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Fruits and vegetables contain numerous nutrients, such as vitamins, minerals, 
phenolic compounds, and dietary fibers. They reduce the incidence of 
cardiovascular diseases and the risk of certain chronic diseases, and improve 
the antioxidant and anti-inflammatory capacity. Moreover, melatonin was found 
in various fruits and vegetables species. Melatonin acts as a multifunctional 
compound to participate in various physiological processes. In recent years, many 
advances have been found that melatonin is also appraised as a key modulator on 
the fruits and vegetables post-harvest preservation. Fruits and vegetables post-
harvest usually elicit reactive oxygen species (ROS) generation and accumulation. 
Excess ROS stimulate cell damage, protein structure destruction, and tissue 
aging, and thereby reducing their quality. Numerous studies find that exogenous 
application of melatonin modulates ROS homeostasis by regulating the antioxidant 
enzymes and non-enzymatic antioxidants systems. Further evidences reveal that 
melatonin often interacts with hormones and other signaling molecules, such 
as ROS, nitric oxide (NO), hydrogen sulfide (H2S), and etc. Among these ‘new’ 
molecules, crosstalks of melatonin and ROS, especially the H2O2 produced by 
RBOHs, are provided in fruits and vegetables post-harvest preservation in this 
review. It will provide reference for complicated integration of both melatonin 
and ROS as signal molecules in future study.
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Introduction

Fruits and vegetables contain numerous nutrients, such as vitamins, minerals, phenolic 
compounds, and dietary fibers (1–4). They play an essential part of a well-balanced daily food. 
It is generally recommended to eat more fruits and vegetables to reduce the incidence of 
cardiovascular diseases and the risk of certain chronic diseases, and improve the antioxidant 
and anti-inflammatory capacity (3, 5). For example, polyphenols inhibit chronic inflammation 
through regulating multiple inflammation-associated cell signaling pathways (6). However, 
fruits and vegetables often generate significant post-harvest losses after harvest (3). They are 
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vulnerable to mechanical damages, water and phytochemicals loss, 
microbial infections, thus resulting in a considerable concern during 
long-term storage (7, 8). To reduce post-harvest losses, several 
appropriate storage technologies are used, including cold chain 
management, hypobaric storage, modified atmosphere package 
(MAP), and ultraviolet treatment (9–13). To some extent, natural/
synthetic preservative agent can also preserve fruits and vegetables 
storage, whereas there are some residues of chemical compounds (14). 
To date, previous studies also indicate that plant natural hormones 
(melatonin, ethylene (ET), salicylic acid (SA), and methyl jasmonate 
(MeJA), etc) and signaling molecules (nitric oxide (NO), hydrogen 
sulfide (H2S), and reactive oxygen species (ROS), etc) can play key 
roles in regulating the maturation and senescence of fruits and 
vegetables, delaying postharvest senescence and extending shelf life 
(15–21).

Acting as a pleiotropic compound, melatonin (N-acetyl-5-
methoxytryptamine) has a wide range of cellular and physiological 
functions in living organisms (22–24). For example, melatonin 
modulates sleep and circadian rhythms, enhances immunity and anti-
inflammatory activities (23, 24). Melatonin improves the anti-
inflammatory activity, particularly against the chronic inflammation 
which induced by many chronic diseases (25). In plants, melatonin 
was firstly detected in 1995 (26, 27). Since then, it was found in various 
plant species and their different tissue parts, such as rice, wheat, 
tomato, apple, strawberry, grape, pepper, cucumber, and solanaceous, 
etc (28–36). Melatonin acts a key molecule to mediate multiple 
physiological processes, such as the alleviation of abiotic and biotic 
stresses, and plant growth and development (37–42). For example, 
melatonin obviously promoted the lateral root formation in 
Arabidopsis thaliana (37). Recently, many studies have reported that 
melatonin plays an vital role in the fruit and vegetable post-harvest 
preservation (43–46). In general, endogenous melatonin was increased 
by exogenous application of melatonin in broccoli, pear, and Zizyphus 
jujuba fruit (43, 44, 46). Then, melatonin observably decreased the 
accumulation of ROS by enhancing antioxidant capacity and total 
phenolic and ascorbic acid (AsA) content, and improved the quality 
of fruits and vegetables (43, 44, 46). Besides, melatonin improved the 
polyphenol accumulation and antioxidant capacity via ethylene 
signaling in grape berries (47).

ROS contain a group of molecules, mainly including hydrogen 
peroxide (H2O2), hydroxyl radical (OH), superoxide anion (O2

•–), and 
singlet oxygen (1O2) (48). ROS can cause the oxidation of lipids, and 
damages of proteins and many other small molecules structures (48). 
Accordingly, plants have evolved sophisticated antioxidant strategies 
to regulate the ROS homeostasis, such as antioxidant enzymes 
[catalase (CAT), ascorbate peroxidase (APX), superoxide dismutase 
(SOD), and glutathione peroxidase (GPX)] and non-enzymatic 
antioxidants (glutathione (GSH), AsA, flavonoids, carotenoids, and 
alkaloids, etc) (40, 41). Moreover, numerous studies revealed that ROS 
play key dual roles in the signaling networks in plant stress responses 
and developmental processes (49, 50). Interestingly, several studies 
have revealed that the signaling crosstalk between melatonin and ROS 
was also suggested in red pear and strawberry fruits during post-
harvest period (51, 52).

In this review, we  mainly discuss exogenous application of 
melatonin in fruits and vegetable preservation, synthesis of 
endogenous melatonin, effects of melatonin on the quality of 
postharvest fruits and vegetable, and the mechanism of 

melatonin-modulated postharvest protection of fruits and vegetables. 
We further highlight and discuss the vital role of ROS signaling during 
the processes, so as to provide reference for future complicated 
integration of both melatonin and ROS as signal molecules.

The changes of phenomenon and 
quality of fruits and vegetables during 
the postharvest period

Fruits and vegetables contain diverse nutrients, such as phenolic 
compounds, AsA, carotenoids, and mineral content, which 
beneficial for the anti-nflammation, antioxidation, anti-diabetes, 
cancer prevention, and cardio-protection in human (1, 2). Many 
popular kinds of fruits and vegetables, such as tomato, apple, 
banana, papaya, etc., are consumed worldwide with the rapidly 
increasing demand and production. However, most of these are 
highly susceptible to soften rapidly and over-ripen, and often 
accompanying by the chlorophyll degradation and pathogens (53–
59). For example, papaya ripened and softened rapidly, and the fruit 
peel color gradually turned from green to yellow after harvest (53). 
Meanwhile, the lightness value declined slightly, the chroma value 
increased, and the hue angle value gradually dropped during late 
storage. The most serious damage was disease incidence, and thus 
decreasing the papaya commodity rate. Similar changes of fruit 
firmness, hue angle, brightness, and color saturation values were 
also found in guava during the postharvest period (54). After 
harvest for 11 days, the anthracnose disease index and disease 
incidence increased rapidly. In cherry tomato and litchi fruits, the 
weight loss and fruit firmness were declined, accompanied by fruit 
decay during storage (57, 59). Furthermore, other fruits and 
vegetables usually encountered the same cases as well (56, 57, 60). 
Hence, low-temperature preservation for fruits and vegetables has 
received increasing research attention (61). Nevertheless, storage 
for long times may cause chilling injury, such as surface pitting and 
browning, inability to ripen, watersoaking lesions, and rapid decay 
(62, 63).

The changes of melatonin content in 
fruits and vegetables during the 
postharvest period

Our previous reviews systematically summarized the 
melatonin biosynthesis and catabolism in plant tolerance to 
abiotic stresses (38, 40–42). In general, various abiotic stresses, 
such as salinity, heat, cold, drought, and cadmium metal stresses 
induce melatonin accumulation by the upregulation of genes 
which encoding tryptamine 5-hydroxylase (T5H), tryptophan 
decarboxylase (TDC), N-acetylserotonin methyltransferase 
(ASMT), serotonin N-acetyltransferase (SNAT), and caffeic acid 
O-methyltransferase (COMT) (40). Interestingly, the changes of 
melatonin content have different trends among different kinds of 
fruits and vegetables, and some findings were listed in Table 1 and 
(19, 44, 58, 64–71, 73). Wang et al. (19) found that endogenous 
melatonin was increased at 0 d to 14 d, and decreased at 14 d to 
63 d throughout storage period in cherry fruit. Interestingly, it was 
decreased dramatically from anthesis to maturity period (45). 

https://doi.org/10.3389/fnut.2023.1143511
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Li et al. 10.3389/fnut.2023.1143511

Frontiers in Nutrition 03 frontiersin.org

These results suggested that endogenous melatonin accumulation 
was regulated by growing and picking storage periods in fruits. 
Similarly, melatonin content of table grape, mango, cassava, and 
strawberry was in parallel with the change trend of cherry fruit, 
and manifested a trend of rising first and then falling (64–66, 69). 
Nevertheless, in “Summer black” grape, the change of melatonin 
accumulation showed an contrary tendency (67). Besides, it 
showed an decreasing trend in angeleno plum, pakchoi, and 
cherry tomato (70, 71, 73). Moreover, expression of the genes 
TDCs, T5Hs, SNATs, and ASMTs related to melatonin biosynthesis 
were also differently regulated in table grape, mulberry fruits, 
cassava, strawberry, and cherry tomato (64–66, 68, 73). Therefore, 
melatonin accumulation and its biosynthesis genes transcripts are 
dynamic and highly regulated in various fruits and vegetables 
during the post-harvest period.

Protective effects of exogenous 
melatonin on qualities of fruits and 
vegetables during the postharvest 
period

Previous studies have shown that hormones, such as ET, SA, 
gibberellins [GAs, including gibberellin 1 (GA1), gibberellin 3 (GA3), 
gibberellin 4 (GA4), and gibberellin 7 (GA7)], MeJA, and abscisic acid 
(ABA), modulate the postharvest preservation of fruits and vegetables 
(70, 74–77). Over the past several years, numerous reports have 
proposed that melatonin acts as an important role on qualities of fruits 
and vegetables during the postharvest period (53, 54, 56–60, 67, 76). 
For example, exogenous melatonin treatments delayed fruit firmness 
decrease, maintained higher hue of the peel fruit, and retained greater 
lightness of papayas than the control group during the later storage 
period (53, 54). Similarly, it observably alleviated the decrease of 
fifirmness and the weight loss in cherry tomato (59). Fruit colour 
index (a*/b*) was also obviously increased by melatonin treatment in 
both sweet cherry and guava fruits (78). In pepper, broccoli, and 
Chinese flowering cabbage vegetables, exogenous melatonin 
application inhibited the degradation of chlorophyll during the 
postharvest period (43, 56, 79). In addition to the above phenotypic 
changes, melatonin also reduced the decay and disease index in fruits 
(41, 53, 54, 80). Moreover, exogenous melatonin also bought about 
significant increases in total soluble solids, sugar, protein, AsA, 
carotenoids, and total flavonoid and phenols contents, which were 
important substances of fruits and vegetables (43, 56, 81–83). Besides, 
melatonin mediated the aroma volatiles (propyl acetate and hexyl 
acetate) of postharvest pear fruit (84, 85).

Effects of exogenous melatonin on 
the redox homeostasis of fruits and 
vegetables during the postharvest 
period

In general, ROS (mainly MDA, H2O2, and O2
•–) are largely caused 

during fruit ripening period, and induce oxidizing proteins and 
membrane lipids formation (53). For example, O2

•– produce by the 
oxygen reduction by the electron transport chain (ETC) (53, 54). They 
also generate by photorespiration pathway and fatty acid-oxidation 
reaction (59). Then, H2O2 produces from O2

•– by the activity of SOD 
and/or glycolate oxidases. Moreover, NADPH oxidases, polyamine 
oxidases (PAO), and cell wall bound peroxidases (POX) induce the 
ROS generation in cell membrane, cell wall, and apoplast, respectively 
(7, 57, 58). As toxic byproducts, ROS could cause serious damages to 
proteins and quality of fruits and vegetables. Combined with the 
antioxidant capacity of melatonin, these led to study the role of 
melatonin in the postharvest preservation of fruits and vegetables, 
especially in recent years (86–110). In this review, the protective 
impacts of melatonin on the antioxidant capacity of fruits and 
vegetables during the postharvest period have been summarized in 
Table 2. In fact, ROS were largely stimulated in fruits and vegetables, 
including papaya, cherry tomato, pepper, wax apple, Chinese 
flowering cabbage, pear, peach, litch, pomegranate, sweet cherry, 
sapota, apple, blueberry, longan, zucchini, guava, rambutan, water 
bamboo shoot, mango, tomato, eggplant, rosa roxburghii fruit, 
cucumber, jujube, sweetpotato, avocado, persimmons, and table grape 

TABLE 1 Summary table explaining the changes of melatonin content, 
and genes related to melatonin metabolic pathway in fruits and 
vegetables during the postharvest period.

Fruit Species Impact on 
melatonin content, 
or/and genes and 
enzyme activities 
related to 
melatonin 
metabolic pathway

References

Cassava Melatonin (0–2 h ↑; 2–72 ↓); 

TCD1, TCD2, T5H, ASMT1, 

ASMT2, ASMT3, SNAT

(64)

Strawberry Melatonin (0–3 d ↑; 3–12 ↓); 

TCD, T5H, ASMT, SNAT

(65)

Sweet cherry Melatonin (0–14 d ↑; 14–63 

d↓)

(19)

Jujube Melatonin (0, 14, 28 d no 

significant changes)

(44)

“Feizixiao” litchi Melatonin (0–12 d ↑) (58)

Table grape Melatonin (0–15 d ↑; 15–25 

d↓), 5-methoxytryptamine 

(5-MT) (0–15 d ↑; 15–25 d↓); 

TDC1, TDC2, TDC3, TDC4, 

T5H1, T5H2, T5H3, T5H4, 

T5H5, SNAT1, SNAT2, 

SNAT3, ASMT1, ASMT2, 

ASMT3, ASMT4

(66)

“Summer black” 

grape

Melatonin (0–40 d ↓; 40–50 d 

↑)

(67)

Mulberry ASMT4, ASMT20 genes (68)

Mango Melatonin (0–14 d ↑; 14–28 

d↓)

(69)

Angeleno plum Melatonin (0–8 d↓) (70)

Pakchoi Melatonin (0–8 d↓) (71)

Cherry tomato Melatonin (0–72 h↓); TCD, 

T5H, ASMT, SNAT

(72)

TDC, tryptophan decarboxylase; T5H, tryptamine 5-hydroxylase; SNAT, serotonin 
N-acetyltransferase; ASMT, N-acetylserotonin methyltransferase.
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during the postharvest period (stored at room temperature and/or low 
temperature; Table 2). Then, the ROS accumulation were significantly 
decreased by exogenous application of melatonin. Two main pathways 
might be  involved in melatonin-inhibited ROS acumulation. 
Exogenous application of melatonin improved the antioxidant 
contents, such as GSH, AsA, proline, flavonoids, carotenoids, 
anthocyanins, and dehydroascorbate (DHA) through inducing the 
expression of GSH, GR1, GR2, GMDH, GME, GGGT, GPP, GDH, and 
GLDH genes (Table 2) and (88, 92, 95, 101). In most of the above fruits 
and vegetables, the antioxidant enzymes act as key roles in melatonin-
downregulated ROS overproduction, such as CAT, SOD, APX, GR, 
GPX, DHAR, and MDHAR (Table 2). Besides, exogenous application 
of melatonin enhanced the total antioxidant capacity (T-AOC), 
cupric-reducing antioxidant power (CUPRAC), ferric-reducing 
antioxidant power (FRAP), trolox equivalent antioxidant capacity 
(TEAC), ferric reducing antioxidant power (FRAP), and 1,1-diphenyl-
2-trinitrophenylhydrazine (DPPH) and 2,2′-azino-bis 
(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging 
capacity. For example, exogenously melatonin obviously induced the 
expression of PpAPXs, PpSODs, and PpCATs, and thereby activating 
the antioxidant system in peach fruit during storage for 14 d (88). 
Furthermore, the expression of AsA biosynthetic genes (including 
GMDH, GME, GGGT, GPP, GDH, and GLDH) were also stimulated, 
which increase the content of AsA to inhibit the ROS accumulation 
(88). In addition, exogenous melatonin interacted with ROS by 
regulating the expression of genes involved in AsA-GSH cycle, such 
as DHA, DHAR, MDHAR, GSH, GSSG, and GR in sweet cherry (101). 
Among the above fruits, blueberry contains high level of bioactive 
compounds, flavonoids and anthocyanins. These were also increased 
by exogenous melatonin to improve the nutraceutical traits of 
blueberry fruit during storage time (98).

The roles of hormones in 
melatonin-modulated postharvest 
protection of fruits and vegetables 
during storage period

In recent years, hormones have been described to regulate fruits 
and vegetables postharvest performance (112). For example, ET and 
ABA played central roles in modulating senescence that strongly 
influence fruits and vegetables shelf-life (21, 113, 114). Ethylene is 
synthesized from S-adenosylmethionine to 1-aminocyclopropane-1-
carboxylate (ACC) by ACC synthase (ACS), and then ACC is oxidazed 
by ACC oxidase (ACO) (21). Thus, ACS and ACO are the rate-limiting 
enzymes involved in this biosynthetic pathway. To reduce the ethylene 
accumulation through regulating the expression of genes encoding 
ACS and ACO enzymes might contribute to delay fruits and vegetables 
senescence (21, 114). Exogenous application of ABA induced flavanols 
and anthocyanin accumulation to promote the fruit coloration in 
fruits, including apple, grape, tomato, and litchi (115–118). 
Meanwhile, JA and SA have been suggested to be  involved in the 
disease resistance during postharvest period (15, 16, 119, 120). MeJA 
induced the expression of JA synthesis genes, increased the allene 
oxide cyclase (AOC) activity, and thereby resulting in high 
endogenous JA generation (119). Nevertheless, DIECA treatment 
reduced the endogenous levels of JA, and AOC and 
12-oxo-phytodienoic acid reductase activities. Then, a significant 

correlation between JA and chlorophyll content was observed in 
broccoli flowers, and that was the important reason for broccoli 
postharvest yellowing (119). Besides, SA-mediated defense response 
was involved in litchi downy blight possibly via modulating fruit 
senescence (120). Other hormones, such as auxins, cytokinins (CK) 
or GAs, are usually at very low contents and attributed to the anti-
senescence properties as well (74, 121, 122).

Many studies have confirmed the role of melatonin in 
modulating hormone levels during fruits and vegetables 
postharvest period (Figure  1) and (123). Melatonin can 
significantly delay fruit and vegetables senescence through 
inhibiting ET and ABA accumulation. For example, exogenous 
application of melatonin inhibited the expression of ACSs and 
ACOs genes, and reduced ethylene production to delay the banana 
and tomato fruits color through (124, 125). It significantly down-
regulated the expression of ET synthetase genes (PcACS and 
PcACO), reduced ethylene production and rates of respiration, 
then thereby delaying senescence in pear fruit (126). 
Correspondingly, melatonin also down-regulated the expression 
of ET transcription factors (AdERF4, AdERF74, and AdERF75), 
and inhibited the ET release in kiwifruit during the storage period 
(127). Interestingly, research studies have showed that exogenous 
application of melatonin repressed the expression of BrABF1, 
BrABF4, BrABI5 (128). They binded to the promoters of ABA 
biosynthetic genes (BrNCED, BrABA2, and BrAAO) and 
chlorophyll catabolic genes, and regulated the expression levels of 
above genes, thus resulting in a low endogenous ABA level (128). 
Therefore, melatonin regulated the inhibition of Chinese 
flowering cabbage senescence by the suppression of ABFs-
modulated ABA synthesis and chlorophyll degradation (128). 
Furthermore, exogenous application of melatonin reduced both 
ET and ABA contents to modulate the softening through 
inhibiting the activities of ACS, ACO, and 9-cis-epoxycarotenoid 
dioxygenase (NCED) in “Guifei” mango fruit (73). Additionally, 
exogenous application of melatonin induced the expression of JA 
synthesis genes (VaLOX, VaAOS, and VaAOC), and promoted JA 
accumulation (129). Hence, melatonin modulated the jasmonic 
acid signaling pathway to enhance the postharvest disease 
resistance of blueberries fruit (129). Similarly, generation of SA 
was also promoted by exogenous application of melatonin in 
tomato. Afterwards, the increase of activities of chitinase (CHI) 
and β-1,3-glucanase (GLU) inhibited tomato gray mold 
development, which caused by B. cinerea (130). Besides, after 
melatonin treatment for 4 days, GA1 had a sharp increase, and no 
differences were observed in the content of GA3, GA4, and 
GA7  in Angeleno plums during postharvest decay (70). 
Furthermore, it was also suggested that WRKY, MYB, ERF, ARF 
and bHLH3 transcription factors were mainly involved in auxin 
and ethylene signalings in postharvest banana fruit peel (131, 
132). These transcription factors were also beneficial to maintain 
redox homeostasis (133). Some others, such as auxin and mitogen-
activated protein kinase (MAPK) signaling pathway, might 
be  involved in melatonin-regulated fruits and vegetables 
postharvest preservation and/or disease resistance during the 
storage period. In summary, an appropriate amount of melatonin 
can prolong fruits and vegetables senescence shelf life by 
regulating the release of ET, ABA, SA, and etc. Additionally, more 
genetic evidence needs to be explored in future study.
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TABLE 2 Summary table explaining the impacts of exogenous melatonin on the antioxidative defense systems of fruits and vegetables during the 
postharvest period.

Fruit and vegetable 
names

Treatments Impact on oxidative markers and 
antioxidative defense systems

References

Papaya 0, 100, 400, and 800 μM melatonin H2O2, MDA, O2
·−; SOD, CAT, POD, APX, GR, NOX, T-AOC, 

AsA, flavonoids

(53)

Cherry tomato 0 and 100 μM melatonin MDA; GSH, AsA, GPX, APX, GR, T-AOC (59)

Pepper 0 and 100 μM melatonin H2O2, MDA, O2
·−; AsA, DHA, GSH, GSSG, APX, SOD, CAT, 

POD, GR, MDHAR, DHAR

(56)

Wax apple 0, 800 μM melatonin MDA, H2O2, O2
·−; SOD, CAT, APX, GR; CAT1, SOD2 (60)

Chinese flowering cabbage 0 and 100 μM melatonin H2O2, MDA, O2
·−; POD, SOD, CAT, APX, GR, DHAR, 

MDHAR, AsA, DHA, GSH, GSSG; RBOHB, RBOHC, 

RBOHD, RBOHD2, RBOHE, POD, SOD, CAT, APX, GR, 

DHAR, MDHAR

(79)

Pear 0, 50, 100, 150, 200, and/or 500 μM 

melatonin

H2O2, MDA; SOD, POD, AsA, DPPH and ABTS scavenging 

capacity; POD

(46, 85)

Peach 0 and 100 μM melatonin MDA, H2O2, O2
·−; AsA, GSH, POD; SOD1, SOD2, SOD3, 

SOD4, SOD5, SOD6, SOD7, SOD8, CAT1, CAT2, APX1, APX3, 

APX6, MDHAR1, MDHAR2, DHAR2, DHAR3, GR1, GR2, 

GMDH, GME, GGGT, GPP, GDH, GLDH

(88, 92)

Litch 0, 50, 100, 200, and/or 600 μM melatonin MDA, H2O2, O2
·−; flavonoids, anthocyanin, proline, P5CS, 

PDH, POD, SOD, CAT, APX, GR; Fe-SOD

(58, 95)

Pomegranate 0 and 100 μM melatonin AsA, AOX, AAO, APX, GR, GSH, anthocyanins (86)

Sweet cherry 0, 50, 100, 150, 200, 300, and/or 500 μM 

melatonin

MDA, H2O2, O2
·−; SOD, CAT, APX, POD, DHAR, GR, 

MDHAR, AsA, DHA, GSH, GSSG, flavonoids, anthocyanins; 

Cu/Zn-SOD, Mn-SOD, CAT, APX, MDHA, MDHAR, DHA, 

DHAR, GSH, GSSG, GR

(19, 45, 78, 101)

Sapota 0, 30, 60, and 90 μM melatonin MDA, O2
·−, H2O2; proline, SOD, CAT (102)

Apple 0 and 1 mM melatonin MDA; CAT, SOD, POD (104)

Blueberry 0 and 1 mM melatonin H2O2, MDA; polyphenols, flavonoids, anthocyanins, AsA, 

SOD, CAT, APX, POD

(98)

Longan 0 and 400 μM melatonin H2O2, MDA, O2
·−; POD, PPO, flavonoids, SOD, CAT, APX, 

AsA, GSH

(97)

Zucchini 0 and 1 mM melatonin MDA (100)

Guava 0, 50, 100, 150, 200, 400, and/or 600 μM 

melatonin

H2O2, MDA, O2
·−; SOD, APX, CAT, T-AOC, AsA, flavonoids, 

total soluble sugar

(54, 89)

Rambutan 0 and 125 μM melatonin H2O2, MDA, O2
·−; AsA, DHA, GSH, GSSG, POD, PPO, SOD, 

CAT, flavonoids, anthocyanins, APX, GR, MDHAR, DHAR

(107)

Water bamboo shoot 0 and 500 μM melatonin AsA, POD; POD1, POD2, POD3, POD4, POD5 (108)

Mango 0, 100, or 200 μM melatonin H2O2, MDA, O2
·−; carotenoid, SOD, CAT, POD, APX, 

CUPRAC, TEAC, DPPH, TEAC, FRAP

(69, 87, 91)

Tomato 0 and 10 μM melatonin SOD, CAT, POD, APX, GSH (109)

Eggplant 0, 50, 100, 150, and 200 μM melatonin H2O2, MDA; SOD, CAT, anthocyanins; SOD, CAT1, CAT2 (111)

Rosa roxburghii fruit 0, 20, 50, 100, 200, and 400 μM melatonin H2O2; SOD, CAT, POD, APX, GR, MDHAR, DHAR, AsA, 

GSH; APX, GR, MDHAR, DHAR

(90)

Cucumber 0, 50, 100, and 500 μM melatonin H2O2, MDA, O2
·−; AsA, proline (96)

Jujube 0, 20, 50, 100, 200, and 400 μM melatonin H2O2, MDA, O2
·−; AsA, GSH, APX, SOD, CAT, POD, (106, 110)

Sweetpotato 0, 200, and 500 μM melatonin H2O2, MDA, O2
·−; SOD, CAT, POD, APX, GR, AsA, vitamin 

C, SOD1, SOD2, CAT1, APX1, APX3, GR1, GR2, DHAR

(94)

Avocado 0 and 1 mM melatonin H2O2, MDA, O2
·−; SOD, CAT, APX, POD, flavonoids, AsA (99)

(Continued)
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The crosstalk between melatonin and 
signal molecules (NO, H2S, and ROS) 
in the postharvest protection of fruits 
and vegetables during storage period

Numerous studies showed that signal molecules, such as ROS, 
NO, and H2S, play key roles in resistances to biotic and abiotic 

damages in plants (134–139). Recent studies have shown that there are 
interactions between melatonin (applied exogenously) and the signalig 
molecules (37, 40–42, 126, 130, 140). For example, our previous 
studies revealed that H2O2 signaling was required for melatonin-
promoted root growth and melatonin-improved salinity tolerance in 
alfalfa and Arabidopsis, respectively (37, 38). NO signaling was also 
involved in melatonin-regulated salinity tolerance in Brassica napus 

FIGURE 1

The crosstalk between melatonin and hormones of fruits and vegetables during the postharvest period. Exogenous application of melatonin reduced 
the ABA and ET content, and increased IAA content through regulating the related transcription factors and synthetic genes. Then, the significant 
antioxidants and antioxidant enzymes activities were induced to reduce the ROS accumulation, and chlorophyll degradation and pericarp browning 
were also inhibited. Besides, exogenous application of melatonin induced the JA and SA signaling pathways, and activated the proteins in the defense 
system to enhance the disease resistance in fruits and vegetables during storage. Jasmonic acid (JA), gibberellin 1 (GA1), 12-oxo-phytodienoic acid 
(OPDA), jasmonate ZIM-domain (JAZ), phenylalanine ammonia lyase (PAL), benzoic acid 2-hydroxylase (BA2H), lipoxygenase (LOX), allene oxide 
synthase (AOS), allene oxide cyclase (AOC), isochorismate synthase (ICS), salicylate (SA), non-expresser of pathogenesis-related genes 1 (NPR1), basic/
leucine zipper-type transcription factor (TAG5), β − 1,3-glucanase (GLU), chitinase (CHT), abscisic acid (ABA), ABRE-binding factor (ABF), ABA-insensitive 
(ABI); 9-cis-epoxycarotenoid dioxygenase (NCED), aldehyde oxidase (AAO), ethylene-response factor (ERF), adipocyte protein (AP), v-myb avian 
myeloblastosis viral oncogene homolog (MYB), zinc finger protein (ZAT), NAM/ATAF/CUC (NAC), basic/helix–loop–helix (bHLH), 
1-aminocyclopropane-1-carboxylic acid (ACC), ACC oxidase (ACO), ACC synthase (ACS), ethylene (ET), auxin response factor (ARF), indole-3-acetic 
acid-amido synthetase (GH3), indole-3-acetic acid (IAA).

TABLE 2 (Continued)

Fruit and vegetable 
names

Treatments Impact on oxidative markers and 
antioxidative defense systems

References

Persimmons 0 and 100 μM melatonin H2O2, MDA; flavonoids, AsA, DPPH and ABTS radical 

scavenging activity, FRAP

(93)

Table grape 0, 50, and 100 μM melatonin H2O2, O2
·−; CAT, POD (103)

H2O2, hydrogen peroxide; MDA, malondialdehyde; O2
•–, superoxide anion; Cu/Zn-SOD, copper/zinc-superoxide dismutase; Mn-SOD, manganese-superoxide dismutase; POD, guaiacol 

peroxidase; APX, ascorbate peroxidase; GR, glutathione reductase; T-AOC, total antioxidant capacity; AsA, ascorbic acid; GSH, reduced glutathione; GPX, glutathione peroxidase; DHA, 
dehydroascorbate; GSSG, oxidized glutathione; CAT, catalase; MDHA; monodehydroascorbate reductase; MDHAR, monodehydroascorbate; DHAR, dehydroascorbate reductase; RBOH, 
respiratory burst oxidase homologue; DPPH, 1,1-diphenyl-2-trinitrophenylhydrazine; ABTS, 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid); NOX, NADH oxidase; GMPH, mannose-
1-phosphate guanylyltransferase; GME, GDP-D-mannose-3′,5′-epimerase; GGGT, GDP-L-galactose guanylyltransferase; GPP, L-galactose-1-phosphate phosphatase; GDH, L-galactose-1-
dehydrogenase; GLDH, L-galactono-1,4-lactone dehydrogenase; P5CS, Δ1-pyrroline-5-carboxylate synthetase; PDH, pyruvate dehydrogenase; CUPRAC, Cupric-reducing antioxidant power; 
FRAP, Ferric-reducing antioxidant power; TEAC, Trolox equivalent antioxidant capacity; FRA, ferric reducing antioxidant power.
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L. and sunflower seedlings (140, 141). Furtherly, melatonin induced 
H2S generation through increasing L-/D-cysteine desulfhydrase 
(LCD/DCD) activity. Similarly, it also stimulated NO generation. 
However, the H2S and NO induced by melatonin were inhibited by 
H2S scavenger (hypotaurine, HT) and NO scavenger 
(2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, 
cPTIO), respectively. Therefore, the H2S and NO jointly were 
participated in the melatonin-enhanced salinity tolerance in cucumber 
(34). In fact, the complex regulatory function of melatonin and its 
crosstalk with H2O2, NO and H2S is existed in many cases.

Interestingly, these signal molecules were also involved in 
exogenous melatonin-modulated fruits and vegetables postharvest 
protection, and thus improving their quality and yield (Figure 2) and 
(72, 142, 143). For instance, exogenous melatonin treatment rapidly 
elicited ROS burst. These ROS acted as signaling molecules to enhance 
SA accumulation and improve the expression of related defense genes 
in cherry tomato fruit during the storage (94). In litchi fruit, exogenous 
application of melatonin activated the NR and NOS activities and 
triggered NO accumulation (142). Endogenous NO mediated the 
melatonin-enhanced cold tolerance via regulation of redox status 
(142). Similarly, exogenous melatonin increased NOS activity, and 
induced endogenous NO production to maintain normal 
mitochondrial function in lotus seeds (144). Besides, it also induced 
NOS gene expression and enzyme activity to keep safe membrane 
integrity in tomato fruit (145). Furthermore, H2S has been reported to 
regulate the process by delaying senescence (146). However, more 
studies should be investigated on the crosstalks among melatonin, 
NO, and H2S in the postharvest preservation of fruits and vegetables 
using pharmacological, genetic, and proteomic approaches.

Crosstalk between the 
RBOH-regulated ROS signaling and 
melatonin in the postharvest 
protection of fruits and vegetables 
during storage period

Previous studies suggested that melatonin is a potent free radical 
scavenger, and reacts with ROS via the addition of a hydroxyl group 
(-OH) in position 2, 4, or 6 to form a family of molecules (147). 
Among the hydroxymelatonin metabolites, 2-hydroxymelatonin 
(2-OHMel) and 4-hydroxymelatonin (4-OHMel) were found in 24 
plant species and predicted to have the antioxidant protection (147–
149). For example, 4-OHMel reacted with ROO• about 200 times 
faster than trolox. Furthermore, ROS act as key signaling molecules at 
low concentrations in regulating plant biotic and abiotic stress (150, 
151). Recent studies have shed new light on the interactions of 
melatonin and ROS in higher plants development and growth (37, 38, 
41). For example, Bian et al. (111) identified that melatonin acted as 
upstream signaling of ROS to facilitate lateral root development. 
Besides, the phytomelatonin receptor (PMTR) sensed and binded 
with melatonin to release G-protein α (Gα), and activated Ca2+ 
signaling. Afterwards, the Ca2+ signaling activated H2O2 production, 
while H2O2 worked with Ca2+ signaling to induce the expression of cell 
cycle regulatory genes, and thereby promoting the lateral 
root development.

Previous reviews summarized the pathways of ROS generation in 
plant organs, including cell membrane, peroxisome, mitochondria, 

chloroplast, apoplast, and etc (150, 151). Among these, respiratory burst 
oxidase homolog (RBOH) proteins localize on plasma membrane, and 
encode the NADPH oxidases, which associate with the signal 
transduction (152). There are several RBOHs genes encoding NADPH 
oxidase in various plants (150, 151). Recently, many studies have revealed 
the vital roles of RBOH-regulated ROS signaling in melatonin-enhanced 
plant abiotic stress tolerance (41). Furthermore, it is necessary to balance 
intracellular ROS homeostasis to maintain to the quality of postharvest 
fruits and vegetables. Recently, the functions of H2O2 signaling in 
melatonin-mediated fruits and vegetables postharvest protection were 
also preliminarily studied (Figure 2) and (72, 130, 132, 153, 154). For 
example, O2

·− and H2O2 generation of cherry tomato fruit increased to a 
maximum by exogenous melatonin treatment at 12 h and 36 h, 
respectively, and then decreased during the storage period (130). 
Exogenous melatonin treatment significantly up-regulated the expression 
of respiratory burst oxidase homolog protein B (RbohB) gene, which 
accelerated the response signaling in banana peel in banana during 
postharvest storage period (132). Similarly, melatonin treatment also 
up-regulated the RBOH1 expression in tomato, however, it was 
significantly attenuated by treatments of diphenyleneiodonium (DPI, an 
NADPH oxidase inhibitor) and dimethylthiourea (DMTU, a ROS 
scavenger) (153). Exogenous melatonin elevated O2

·− and H2O2 
accumulation by upregulating the SlNOX expression and NOX activity 
for the first 36 h in cherry tomato fruit during storage (94). These results 
were further confirmed by the transcriptome analysis in cherry tomato 

FIGURE 2

Probable integrative model of melatonin and signaling molecules 
(H2O2, NO, and H2S) in postharvest protection of fruits and vegetables 
during storage period. Increasing evidences showed that melatonin 
enhanced the expression of RBOHs, NR, NOS, NOR, DES, and LCD 
genes, and induced H2O2, NO, and H2S generation, thereby activating 
the signaling pathways in fruits and vegetables. Besides, hormones 
were also involved in these pathways to regulate fruits and 
vegetables quality. Interaction between NO and H2S was also 
suggested. The relationships between the H2O2 signaling and NO/
H2S in postharvest protection of fruits and vegetables are still largely 
unknown (green arrow, yet largely unknown). Red arrow, induced; 
blue arrow, inhibited. Respiratory burst oxidase homologs (RBOHs), 
nitrate reductase (NR), nitric oxide synthase (NOS), desulfhydrase, 
(DES), L-cysteine desulfhydrase (LCD), nitric oxide (NO;), hydrogen 
peroxide (H2O2), hydrogen sulfide (H2S), ethylene (ET), salicylic acid 
(SA), γ-aminobutyric acid (GABA).
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fruit (155). Besides, the positive crosstalks between melatonin and H2O2 
have also been observed in apple and strawberry fruits against 
Diplocarpon mali infection and decay, respectively (51, 156). Moreover, 
SA signaling acted as the downstream pathway of the crosstalk between 
melatonin and H2O2 signaling to modulate the postharvest protection of 
fruits and vegetables during storage period (94, 156). Therefore, ROS 
generation-induced transiently by melatonin serve as the key signal in 
fruits and vegetables, especially in resistance to various diseases. 
However, it is important to further clarify the roles of this crosstalk on 
the quality and extending storage times in diverse fruits and 
vegetables species.

Conclusion and perspectives

Melatonin is ubiquitous in fruits and vegetables. This reviews 
describes the changes of melatonin content and synthesis sites in fruits 
and vegetables during the postharvest period. Exogenous melatonin 
can increase endogenous melatonin accumulation, alleviate the weight 
loss, fruit firmness decrease and discoloration, reduce the decay 
incidence, decay and disease index, and improve the quality of fruits 
and vegetables. In addition, it increases GSH, AsA, DHA, anthocyanins, 
carotenoids, and total flavonoid and phenols contents, and decreases 
MDA, H2O2, and O2

•– contents. It has also been noted that melatonin 
enhances the CAT, SOD, APX, GR, GPX, DHAR, and MDHAR 
activities to improve the antioxidant capacity. Application of exogenous 
melatonin increases proline content and decreases the membrane lipid 
peroxidation to protect cell membrane integrity in fruits and vegetables 
during the cold storage. Furtherly, exogenous melatonin regulates 
hormones, such as ethylene, salicylic acid, and abscisic acid, to delay 
postharvest senescence and protect fruits and vegetables aganist 
bacterial invasion. However, the effective concentrations of melatonin 
are different for postharvest protection of different fruits and vegetables 
species. Therefore, it is important to use the appropriate melatonin 
concentrations to prolong fruits and vegetables postharvest shelf life.

ROS signaling during fruit and vegetable ripening has been 
extensively studied (147). Recently, several studies revealled that ROS 
signaling is involved in melatonin-modulated fruits and vegetables 
post-harvest preservation. In particular, the vital role of RBOHs-
regulated H2O2 generation during these processes are shown. 
However, there are still many questions that should be characterized 
to understand the crosstalk of melatonin and ROS. For example, it is 
necessary to focus more attention on the signaling role of ROS 
produced by PAO in melatonin-modulated fruits and vegetables 

post-harvest preservation in future studies. Since the transmembrane 
receptor of melatonin (PMTR1/CAND2) were found in plants, 
researches focus on the mechanisms that the interaction between 
PMTR1/CAND2 and Gα subunits acts on the expression of the RBOHs 
in plant responses to abiotic stress (56, 71, 157). In this review, it is 
urgent to deeply study whether or how Gα directly regulates the 
crosstalk between melatonin and reactive oxygen species in fruits and 
vegetables post-harvest preservation.
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