(HDL-C) level. (D) Hepatic high density lipoprotein cholesterol (LDL-C) level. Values are expressed as mean ± SD (n = 12). Different superscript letters 
indicate significant differences (p < 0.05).

FIGURE 3

Effects of ACP supplementation on liver function. Control, control group; HFD, high fat diet group; and ACP, A. cornea var. Li. polysaccharides group. 
(A) Serum alanine aminotransferase (ALT) level. (B) Serum aspartate aminotransferase (AST) level. Values are expressed as mean ± SD (n = 12). Different 
superscript letters indicate significant differences (p < 0.05).
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Effects of ACP supplementation on gut 
microbiota

To investigate whether mixed lactobacilli have an important role in 
the bacterial communities of NAFLD-induced rats, the gut microbiota of 
rats was analyzed by sequencing the 16S rDNA variable region V3–V4. 
The phylum levels of the gut microbiome samples are shown as 
Figure 7A. Firmicutes and Bacteroidota were the dominant phyla with a 
total abundance of more than 70%, followed by Proteobacteria and 
Deferribacteres. The relative abundance of Firmicutes was increased and 

the relative abundance of Bacteroidota were decreased in the HFD group. 
In reversing this trend, ACP supplementation lowered Firmicutes 
abundance level, raised Bacteroidetes diversity gave a decreased ratio of 
Firmicutes: Bacteroidetes. The genus levels were shown in Figure 7B. In 
the HFD group, the relative abundances of Bifidobacterium, Bacteroides, 
Odoribacter, Alloprevotella, Rikenellaceae RC9 gut group and Blautia were 
decreased compared with the control group. In contrast, the abundance 
of these genuses in the ACP supplementation were increased in the 
compare with the HFD group. Moreover, the relative abundances of 
Parabacteroides, Lachnoclostridium, Lachnospiraceae NK4A136 group and 

FIGURE 4

Effects of ACP supplementation on histological alterations of liver. Control, control group; HFD, high fat diet group; and ACP, A. cornea var. Li. 
polysaccharides group. Values are expressed as mean ± SD (n = 12). Different superscript letters indicate significant differences (p < 0.05).

FIGURE 5

Effects of ACP supplementation on the oxidative stress. Control, control group; HFD, high fat diet group; and ACP, A. cornea var. Li. polysaccharides 
group. (A) MDA, (B) SOD, (C) CAT, and (D) GSH-PX. Values are expressed as mean ± SD (n = 12). Different superscript letters indicate significant 
differences (p < 0.05).
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Roseburia were increased, which was decreased when compared to the 
HFD group.

Discussion

The pervasive effects of NAFLD on a global scale is a public 
health concern that has warranted continued research into its 
mitigation (22). Using environment-friendly approaches such as 
edible fungus that secrete biologically-active compounds can be a 
promising technique for its therapy (23, 24). Our previous study 
found that polysaccharides supplementation with Auricularia 
cornea var. Li. (ACP) could improve immune by regulating gut 
microbiota (15), but its role in alleviating NAFLD has been poorly 
studied. The objective of this work to analyze the protective effects 
of Auricularia cornea var. Li. polysaccharides on HFD-induced 
NAFLD and its related mechanism. In this study, HFD significantly 
increased the body weight gain, liver index, body fat rate and 
HOMA-IR, but this was restored to normalcy by supplementation 
with ACP, in agreement with Naudrin et al. (25), who opined that 
supplementation with this polysaccharide could be  protective 
against NAFLD induced by HFD. It is known that HFD-induced 
NAFLD is featured by increased TC, TG, and LDL levels and 
decreased HDL levels (26). Interestingly, it has also been reported 
that when these NAFLD biomarker levels are lowered, the 

condition is reversed (27, 28). We observed that the hepatic levels 
of TC, TG, and LDL and lowered the HDL levels were induced by 
HFD. This trend was reversed by supplementation with ACP, which 
was in line with the effects of polysaccharides from Enteromorpha 
prolifera in previous study (29). HFD also caused liver injury via 
significant fat accumulation, but this was lowered after ACP 
administration in NAFLD rats. Lipid deposition and toxicity levels 
which indicate inflammations and liver injury, are typically 
measured by serum AST and ALT levels (30). In our study, the 
HFD rats group should considerably high serum AST and ALT 
levels, which was reversed by ACP supplementation. These indicate 
that mediation with this polysaccharide could attenuate 
HFD-induced liver injury and protect liver function. The 
biomarkers used to measure liver oxidative stress (lipid 
peroxidation) include MDA, SOD, CAT and T-AOC. SOD breaks 
down superoxide anion, which is required as a catalyst in reducing 
O2

▪− to H2O2, this is then converted to water by CAT (31). MDA 
can be a reliable in vivo biomarker of oxidative stress (32). Zhu 
et  al. reported that chicory polysaccharide could improve the 
NAFLD in a rat model (33). Our results showed that ACP 
supplementation significantly decreased the hepatic levels of MDA 
and increased the activities of SOD, CAT, and GSH-PX, indicating 
that ACP supplementation could alleviate the NAFLD through 
elevating antioxidant capacity. In addition to immune response 
regulations, cytokines also play a role in repair of damaged tissues. 

FIGURE 6

Effects of ACP supplementation on cytokine contents. Control, control group; HFD, high fat diet group; and ACP, A. cornea var. Li. polysaccharides 
group. (A) IL-6; (B) IL-1β; (C) TNF-α; and (D) IL-4. Values are expressed as mean ± SD (n = 12). Different superscript letters indicate significant differences 
(p < 0.05).
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Microbes in the intestine are known to directly or indirectly trigger 
immune responses and inflammations via cytokines like IL-6, 
IL-1β and TNF-α, with possible NAFLD-ameliorating effects (34). 
In this study, we observed that while IL-6, IL-1β and TNF-α levels 
were significantly raised by induced HFD conditions while IL-4 
levels were lowered. This scenario was reversed by ACP mediation, 
suggesting that it could be strategic in NAFLD therapy via cytokine 
level regulation.

There is increasing evidence that NAFLD onset could be mitigated 
or aggravated by microbes in the gut (35). Our results showed that in 
the HFD group, the relative abundance of Bacteroidetes decreased 
substantially, noting an unusual increase in Firmicutes levels, aggreging 
with earlier studies that report high Firmicutes: Bacteroidetes ratio 
(36–38). The Firmicutes phylum have been reported to raise calories 
absorption which triggers obesity biomarkers with suppressed 
Bacteroidetes levels (39, 40). Following this scenario, ACP 
supplementation reversed this trend by raising Bacteroidetes abundance 
and also lowered the Firmicutes: Bacteroidetes ratio. Other reports 
demonstrated that the presence of Bifidobacterium (41), Bacteroides (42, 
43), and Alloprevotella (44) were negatively correlated with obesity. As 
a non-pathogenic gut microbe, Bifidobacterium contributes to gut and 
intestinal health by secreting pathogen-inhibiting organic acids and 
lowers intestinal environment pH (45). Blautia is well-known butyrate 
producers, which is associated with a wide range of health benefits, 
including improved body composition and weight loss (46, 47). It has 
been reported that orally administered Odoribacter laneus could 

improve glucose control and inflammatory profile in obese rats by 
depleting circulating succinate (48). Alloprevotella belonging to the 
Bacteroidetes phylum has shown anti-inflammatory effects (49).

LPS is secreted by abundances of Parabacteroides (50, 51), 
Lachnoclostridium (52), Lachnospiraceae NK4A136 group (53) and 
Romboutsia (51), triggering proinflammatory cytokines, obesity, 
and insulin resistance. Again, organic acid-producing bacteria can 
be substantially suppressed by Lachnoclostridium, Lachnospiraceae 
NK4A136 group and Romboutsia from the Lachnospiraceae 
phylum (54). This has been correlated with cancers and metabolic 
syndrome (55, 56) but interestingly, this was normalized after ACP 
mediation. ACP further alleviates NAFLD by regulating the 
ecological imbalance of intestinal microbiota caused by a 
high-fat diet.

Conclusion

The current study showed that parameters like HOMA-IR, body 
fat rate, liver index, and body weight gain were significantly lowered 
by ACP supplementation. In addition, HDL levels were improved with 
a corresponding decrease in hepatic levels of TC, TG, and LDL and 
ALT and AST levels. ACP supplementation could alleviate oxidative 
stress by decreasing the hepatic levels of MDA and increasing the 
activities of SOD, CAT, and GSH-PX. Immunomodulatory biomarkers 
like IL-6, IL-1β, IL-4 and TNF-α concentrations were also significantly 
lowered. Interestingly, gut microbial biodiversity was restored, 
suggesting that this procedure could be  promising in alleviating 
NAFLD symptoms.
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