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Obesity, pancreatitis, cardiovascular, gastrointestinal (GI), and liver diseases have 
all been linked to the Western lifestyle, characterized by increased unhealthy food 
consumption and decreased physical activity. Besides obesity and pancreatitis, 
many GI and liver diseases are associated with inflammation. Inflammasomes 
are multi-protein complexes that mediate acute and restorative inflammatory 
pathways. However, many aberrations in inflammasome activity originate from 
shifts in dietary habits. Evidence reveals that dietary polyphenols effectively 
modulate inflammasome-associated dysfunctions. With a focus on pancreatitis, 
GI, and liver disorders, this review set out to provide the most relevant evidence 
for the therapeutic impact of polyphenols via the regulation of the inflammasome 
pathway. Overall, flavonoid and non-flavonoid polyphenols maintain intestinal 
eubiosis, downregulate NLRP3 inflammasome canonical pathway, and restore 
redox status via upregulating Nrf2/HO-1 signaling. These effects at the level of 
the intestine, the liver, and the pancreas are associated with decreased systemic 
levels of key pro-inflammatory cytokines, including TNF-α, IL-1β, and IL-6.
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1. Introduction

Western (or more broadly “modern”) lifestyle, which is characterized by increased unhealthy 
food consumption and decreased physical activity, is linked to chronic diseases of civilization, 
including epithelial cell cancers, obesity, pancreatitis, cardiovascular, gastrointestinal (GI), and 
liver diseases (1–4). GI diseases encompass one or more of the four typical symptoms and signs: 
abdominal or chest pain, altered food ingestion, altered bowel movements, and GI tract bleeding 
(5). Many GI and liver diseases are associated with inflammation, which is a physiological 
response that can be triggered by invading microbes’ antigens or host inflammatory molecules 
(6, 7). Inflammasomes are multi-protein complexes that mediate acute and reparative 
inflammatory pathways (8). However, deregulated inflammasome activities can result in chronic 
inflammation underlying a series of pathologies, such as GI and liver disorders and pancreatitis 
(9–13). In addition to the gut microbiota, dietary habit changes are believed to underlie many 
host inflammatory responses (8, 14–16). Indeed, the release of free fatty acids (FFAs) in the 
human GI tract may trigger NLRP3 inflammasome-mediated inflammation (16–18). Therefore, 
a healthy diet rich in nutraceuticals can be an excellent strategy for managing GI and liver 
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disorders, partly through regulating inflammasome activities (19, 20). 
Polyphenols are dietary nutraceuticals that have been reported to 
exhibit a number of biological activities, such as antioxidant, 
antimicrobial, anti-inflammatory, and anticancer properties (18). 
These bioactive substances are found in many cereals, vegetables, 
fruits, herbs, and beverages. Accumulating evidence reveals that 
polyphenols are effective in modulating inflammasome-associated 
dysfunctions, including pancreatitis, GI and liver disorders (21–24). 
Pellegrini et  al. (25) recently provided an overview of NLRP3 
inflammasome pathway modulation by secondary metabolites. 
Another recent review by Owona et al. (26) highlighted the role of 
flavonoids, the most abundant phenolic compounds, in modulating 
numerous inflammasome-associated chronic diseases. Therefore, 
studies have been expanding on polyphenols-induced inflammasome 
regulation as a prominent approach for managing and treating 
inflammation-associated diseases. This review aimed to provide 
up-to-date evidence for the therapeutic impact of polyphenols via the 
regulation of the NLRP3 inflammasome pathway, with a focus on 
pancreatitis, gastrointestinal and liver disorders.

2. Inflammasome activation by 
Western dietary patterns

Inflammasomes are intracellular multi-protein complexes made 
up of three components: a sensor molecule consisting of nucleotide-
binding oligomerization domain (NOD)-like receptors (NLRs), an 
adaptor protein ASC (apoptotic speck-like protein containing), and 
an effector molecule procaspase-1 (12). NLR family pyrin domain-
containing protein (NLRP) inflammasomes are innate immune 
sensors that are assembled following NLR’s recognition of multiple 
classes of damage-associated molecular patterns (DAMPs), in 
response to cell injury, and pathogen-associated molecular patterns 
(PAMPs) of invading microbes (8). Once assembled, NLRPs mediate 
the caspase-1 activation that results in proteolytic cleavage of 
pro-interleukin-1β (pro-IL-1β) and IL-18 into bioactive forms leading 
to a myriad of additional cytokines and chemokines upregulation or 
initiating pyroptotic cell death (pyroptosis) (27).

Approximately half of all deaths worldwide in the late 19th 
century was due to infectious diseases. This burden has dropped 
significantly in the last century, from 85 to 15%, thanks to significant 
developments such as widespread sanitation improvement. Contrarily, 
shifts in dietary habits, especially in Western societies, have 
contributed significantly to the emergence of non-communicable 
diseases. Furthermore, a Western-style calorie-rich diet is directly or 
indirectly responsible for over 80% of all deaths (28). Western diet 
(WD) patterns include a lot of high-glycemic/high-insulinemic 
carbohydrate foods like refined cereals, corn, potatoes, sugars (mainly 
sucrose and fructose), dairy products, and a considerable amount of 
fat (a fair amount of ω-6 polyunsaturated fatty acids “PUFAs”) and 
plenty of protein (29). Adherence to the Western dietary pattern 
enhances refined starchy carbohydrate amounts and free fatty acids 
(FFAs) release. All of which can result in sterile (or non-pathogenic) 
inflammation associated with alterations in gut microbiota (17, 22, 
30–32). Indeed, a sedentary lifestyle and excessive intake of fat, starchy 
carbohydrates, and free sugars have been suggested to activate 
inflammasomes through uric acid, resulting in exacerbated oxidative 
stress and inflammation in the liver (31). It has also been shown that 

FFAs induce the expression of NLRP3 inflammasome complex-
forming proteins in endothelial cells (17). Increasing evidence has 
established the association of WD with gut microbiota profile 
alterations and gut mucosal barrier disruption (32, 33). The gut 
mucosa disruption is a hallmark of inflammatory bowel diseases 
(IBD) characterized by an upregulated NLRP3 inflammasome 
pathway, which can be  triggered following short chain fatty acids 
(SCFAs) binding to GPR43 of the enterocytes (19, 22, 32, 34). 
Moreover, a recent study showed that WD is associated with altered 
gene expression, resulting in an elevated risk for autoimmune 
pancreatitis (30). Since the liver is a key metabolic organ, WD patterns, 
including simple sugars, saturated fatty acids, trans fats, and animal 
proteins, play a crucial role in the onset and progression of liver 
pathologies such as steatosis and nonalcoholic fatty liver disease 
(NAFLD) (35). Indeed, high levels of alcohol absorption can cause 
hepatocyte death. Likewise, hepatocyte steatosis can be caused by a 
high energy intake of fat and sugar (31). All these factors can alter the 
gut microbiota composition, resulting in increased microbial 
translocation to the portal blood and increased PAMPs exposure in 
the liver. These PAMPs from the gut activate liver immune cells via 
PRRs, leading to increased IL-1β and IL-18 production through toll 
like receptor 4/nuclear factor-kappa B /NLRP3 (TLR4/NF-κB/NLRP3) 
inflammasome signaling pathway (36).

The main mechanisms underlying NLRP3 inflammasome 
complex-mediated inflammatory disorders by WD are overviewed in 
Figure 1.

3. Polyphenols impact on 
inflammasome-mediated diseases

The term polyphenols refers to a series of homologous compounds 
comprising a hydroxyl group bonded directly to a benzene ring. Thus, 
polyphenols are substances broadly distributed in the plant kingdom 
that contain multiple phenyl rings and at least one hydroxyl substituent 
(37). Their structure may vary from basic compounds like phenolic 
acids and stilbenes to more complex polymers with a high molecular 
weight, like tannins (38). Dietary polyphenols are frequently classified 
into flavonoid and non-flavonoid polyphenols. Plant-based 
polyphenols are potent anti-inflammatory agents, and this benefit may 
be mediated by their ability to modulate inflammasome activity (39). 
Indeed, in silico investigations showed that phenolics such as 
phenylpropanoids, curcumin, and epigallocatechin-3-gallate (EGCG) 
exhibited a high affinity with the NLRP3 inflammasome complex (40, 
41). Thus, phenolic compounds may be potent inhibitors of NLRP3 
inflammasome activation. Therefore, they can modulate NLRP3 
inflammasome-associated inflammation and pathologies.

3.1. Pancreatitis

Acute pancreatitis (AP) is the most prevalent pancreatic pathology 
and the most likely cause of hospitalization among nonmalignant 
gastrointestinal illnesses (13). Evidence showed that AP may be linked 
to luminal lipids maldigestion, and the premature activation of the 
proteolytic proenzymes such as trypsinogen within the pancreatic 
acinar cells is expected in this pathology (42). It is demonstrated that 
the NLRP3 inflammasome is incriminated in pancreatitis onset and 
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complications (13). Thus, inhibiting the NLRP3 inflammasome 
pathway might be  an effective treatment for patients with severe 
pancreatitis. Phytochemicals have been reported to modulate 
inflammasome-mediated diseases (25, 26, 43). Accordingly, several 
studies investigated the impact of dietary polyphenols on 
inflammasome-mediated pancreatitis (21, 44–47). Aruna et al. (44) 
suggested that rutin, a flavonoid glycoside, curtails pancreatitis 
through the downregulation of ASC–NLRP3, resulting in reduced 
caspase-1 activation and decreased IL-1β, IL-18, and tumor necrosis 
factor-α (TNF-α) pro-inflammatory cytokines expression and 
production in alcohol and cerulein-induced pancreatitis model. It is 
well-established that systemic inflammation is common in severe AP 
(13). Interestingly, EGCG and other phenolic compounds have been 
shown to decrease systemic levels of key pro-inflammatory cytokines, 
including TNF-α, IL-1β, and IL-6 (21, 45, 47).

Reactive oxygen species (ROS) are the root cause of cellular 
oxidative stress, significantly contributing to AP pathogenesis (48). It 
is well known that endogenous and exogenous antioxidants counteract 
cellular ROS overproduction. Several phenolic compounds exhibited 
a preventive effect against AP severity and complications by mitigating 
mitochondrial ROS-triggered NLRP3 inflammasome activation or 
upregulating the nuclear factor erythroid 2-related factor 2 (Nrf-2) 
pathway (21, 44, 45, 49). Indeed, rutin reduced plasma levels of 
thiobarbituric acid reactive substances (TBARS), lipid peroxidation 
end by-products, and enhanced glutathione peroxidase (GPx), 

Superoxide dismutase (SOD), Catalase (CAT) activity in pancreatic 
tissue of alcohol and cerulein-induced pancreatitis model (44). 
Moreover, apocynin, a phenolic compound, decreased the ROS level 
in the lung of rats suffering from severe AP (45). Another study 
revealed that EGCG co-administration enhanced SOD activation and 
glutathione (GSH) level concomitant with decreased malondialdehyde 
(MDA) levels in the lung tissue of Balb/C mice suffering from AP 
induced with L-arginine (21).

3.2. Gastrointestinal pathologies

The gastrointestinal tract contains many immunocompetent cells 
and is the largest compartment for food digestion and nutrient 
absorption. The body’s most significant mucosal layer, the intestinal 
mucosa, is crucial to maintaining intestinal homeostasis. Nevertheless, 
nutrition, drugs, microbial stimuli, and exacerbated production of 
many metabolites normally produced in cells are risk factors for 
intestinal inflammation that underlies numerous intestinal disorders. 
Indeed, long-term exposure to inflammatory cytokines such as IL-1, 
IL-6, IL-8, TNF-α and interferon-gamma (IFN-γ) is linked to several 
illnesses, including IBD which include ulcerative colitis (UC) and 
Crohn’s disease (CD). These cytokines disrupt the homeostasis of the 
digestive system during an imbalanced inflammatory condition, 
which results in a chronic inflammatory process (50–52). Recent 

FIGURE 1

Graphical summary of the mechanisms underlying inflammasome complex-mediated inflammatory disorders by Western diet.
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research has shown how crucial canonical NLRP3 inflammasome 
signaling is for controlling intestinal homeostasis and the risk for 
IBD (53).

Phenolic compounds have attracted the attention of several 
researchers due to their pharmacological actions as an antioxidant, an 
anti-inflammatory, and an antibacterial (18). In vivo studies showed 
that bergenin administration to rats with 2,4,6-trinitrobenzenesulfonic 
acid (TNBS)-induced acute colitis significantly downregulated IFN-γ, 
NLRP3 inflammasome complex-forming proteins, IL-1β, and IL-18 in 
colonic tissue. Thereby blocking the canonical pathway of the NLRP3 
inflammasome (53).

Since the pro-inflammatory macrophage phenotype plays a 
central role in intestinal mucosal barrier damage, there has been much 
interest in counteracting macrophage activation by dietary 
polyphenols to maintain intestinal barrier integrity (54, 55). A recent 
study showed that ligstroside aglycon (LA), an abundant phenolic 
compound in extra virgin olive oil (EVOO), inhibited canonical and 
non-canonical activation of NLRP3 inflammasome and modulated 
cyclo-oxygenase-2 (COX-2) in lipopolysaccharide (LPS)-stimulated 
murine peritoneal macrophages. This anti-inflammatory effect was 
associated with a significant antioxidant activity revealed by a decrease 
in NO production, inducible nitric oxide synthase (iNOS), and 
NADPH oxidase-1 (NOX-1) protein expression (56). Besides, 
rosmarinic acid nanovesicles protected the colonic mucosa from 
dextran sodium sulfate (DSS)-induced injury by regulating the NLRP3 
inflammasome and restoring Nrf2/ heme oxygenase (HO-1) signaling 
pathway (52). It has also been demonstrated that hydroxytyrosol 
supplementation exhibits anti-inflammatory effects in murine 
ulcerative colitis models by promoting eubiosis. Moreover, 
hydroxytyrosol enhanced the colonic antioxidant capacity 
concomitant with NLRP3 inflammasome inhibition, revealed by 
caspase-1, ASC, IL-18, and IL-1β downregulation (22).

3.3. Liver disorders

Clinically, IBD and NAFLD frequently coexist (57). Liver 
diseases account for more than 45% of fatalities in developed 
countries and significantly contribute to worldwide morbidity and 
mortality since the liver is the main metabolically active and 
detoxification organ (58, 59). Numerous conditions, such as drug 
abuse, alcoholism, viral infections, metabolic abnormalities, and 
autoimmune reactions, can result in liver damage. Additionally, 
liver pathophysiological processes are frequently linked to 
inflammation and oxidative stress, suggesting a dual control of one 
another (58). Some hepatic pro-inflammatory cytokines, such as 
IL-1β, are rapidly produced after liver damage and directly activate 
hepatic stellate cells (HSCs), causing the conversion of these cells 
into myofibroblasts. The last secret a large amount of extracellular 
matrix (ECM) that leads to scar tissue formation. Many studies have 
associated increased pyroptosis with various illnesses, including 
liver abnormalities (58). Activation of NLRP3 inflammasome has 
emerged as the primary trigger of liver fibrosis and cirrhosis (58, 
60). Moreover, caspase-1 and ASC are involved in the inflammatory 
and oxidative stress responses (61). The transcription factor Nrf2 
orchestrates the cellular response to redox stress. Once activated, 
the cytosolic Nrf2 translocates to the nucleus, initiating gene 

expression of several antioxidant enzymes (62). Therefore, Nrf2 has 
become a main target for managing oxidative stress-associated 
disorders. Indeed, in addition to stimulating liver regeneration, 
Nrf2 has been reported to play intricate roles in the modulation of 
liver fibrosis, cancer, and inflammation (59). Likewise, NLRP3 
upregulates hepatic Kelch-like ECH-related protein 1 (Keap-1), 
Nrf2 negative regulator, which may cause fibrogenesis as a result of 
ROS-induced pyroptosis (58). Hence, antioxidant therapy effectively 
counters ROS-mediated activation of the NLRP3 inflammasome in 
murine acute liver injury models (61). Another in vivo study 
demonstrated that chlorogenic acid, a hydroxycinnamic acid, 
upregulates the expression and the activation of Nrf2-related 
antioxidant genes, including HO-1, NAD(P)H:quinone 
oxidoreductase-1 (NQO1), and glutamate-cysteine ligase catalytic 
subunit (GCLC). Furthermore, this phenolic acid inhibited NLRP3 
inflammasome activation revealed by caspase-1 and IL-1β proteins 
downregulation in Sprague–Dawley rats with carbon tetrachloride 
(CCl4)-induced acute liver injury (59).

Without excessive alcohol consumption, NAFLD is the most 
common cause of liver dysfunction in the Western world (63). 
NAFLD is not a single disorder. Instead, it refers to a variety of 
hepatic pathologies, from fatty liver (steatosis) to fatty liver with a 
pronounced inflammation and fibrosis (nonalcoholic 
steatohepatitis, or NASH) to cirrhosis and possibly hepatocellular 
cancer (64, 65). The NLRP3 inflammasome plays a crucial role in 
the development of NASH. Recent findings suggested that 
cannabidiol, a terpenophenolic compound, may diminish the risk 
for NASH by downregulating NF-κB and NLRP3 inflammasome 
signaling pathways in macrophages in high-fat high cholesterol 
(HFC) diet-fed mice (66).

Although the significant decrease in pathogen-caused foodborne 
diseases in developed countries, increased exposure to aflatoxin B1 
(AFB1), produced by toxigenic Aspergillus fungi, has recently been 
found in some regions of the United States (67). Prolonged exposure 
to AFB1 has been suggested to induce hepatocyte pyroptosis and 
oxidative stress, which further results in liver injury (23). Importantly, 
curcumin mitigated AFB1-induced TNF-α, IL-6, and IL-1β 
pro-inflammatory cytokines production and ROS generation, 
resulting in curtailed necroptosis of chicken liver tissue (68). In line, 
another study showed that EGCG, a major flavonoid in green tea, 
inhibited NLRP3 inflammasome activation, which was associated 
with improved hepatic oxidative stress, cell apoptosis, necrosis, 
steatosis, and degeneration in CD-1 (ICR) mice (69). Emerging 
evidence from in vivo models highlights that the protective effects of 
curcumin against liver injuries and diseases are mainly exerted 
through Nrf-2 upregulation concomitant with NLRP3 and NF-κB 
pathways downregulation (20, 23, 70, 71). Data from a case–control 
study and a randomized controlled trial showed that anthocyanins, a 
flavonoid subclass, abrogate NLRP3 inflammasome, caspase-1, IL-1β, 
and IL-18 expression in subjects’ peripheral blood mononuclear cells 
(PBMCs) and plasma levels of IL-1β and IL-18  in patients with 
NAFLD (72). It has also been shown that cyanidin-3-O-β-glucoside, 
an anthocyanin, can attenuate alcoholic steatohepatitis through 
inducing NF-κB deacetylation and counteracting NLRP3 
inflammasome activation (73).

The effects of various polyphenol classes on the studied 
inflammasome-related pathologies are summarized in Table 1.
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TABLE 1 A summary of phenolic compounds’ regulation of the inflammasome pathway in pancreatitis, gastrointestinal, and liver disorders.

Inflammasome-
associated 
disorders

Investigated dietary polyphenols Study design and main findings References

Compounds 
used in the 

study

Class Principal 
sources

Study details Outcomes

Pancreatitis

Rutin Flavonoids
Panicum 

virgatum

Male albino Wistar rats 

treated with ethanol and 

cerulean, 5 weeks.

 - Downregulation of 

NLRP3-ASC-

Caspase1 axis;

 - Decreased IL-1β, IL-18, 

and TNF-α expression 

and production

 - Reduced plasma levels 

of TBARS,

 - Enhanced GPx, SOD, 

CAT activity

Aruna et al. (44) 

and Ramawat 

and Mérillon 

(74)

Epigallocatechin-

3-gallate
Flavonoids

Green tea carob 

flour

Exposure male Balb/C mice 

model with L-arginine 

induced acute pancreatitis, 

4 weeks

 - Activation of SOD 

and GSH;

 - Decline in MDA levels 

in the lung tissue;

 - Counteraction of 

NLRP3 inflammasome 

activation.

Durazzo et al. 

(38) and Luo 

et al. (21)

Apocynin
O-methyl 

catechols

Roots of 

Apocynutit 

catinabinum

Sodium taurocholate induced 

severe acute pancreatitis 

(SAP) in adult male Wistar 

rats, 7-8 weeks.

 - Low serum levels of 

TNF-α, IL-1β, and IL-6;

 - Abolished NLRP3/

NF-κB signaling 

cascade.

Jin et al. (45) and 

Stefanska and 

Pawliczak (75)

Gastrointestinal 

pathologies

Bergenin
Hydroxybenzoic 

acid derivatives

Plants of the 

genus 

Peltophorum

2,4,6-trinitrobenzenesulfonic 

acid (TNBS)-induced acute 

colitis in Wistar rats.

 - Blockade of canonical 

and non-canonical 

NLRP3/ASC 

inflammasome 

signaling pathways;

 - Curtailment of 

pro-inflammatory 

proteins and cytokines: 

IL-1β, IL-10, IFN-ɣ, 

IL-1, IL-11, NF-κB, 

and STAT3.

Lopes de Oliveira 

et al. (53)

Rosmarinic acid
Hydroxycinnamic 

acid

Cloves, cumin, 

fenugreek, 

parsley

dextran sodium sulphate 

(DSS)-induced acute colitis 

in C57BL/6 mice, 7 days.

 - Decrease in 

myeloperoxidase 

activity and 

TNF-α production;

 - Downregulation of 

NLRP3, ASC, 

caspase-1, and IL-1β 

expression.

Marinho et al. 

(52) and 

Ramawat and 

Mérillon (74)

Hydroxytyrosol Secoiridoids Olive oil

DSS-induced ulcerative 

colitis in Kunming male 

mice, 14 days.

 - Suppression of NLRP3, 

caspase-1, ASC, IL-18, 

and IL-1β expression;

 - Maintenance of 

eubiosis.

Miao and Ph (76) 

and Ramawat 

and Mérillon 

(74)

(Continued)
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4. Conclusion

Western lifestyle characterized by nutritional transition is a major 
risk factor for inflammasome-associated inflammation and illnesses. 

Nutritional approaches encourage polyphenol-rich foods as a 
prominent strategy for NLRP3 inflammasome-related disorders 
prevention and management. The current review sheds light on how 
dietary polyphenols can regulate NLRP3 inflammasome activation in 

Inflammasome-
associated 
disorders

Investigated dietary polyphenols Study design and main findings References

Compounds 
used in the 

study

Class Principal 
sources

Study details Outcomes

Liver disorders

Thymol

Terpenophenolics

Thyme

BALB/c male

mouse model with liver 

injury induced by 

lipopolysaccharides (LPS), 

34 days.

 - Modulation of the 

expression of NLRP3, 

TNFα, IL-1β, and IL-18;

 - Regulation of the 

apoptotic caspase-3 

and − 9 gene expression 

and activation.

Dou et al. (77)

Cannabidiol Marijuana

C57BL/6 J male mice feeding 

with a high-fat high 

cholesterol (HFC) diet, 

8 weeks.

 - Suppression of 

NF-κB and

NLRP3 inflammasome 

activation.

Huang et al. (66)

Chlorogenic acid
hydroxycinnamic 

acid

Coffee, tea, 

whole cereal 

grains, garlic, 

tomato

CCl4-induced acute liver 

injury in male Sprague–

Dawley rats, 7 days.

 - Reduced expression of 

NLRP3, procaspase-1 

and pro-IL-1β.

Shi et al. (59) and 

Nani et al. (18)

Epigallocatechin-

3-gallate
Flavonoids

Green tea carob 

flour

Mouse model of 

perfluorodecanoic acid 

(PFDA)-induced  

liver damage,  

12 days.

 - Downregulation of 

hepatic NLRP3 

signaling.

Durazzo et al. 

(38) and Wang 

et al. (69)

Cyanidin-3-O-β-

glucoside
Flavonoids

Deep-colored 

fruits and 

vegetables, 

flowers and 

fruits of Elymus 

repens, Morus 

alba, Vitis 

vinifera, 

Vaccinium 

corymbosum 

and Vaccinium 

myrtillus

Male C57BL/6 J mice fed with 

HFC plus ethanol high fat/

high cholesterol diet, 7 days.

 - Suppression of 

NF-κB acetylation;

 - Abrogation of NLRP3 

inflammasome 

activation and 

pro-inflammatory 

cytokines release in 

hepatic cell lines.

Zhou et al. (73) 

and Cásedas 

et al. (78)

Anthocyanins Flavonoids

Raspberries, 

black cabbage, 

eggplant, radish, 

Strawberry

Patients with nonalcoholic 

fatty liver disease (NAFLD), 

12 weeks.

 - Upregulation of NLRP3, 

caspase-1, IL-1β, and 

IL-18 mRNA 

expression in  

peripheral  

blood  

mononuclear cells 

(PBMCs).

Nani et al. (18) 

and Zhu et al. 

(72)

TABLE 1 (Continued)
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pancreatitis, gastrointestinal and liver diseases. Overall, polyphenols 
counteract inflammasome complex assembly, downregulating its 
downstream substrates, IL-1β and IL-18. Moreover, polyphenols may 
modulate oxidative stress associated with inflammation in these 
NLRP3 inflammasome-linked pathologies via upregulating Nrf-2 and 
abolishing NF-κB pathway.
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