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Background: Observational studies have revealed associations between diet 
and lung cancer. However, it is unclear whether the association is disturbed by 
confounding factors. We  used a two-sample Mendelian randomization (MR) 
method to characterize the associations between diet and the lung cancer risk 
(including 3 subtypes: lung adenocarcinoma (LA), squamous cell lung carcinoma 
(SqCLC), and small cell lung cancer (SCLC)).

Materials and methods: Data on 20 diets were screened from the UK Biobank. Lung 
cancer data came from a large meta-analysis of 85,716 individuals. The inverse-
variance weighted method was used as the main analysis. Sensitivity analysis was 
also used to explain the different multiplicity patterns of the final model.

Results: Our results showed significant evidence that 3 diets were associated with 
lung cancer [odds ratio (OR): 0.271, 95% confidence interval (CI): 0.150–0.488, 
p = 1.46 × 10−4, dried fruit; OR: 3.010, 95% CI: 1.608–5.632, p = 5.70 × 10−4, beer] and 
SqCLC (OR: 0.135, 95% CI: 0.062–0.293, p = 2.33 × 10−5, dried fruit; OR: 0.485, 95% 
CI: 0.328–0.717, p = 2.9 × 10−4, cheese). There were also suggestive correlations 
between 5 dietary intakes and lung cancer (OR: 0.441, 95% CI: 0.250–0.778, 
p = 0.008, cereal; OR: 2.267, 95% CI: 1.126–4.564, p = 0.022, beef), LA (OR: 0.494, 
95% CI: 0.285–0.858, p = 0.012, dried fruit; OR: 3.536, 95% CI: 1.546–8.085, 
p = 0.003, beer) and SCLC (OR: 0.006, 95% CI: 0.000–0.222, p = 0.039, non-oily 
fish; OR: 0.239, 95% CI: 0.086–0.664, p = 0.006, dried fruit). No other association 
between diet and lung cancer was observed.

Conclusion: Our study preliminary found that cheese, dried fruit, and beer intake 
were significantly associated with the risk of lung cancer or its subtypes, while 
cereal, beef, and non-oily fish intake were suggestively associated with the risk of 
lung cancer or its subtypes. Well-designed prospective studies are still needed to 
confirm our findings in the future.
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Introduction

Lung cancer is the second most common cancer and the leading cause of cancer death. 
According to the latest global cancer statistics, there were 2.2 million new lung cancer cases and 
1.8 million deaths in 2020 (1). Most patients with lung cancer are found to be in the advanced 
stage of the disease, and the 5-year survival rate is less than 20% (2, 3). Therefore, it is essential 
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to determine the changeable protective or risk factors to prevent the 
occurrence and development of lung cancer.

As a factor that is easy to obtain and change, many researchers 
have begun to pay attention to the effect of diet on lung cancer. A 
sizeable multi-ethnic cohort study showed that a high-quality diet 
is associated with a lower risk of lung cancer, especially squamous 
cell lung cancer. However, high-quality dietary assessment is based 
on various dietary indexes, and it is unclear about the relationship 
between specific dietary intake and lung cancer (4). Similarly, 
dietary pattern analysis allows researchers to investigate the 
comprehensive influence of multiple dietary components on 
disease. Nevertheless, it also limits the ability to explore the role of 
individual diets (5, 6). Some meta-analyses based on prospective 
cohort studies investigated the association between specific diets 
and lung cancer (7–9). The results showed that increased intake of 
coffee, tea, red meat and processed meat was associated with an 
increased risk of lung cancer, while intake of fruits and vegetables 
protected against lung cancer. However, changes in smoking, 
environment, lifestyle and dietary intake after registration of the 
study may cause residual confounding. Therefore, these findings 
need to be further clarified.

In this case, Mendelian randomization (MR) is a feasible way to 
infer the correlations between specific dietary intake and disease. MR 
can use genetic variants as instrumental variables (IVs) for exposure 
(such as dietary intake) to make associational inferences (10), which 
largely avoids the interference of confounding factors common in 
observational studies. Because alleles are randomly assigned to 
offspring during conception, the association between genetic variation 
and disease outcomes is not easily affected by environmental and 
confounding factors (11, 12). Currently, many studies have used MR 
to explore the correlations between dietary intake and disease, 
including cardiovascular disease (13), mental illness (14) and cancer 
(15, 16). Additionally, previous MR studies have demonstrated a link 
between micronutrients concentration and lung cancer (17–19). Since 
many foods contain nutrients evaluated in previous studies, it is 
necessary to further assess the effects of specific dietary intake on 
lung cancer.

In this study, the authors used summary statistics from genome-
wide association studies (GWAS) to conduct a two-sample MR 
analysis to comprehensively characterize the associations between 
different specific dietary components and lung cancer risk. This study 
provided further evidence for the value of diet as a modifiable factor 
in preventing lung cancer.

Materials and methods

Study design

Two-sample MR method was used to explore the correlations 
between dietary intake and lung cancer. Our MR study is based on 
three hypotheses: (1) genetic variants are closely related to the 
exposure of interest; (2) genetic variants are not related to confounding 
factors; (3) genetic variants cannot directly affect the outcome but only 
through the exposure of interest (12). Data used in this study are based 
on published summary statistics of GWAS, so ethical approval and 
informed consent are not required. Figure 1 illustrated the flow chart 
of our study design.

Selection of instrumental variables and 
data source

The genetic variants of dietary intake were obtained from the UK 
Biobank cohort of about 500,000 individuals (20). The original list 
included 26 dietary intakes: coffee, tea, milk, yogurt, cheese, cereal, 
bread, oily fish, non-oily fish, beef, lamb, pork, bacon, processed meat, 
cooked vegetable, raw vegetable, fresh fruit, dried fruit, salted nuts, 
unsalted nuts, salted peanuts, unsalted peanuts, red wine, beer, 
saturated fatty acids and polyunsaturated fatty acids. To select valid IVs, 
we included single nucleotide polymorphisms (SNPs) at the genome-
wide significant level (p < 5 × 10−8) (21) and used strict cutoff values 
(R2 < 0.01; region size = 5,000 kb) to remove SNPs that are in linkage 
disequilibrium (22). Because milk, yogurt, salted nuts, unsalted nuts, 
salted peanuts and unsalted peanuts have less than 5 SNPs that meet the 
strict threshold (p < 5 × 10−8). For these diets, we chose to use a relaxed 
threshold (p < 1 × 10−5; R2 < 0.01; region size = 5,000 kb) to select SNPs. 
Second, SNPs with a minimum allele frequency (MAF) less than 0.05 
were excluded because the association between these SNPs and dietary 
intake was estimated to be  unstable. To satisfy the second critical 
hypothesis, the subphenotype of the selected SNP was evaluated using 
the PhenoScanner database (p < 5 × 10−8) (23) (Supplementary Table S3). 
We excluded SNP associated with smoking, body mass index and type 
2 diabetes. In parallel, SNPs directly related to lung cancer were 
excluded to avoid violating the third critical hypothesis that IVs could 
not directly relate to the outcome. In addition, we  ruled out SNPs 
associated with multiple diets to reduce potential pleiotropy across the 
SNPs (Supplementary Table S4). Finally, F statistics are used to evaluate 
SNPs with weak IVs bias (24). The formula of F statistics is 
F = R2 × (N-2)/(1-R2), where N represents the sample size and R2 refers 
to the variance of exposure explained by IVs. Only the SNP with F 
statistics >10 is considered to be included in the MR analysis.

Dietary intakes as exposure factors were acquired by asking about 
the frequency of dietary intake in the questionnaire. Take dried fruit 
intake as an example; participants were asked, “how many pieces of 
dried fruit would you eat per day?” (Ten raisins, one prune and one 
dried apricot are considered as one piece). Answer with the average 
(integer) of participants’ intake in the past year. All dietary ingredients 
included in this study and the corresponding number of European 
descent participants include milk (N = 64,949), yogurt (N = 64,949), 
salted peanuts (N = 64,949), unsalted peanuts (N = 64,949), salted nuts 
(N = 64,949), unsalted nuts (N = 64,949), coffee (N = 428,860), tea 
(N = 447,485), cheese (N = 451,486), cereal (N = 441,640), bread 
(N = 452,236), oily fish (N = 460,443), non-oily fish (N = 460,880), beef 
(N = 461,053), lamb (N = 460,006), pork (N = 460,162), bacon 
(N = 64,949), processed meat (N = 461,981), cooked vegetable 
(N = 448,651), raw vegetable (N = 435,435), fresh fruit (N = 446,462), 
dried fruit (N = 421,764), red wine (N = 327,026), beer (N = 327,634), 
saturated fatty acids (N = 114,999) and polyunsaturated fatty acids 
(N = 114,999).

Summary-level data on lung cancer were acquired from a large 
meta-analysis by McKay et  al. as the outcome of the current MR 
analysis (25). This study collected data from the International Lung 
Cancer Consortium and the OncoArray-TRICL and provided 
information on genetic variants of three histological subtypes of lung 
cancer (26–28). Therefore, the related data of four types of lung cancer 
were included in the analysis, namely lung cancer (Ncase = 29,266 and 
Ncontrol = 56,450), lung adenocarcinoma (LA) (Ncase = 11,273 and 
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Ncontrol = 55,483), squamous cell lung carcinoma (SqCLC) (Ncase = 7,426 
and Ncontrol = 55,627) and small cell lung cancer (SCLC) (Ncase = 2,664 
and Ncontrol = 21,444). The specific information of the summary-level 
data included in this study was shown in Supplementary Table S1.

Statistical analysis

MR used SNPs to represent the genetic prediction level of dietary 
intake and estimated the association between that level and lung 
cancer risk. The fixed-effects inverse-variance weighted (IVW) 
method was used as the primary method (29). IVW uses a meta-
analysis method to combine Wald estimates for each SNP to obtain 
the overall estimate of the effect of diet on lung cancer. IVW can get 
unbiased associational estimation if no horizontal or horizontal 
pleiotropy is balanced. Sensitivity analysis was also carried out to 
explain the different multi-effect modes of the final model. Specifically, 
the weighted median approach allowed half of the weight to come 
from invalid genetic variants and provided a consistent point estimate 

(30). The MR-Egger method is based on the InSIDE hypothesis. Even 
if all genetic variants are invalid IV, it also gives a valid test of the null 
associational hypothesis and a consistent associational effect 
estimation. However, the estimation of MR-Egger may be inaccurate 
and may be strongly affected by external genetic variants (31). The 
MR-PRESSO method used the global test to evaluate horizontal 
pleiotropy and outliers and also provided the distortion test to 
compare the results before and after outliers are removed (32).

In each analysis of dietary intake and lung cancer, Cochran’s Q 
statistics were used to quantify the heterogeneity between IVs (33). 
Suppose heterogeneity is detected (PCochran’sQ < 0.05), the multiplicative 
random-effects IVW model is implemented to avoid the bias towards 
weaker instrument exposure associations (34). The MR-Egger 
intercept test used the intercept term to evaluate pleiotropy (35). If 
there is a significant difference between the intercept term and zero, 
there may be horizontal pleiotropy between IVs. Moreover, forest 
plots, scatter plots, funnel plots, and leave-one-out analysis plots were 
drawn to visualize the results with high confidence. Specifically, forest 
plot intuitively provides the impact of each SNP on outcome; 

FIGURE 1

The flow chart of our study design.
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leave-one-out analysis determines whether the results are robust 
visually; scatter plot shows the fitting results of different MR analyses; 
funnel plot visually judges the heterogeneity of IVs.

The 95% confidence interval (CI) of the odds ratio (OR) was used 
to estimate the associational effect of dietary intake on lung cancer. 
p < 0.05 was considered to have a suggestive correlation, whereas high-
confidence associations were those that survived multiple tests with a 
threshold of 0.0019 (= 0.05/26) by Bonferroni correction. Use the 
network tool mRND provided by Stephen Burgess to calculate the 
statistical power of MR analysis (Supplementary Table S13) (36). The 
power estimate for each dietary intake is based on a type I error of 5% 
(37). All data analysis in this study was carried out using R software 
(version 4.1.3). The R packages used for MR analyses included 
TwoSampleMR (22) and MR-PRESSO (32) packages.

Results

Dietary intake and lung cancer

Supplementary Table S2 showed the specific characteristics of 622 
IVs by 26 dietary intakes. The F statistics of all IVs are more than 10 
(minimum = 20, maximum = 603), which avoids weak instrument bias.

According to Supplementary Table S5 and Figure 2, in the fixed-
effects IVW method, we found that cereal intake (OR: 0.487, 95% CI: 
0.332–0.714, p = 2.30 × 10−4), non-oily fish (OR: 0.149, 95% CI: 0.054–
0.410, p = 2.31 × 10−4), dried fruit intake (OR: 0.266, 95% CI: 0.179–
0.394, p = 4.05 × 10−11) and beer intake (OR: 3.010, 95% CI: 1.608–5.632, 
p = 5.70 × 10−4) were significantly associated with lung cancer risk. In 
addition, oily fish (OR: 0.657, 95% CI: 0.500–0.862, p = 0.002), beef (OR: 
2.267, 95% CI: 1.126–4.564, p = 0.022), raw vegetable (OR: 0.352, 95% 
CI: 0.160–0.774, p = 0.009) were nominally associated with lung cancer. 
Except for beef and beer, we found evidence of heterogeneity in the 
other five dietary intakes (PCochran’s Q < 0.05), indicating that the estimation 
of fixed-effects IVW may be biased (Supplementary Table S6). The 
random-effects IVW method showed that the suggestive association 
between oily fish, non-oily fish, raw vegetable intake and lung cancer 
disappeared. The significant association between cereal and lung cancer 
is weakened to a suggestive association. In the sensitivity analysis, only 
MR-Egger showed that the point estimation of the association between 
cereal and lung cancer was contrary to the main analysis (IVW 
method). Other sensitivity analyses were directionally consistent with 
the IVW method. No horizontal pleiotropy was detected in the 
MR-Egger intercept test (Supplementary Table S6). Additionally, except 
for beef and beer intake, the MR-PRESSO Global Test found outliers in 
the other five dietary intakes (Supplementary Table S6). After excluding 
outliers, the nominal association between oily fish, non-oily fish, raw 
vegetable intake and lung cancer disappeared. The significant 
correlation between dry fruit intake (OR: 0.343, 95% CI: 0.193–0.611, 
p = 9.10 × 10−4) and lung cancer remained. Finally, the visualization 
results of a significant connection between dried fruit and beer and lung 
cancer were drawn (Supplementary Figures S1, S2).

Dietary intake and lung adenocarcinoma

As shown in Supplementary Table S7 and Figure 3, genetically 
predicted beer intake (OR: 3.536, 95% CI: 1.546–8.085, p = 0.003) was 

nominally associated with increased risk of LA, while dried fruit 
intake (OR: 0.512, 95% CI: 0.303–0.866, p = 0.013) was suggestively 
associated with a low LA risk. Cochran’s Q test only found no 
heterogeneity between the IVs of beer and dried fruit intake 
(Supplementary Table S8). When sensitivity analysis is carried out, the 
point estimation of dried fruit in the MR-Egger method is opposite to 
that of the IVW method. However, no horizontal pleiotropy was 
detected by the MR-Egger regression intercept 
(Supplementary Table S8). Further global tests found no outliers 
(Supplementary Table S8).

Dietary intake and squamous cell lung 
carcinoma

The fixed-effects IVW method showed that genetically predicted 
cheese intake (OR: 0.485, 95% CI: 0.328–0.717, p = 2.9 × 10−4), raw 
vegetable intake (OR: 0.103, 95% CI: 0.031–0.340, p = 1.93 × 10−4), 
dried fruit intake (OR: 0.120, 95% CI: 0.063–0.288, p = 9.06 × 10−11) 
and red wine intake (OR: 0.199, 95% CI: 0.079–0.502, p = 6.21 × 10−4) 
was significantly correlated with the risk of SqCLC, while oily fish 
intake (OR: 0.648, 95% CI: 0.423–0.994, p = 0.047), non-oily fish (OR: 
0.106, 95% CI: 0.024–0.470, p = 0.003), pork intake (OR: 4.099, 95% 
CI: 1.003–16.744, p = 0.049) and beer intake (OR: 3.418, 95% CI: 
1.210–9.660, p = 0.020) were nominally associated with the risk of 
SqCLC (Supplementary Table S9; Figure 4). However, heterogeneity 
and outliers were detected in all seven dietary intakes except cheese 
(Supplementary Table S10). When using the random-effects IVW 
method or the MR-PRESSO method to exclude outliers, only the 
relationship between dried fruit intake and SqCLC remained 
unchanged. In contrast, all the associations between oily fish, non-oily 
fish, pork, raw vegetable, red wine, beer and SqCLC disappeared 
(Supplementary Table S9; Figure  4). Additionally, the connection 
between raw vegetable intake and SqCLC was suggestive in random-
effects IVW but not in the MR-PRESSO method 
(Supplementary Table S9; Figure 4). In most of the results, sensitivity 
analysis is directionally consistent with the IVW method. In addition, 
the MR-Egger regression of all results was close to zero, indicating no 
horizontal pleiotropy interference (Supplementary Table S10). Finally, 
the visualization results show that the significant association between 
cheese and dried fruit and SqCLC is robust and is not disturbed by 
heterogeneity (Supplementary Figures S3, S4).

Dietary intake and small cell lung cancer

There was no significant evidence of a link between genetically 
predicted dietary intake and SCLC. However, we found a nominal 
association between genetically predicted non-oily fish intake (OR: 
0.035, 95% CI: 0.003–0.365, p = 0.005), pork intake (OR: 8.597, 95% 
CI: 1.045–70.748, p = 0.045) and dried fruits (OR: 0.239, 95% CI: 
0.086–0.664, p = 0.006) and SCLC risk (Supplementary Table S11; 
Figure 5). Heterogeneity and outliers were found in non-oily fish and 
pork intake (Supplementary Table S12). No evidence of associations 
between non-oily fish and pork intake and SCLC were detected after 
implementing the random-effects IVW model. However, after using 
global test to exclude outliers, the association between pork and SCLC 
disappeared, and the nominal association between non-oily fish and 
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SCLC still existed. All sensitivity analysis is consistent with the 
direction of the primary analysis. Moreover, the MR-Egger intercept 
test did not detect the existence of horizontal pleiotropy that might 
affect the results (Supplementary Table S12).

Discussion

In this two-sample MR study, we characterized the association 
between 26 dietary intakes and the risk of lung cancer or its subtypes. 

We observed highly confident associations between dried fruit, beer 
and cheese intake and lung cancer. Suggestive associations between 
beef, non-oily fish, and cereal intake and lung cancer were 
also detected.

Dried fruit is favored because it can fully retain the nutrients in 
the fruit and is easy to carry and preserve (38, 39). Dried fruit contains 
various macronutrients, micronutrients and health-promoting 
bioactive substances, which can prevent the development of many 
chronic diseases by regulating cellular responses and metabolism (40, 
41). The consumption of dried fruits in western countries is low; 

FIGURE 2

Forest plot showing results from Mendelian randomization study to assess associations between dietary intake and lung cancer. SNPs, single-
nucleotide polymorphisms; OR, odds ratio; CI, confidence interval; IVW (fe), fixed-effects inverse-variance weighted; IVW (mre), multiplicative random-
effects inverse-variance weighted; WMA, weighted median approach; MR-PRESSO, Mendelian randomization pleiotropy residual sum and outlier. 
*p value is still significant after multiple corrections.
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however, studies have shown that eating dried fruits can help reduce 
people’s inadequate intake of nutrients and improve the quality of their 
diet (42). A meta-analysis has shown that dried fruit has preventive 
value for some cancers, particularly those of the digestive system (43). 
However, few observational studies have explored the effects of dried 
fruit on lung cancer. A cohort study involving 34,198 individuals 
indicated that consuming dried fruit 3 or more times per week was 
associated with a lower lung cancer risk (relative risk 0.89) (44). A 
recent MR study by Jin et al. explored the correlations between dried 
fruit and lung cancer using data from the International Lung Cancer 
Consortium (N = 27,209) (45). Their results showed that dried fruit 
significantly reduced the risk of lung cancer and SqCLC but not 
LA. Our analysis used larger lung cancer data (N = 85,716) and 
included the SCLC subtype. Similar to Jin et al. ‘s results (45), our 
study found a significant protective effect of dried fruit on lung cancer 
and SqCLC. Moreover, we  also found evidence of a suggestive 
protective effect of dried fruit against LA and SCLC, which suggests 
that dried fruit intake may have a potential preventive value for both 
lung cancer and all its subtypes. In the future, the mechanism of dried 
fruit prevention of lung cancer should be further explored to provide 
a new means to prevent lung cancer.

The link between alcohol and lung cancer has long been suspected, 
and there has been some evidence from observational studies. A 
pooled analysis of seven prospective studies found that subjects who 
consumed more than 30 grams of alcohol per day had a slightly higher 
lung cancer risk than those who did not drink (46). Another 
prospective Chinese study also suggested a dose–response association 
between alcohol intake and lung cancer risk (hazard ratio 1.25, 95CI 
[1.10–1.42]) (47). However, other studies suggested that different 
types of alcoholic beverage consumption may have diverse effects on 
lung cancer (48, 49). Although ethanol is an essential component of 
alcoholic beverages, the existence and concentration of some 
carcinogens such as nitrosamines, polycyclic aromatic hydrocarbons 
and asbestos are different in the manufacturing process of alcoholic 
beverages (50–52). According to a meta-analysis, drinking large 
amounts of beer and liquor increases men’s risk of lung cancer, while 
red wine intake may prevent lung cancer (53). Nevertheless, another 
pooled analysis of 22 cohort studies and case–control studies 
suggested that red wine and liquor were negatively correlated with 
lung cancer risk, and no association was found between beer and lung 
cancer (54). It is worth noting that avoiding residual confounding in 

observational studies is a challenging task, and conflicting findings 
may also be attributed to inherent heterogeneity between studies. In 
our study, the MR method can effectively avoid the impact of residual 
confounding. Our results supported a significant association between 
beer intake and increased risk of lung cancer.

Fermented dairy products are rich in nutrients and probiotics. 
Therefore, people pay much attention to its potential for cancer 
prevention (55) because some nutrients and probiotics may promote 
human health by regulating the immune system (56, 57). A meta-
analysis of fermented dairy products and pan-cancer risk suggested 
that fermented dairy product intake is significantly associated with 
overall cancer risk reduction (58). Subgroup analysis showed that the 
effects of fermented dairy products were mainly reflected in 
esophageal cancer, colorectal cancer and bladder cancer but not 
significant in lung cancer. Another meta-analysis after adjusting for 
confounding factors also indicated no statistical correlation between 
cheese, yogurt and other fermented dairy products and lung cancer 
risk (59). Notably, these meta-analyses do not investigate the effects of 
fermented dairy products on lung cancer subtypes, which may lead 
people to ignore the possible association between fermented dairy 
product intake and some lung cancer subtypes. Although our study 
found no effect of cheese on lung cancer, we observed that cheese 
intake significantly reduced the risk of SqCLC. Moreover, although 
the mechanism is unknown, some observational studies have found 
that diet is associated with different lung cancer subtypes (60, 61). 
Therefore, it should not be ignored that diet may have different effects 
on lung cancer subtypes.

Red meat contains high hemoglobin and iron, and its catalytic 
oxidation can destroy various components of the human body and 
cause oxidative stress damage (62). N-nitroso compounds and 
heterocyclic aromatic amines may be produced in cooked red meat, 
which can cause cancer (63). Consistent with previous observational 
studies (9, 64), our study found nominal evidence of a link between 
beef intake and an increased lung cancer risk. Jayedi et al. conducted 
a meta-analysis of 33 prospective studies on fish consumption and the 
risk of chronic diseases (65). Their findings showed that increased fish 
intake was associated with a lower liver cancer risk but not in other 
cancers. However, the quality of this evidence was rated as low or very 
low. Our results suggested that non-oily fish intake has a nominally 
protective effect on SCLC. Additionally, we  found a suggestive 
association between cereal intake and a decreased LC risk. Studies 

FIGURE 3

Forest plot showing results from Mendelian randomization study to assess associations between dietary intake and lung adenocarcinoma. SNPs, 
single-nucleotide polymorphisms; OR, odds ratio; CI, confidence interval; IVW (fe), fixed-effects inverse-variance weighted; WMA, weighted median 
approach.
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have shown that cereal fiber can increase fecal bulk and reduce 
intestinal transport time, thus affecting the absorption of carcinogens 
(66). Some cereals, such as wheat, can increase the yield of butyrate, 
which has been shown to inhibit the growth of cancer cells and protect 
against various cancers (67). A recent prospective cohort study also 
supported the protective effect of breakfast cereal intake on lung 

cancer (68). Our results further support a relationship between cereal 
intake and lung cancer. Notably, this study only found the suggestive 
effects of beef, non-oily fish and cereal on lung cancer. Considering 
the modest effect size, our results should be interpreted cautiously.

One of the advantages of this study is to investigate the relationship 
between multiple dietary intakes and lung cancer through MR 

FIGURE 4

Forest plot showing results from Mendelian randomization study to assess associations between dietary intake and squamous cell lung carcinoma. 
SNPs, single-nucleotide polymorphisms; OR, odds ratio; CI, confidence interval; IVW (fe), fixed-effects inverse-variance weighted; IVW (mre), 
multiplicative random-effects inverse-variance weighted; WMA, weighted median approach; MR-PRESSO, Mendelian randomization pleiotropy 
residual sum and outlier. *p value is still significant after multiple corrections.
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analysis, which is the most comprehensive study to characterize the 
correlations between diet and lung cancer. Additionally, the MR 
design itself is not vulnerable to residual clutter. We eliminated the 
effects of potential pleiotropy on results by using multiple MR 
methods, PhenoScanner databases, and removing SNPs associated 
with multiple diets. Therefore, our results are less likely to be disturbed 
by horizontal pleiotropy. Another advantage of this study is that 
genetic variants in dietary intake and lung cancer come from 
summary-level data from GWAS with large sample sizes. The 
statistical power calculated by mRND also proved the robustness of 
our results (Supplementary Table S13).

This study also has some limitations. First, although we have 
taken control measures, IVs may still have unmeasurable 
confounding and affect the outcome. Second, many IVs rely on 
monotonicity conditions. Estimating the IVs effect under 
monotonicity usually involves an unrecognized subgroup in the study 
population, but using the results of subgroups to guide decision-
making is not an ideal method. In this case, if more information is 
provided, the subgroup effects’ correlation will significantly increase 
(69). Our IVs are genetic variants identified from the United Kingdom 
biobank. We only know the size of the subgroup of IV origins, but 
we  do not know the specific characteristics of this subgroup. 
Meanwhile, the sensitivity of effect estimation to monotonicity bias 
is difficult to be quantified. Therefore, monotonicity may be violated 
in our analysis, which may cause our results to be unsuitable for an 
extension to a larger population. Third, due to the lack of summary-
level data classified by age and sex, this study cannot conduct a 
stratified analysis of lung cancer based on these factors. Fourth, 
two-sample MR is usually assumed to be  linearly correlated with 
exposure and outcome. However, a meta-analysis of observational 
studies showed a non-linear association between some diets and lung 
cancer (8). Unfortunately, we  cannot detect this non-linear 
correlation based on the current summary-level data. Finally, 

although the MR method can provide associational estimates, the 
results reported here cannot automatically be assumed to be causal 
because there is considerable room for other explanations. Therefore, 
our results should be  interpreted carefully, and well-designed 
prospective studies are still needed to confirm our findings in 
the future.

Conclusion

This work characterizes the correlations between genetically 
predicted dietary intake and lung cancer. Our study preliminarily 
showed that dried fruit intake could significantly reduce the risk of 
lung cancer and SqCLC; beer intake was significantly associated with 
an increased risk of lung cancer; cheese intake may significantly 
reduce the SqCLC risk. Moreover, a diet characterized by a low intake 
of beef and a high intake of cereal and non-oily fish was nominally 
correlated with the low risk of lung cancer or its subtypes. Our results 
should be interpreted carefully, and well-designed prospective studies 
are still needed to confirm our findings in the future.
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