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Selenium is an essential microelement involved in various biological

processes. Selenium deficiency increases the risk of human immunodeficiency

virus infection, cancer, cardiovascular disease, and inflammatory bowel

disease. Selenium possesses anti-oxidant, anti-cancer, immunomodulatory,

hypoglycemic, and intestinal microbiota-regulating properties. The non-linear

dose-response relationship between selenium status and health effects is

U-shaped; individuals with low baseline selenium levels may benefit from

supplementation, whereas those with acceptable or high selenium levels may

face possible health hazards. Selenium supplementation is beneficial in various

populations and conditions; however, given its small safety window, the safety

of selenium supplementation is still a subject of debate. This review summarizes

the current understanding of the health-promoting effects of selenium on the

human body, the dietary reference intake, and evidence of the association

between selenium deficiency and disease.

KEYWORDS
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1. Introduction

Selenium is an essential trace element for the human body that was discovered in 1817
by the Swedish chemist Berzelius (1). Numerous studies have demonstrated that selenium
possesses anti-oxidant, anti-cancer, immunomodulatory, hypoglycemic, and intestinal
microbiota-regulating properties (2–5). Selenium deficiency can result in diminished
immunity and increased vulnerability to infections, such as human immunodeficiency virus
(HIV) and hepatitis B infections. Long-term selenium deficiency increases the risk of diseases
such as Kaschin–Beck disease (KBD), Keshan disease (KD), acquired immunodeficiency
syndrome (AIDS), cancer, cardiovascular disease (CVD), and inflammatory bowel disease
(IBD) (6). According the World Health Organization (WHO), selenium intake is inadequate
in multiple countries, including India, Belgium, Brazil, the United Kingdom, France, Serbia,
Slovenia, Turkey, Poland, Sweden, Germany, Spain, Portugal, Denmark, Slovakia, Greece,
the Netherlands, Italy, China, Austria, and Ireland (7). Therefore, reasonable selenium
supplementation is essential for the human body. However, the safe selenium intake level
is limited and not well defined (8).
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This review examines the classification, food sources,
clinical diseases, health-promoting effects, and dietary
reference intake of selenium, as well as its relationships
with AIDS, cancer, CVD, and IBD (9–11). Further, we
provide recommendations for selenium intake in various
populations and for the resolution of health issues caused by
selenium deficiency.

2. Selenium classification

In nature, selenium exists in inorganic and organic
forms. Inorganic selenium is obtained from metal deposit
byproducts, primarily selenite (SeO3

2−) and selenate
(SeO4

2−) (12, 13). Selenate and selenite are rare in nature
and are typically complexed with sodium to form sodium
selenite and sodium selenate, respectively (Figure 1) (14).
Organic selenium is formed through the biotransformation
of selenium and amino acids, primarily including
selenomethionine (SeM) and selenocysteine (SeC) (Figure 1)
(15).

As inorganic selenium is hardly absorbed by the human
body and highly toxic, only a trace amount of this form is
obtained from food (16). Organic selenium is more biocomand
patible and more readily absorbed and stored in tissues than
inorganic selenium, significantly improves the plasma selenium
status in the human body. As a result, organic selenium exhibits
greater biological activity and is therefore more widely used
in supplement production (17, 18). For instance, when organic
selenium is used as a selenium supplement for livestock, the
selenium enrichment effect is greater than when inorganic
selenium is used (15). Selenium is present primarily in the
organic form in the majority of natural and selenium-rich foods.
Selenium is primarily found in meat, eggs, bread, and fish
(19, 20).

3. Environmental selenium exposure

3.1. Geographical distribution of
selenium

Selenium is found in trace amounts in the Earth’s crust,
typically in the range of 0.05–0.09 mg/kg. Soils can be classified
into selenium-deficient (<0.13 mg/kg), selenium-marginal (0.13–
0.18 mg/kg), selenium-sufficient (0.18–0.40 mg/kg), selenium-rich
(0.40–3.00 mg/kg), and excess-selenium (>3.00 mg/kg) soils (21).
Selenium is unequally distributed globally, with the Americas
accounting for 52.7% of proven global selenium reserves, followed
by Asia and Africa, which account for 15.4% each, Europe, which
accounts for 12.2%, and Oceania, which accounts for 4.4% (22).
While China’s selenium reserves are among the world’s largest and
at present can meet the national selenium demand, the problem
of unequal selenium resource distribution persists (23). Enshi,
Hubei Province is dubbed the world’s selenium capital because
of its widespread and large selenium resources and because it
accommodates the world’s only independent selenium deposit.
However, 22 provinces of China, accounting for 72% of the
country’s territory, face selenium resource scarcity, with 30% being
classified as severe selenium-deficient areas.

3.2. Form and distribution of selenium in
foods

The amount of selenium in foods is highly variable and is
influenced by the location of crops or the composition of the feed
taken by animals. Bread, grains, meat, nuts, fish, eggs, and milk and
other dairy products are major sources of selenium (20, 24).

The difference in selenium content between bread and cereals
is 0.01–30 mg/kg, with the majority of selenium being in the

FIGURE 1

Structures of common inorganic and organic selenium compounds. Sodium selenite (A), sodium selenate (B), SeC (C), and SeM (D).
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forms of SeM (55–85%), SeC (4–12%), and selenate (25, 26).
The selenium amounts of meat, fish, and eggs vary between 3
and 25 g, and the selenium concentration even varies among
different sections of meat (19). Internal organs, particularly the
liver and kidneys, contain comparatively high levels of selenium.
For example, selenium concentrations in beef kidney, liver, and
heart tissues are 4.5, 0.93, and 0.55 mg/kg, respectively, whereas
muscle concentrations range between 0.2 and 0.55 mg/kg (27). In
meat, selenium primarily exists as SeM (50–60%) and SeC. In fish,
selenium contents typically range between 0.1 and 5.0 mg/kg, and
selenium is primarily in the forms of SeM (29–70%) and selenite or
selenate (12–45%) (28, 29). Milk contains selenium primarily in the
forms of SeC and selenite. However, when selenium-enriched yeast
is used to supplement selenium in milk from dairy cows, the type of
selenium in the milk changes. Selenium is currently found mostly in
the forms of SeC, SeM, and selenite (30). Fruits and vegetables also
contain selenium, and vegetables cultivated in selenium-rich soils
can enrich and transform the element. For instance, when onions,
garlic, and broccoli are produced in selenium-rich soil, selenium
levels can increase from <0.5 mg/kg to 140–300 mg/kg (31).

In addition to supplementation through selenium-
enriched foods, selenium supplements are an efficient direct
supplementation method. Selenium is currently available as
multivitamin and multimineral supplements as well as stand-alone
supplements, typically in the form of SeM, selenium-enriched yeast
(grown on a selenium-rich medium), sodium selenite, or sodium
selenate (23, 32, 33). Selenium-enriched yeast is the most common
dietary source of selenium, primarily in the form of cysteine (34).

3.3. Selenium deficiency-related diseases

Selenium is a trace element that plays critical roles in human
growth and development. It promotes human health by assisting
in metabolism, boosting immunity, increasing physical fitness,
and delaying aging. Selenium deficiency can impair body function
and result in various diseases, including KBD, KD, neurological
system disorders, and immunological deficiency disorders (35–38).
Selenium deficiency can be diagnosed by measuring the serum or
plasma selenium level, which should be at least 85 µg/L (39).

3.3.1. KBD
KBD is an endemic, chronic, and degenerative

osteoarthropathy that occurs in selenium-deficient parts of
the world. It is the most prevalent in the diagonal zone extending
from northeast to southwest China, but also occurs in Mongolia,
Siberia, and Korea. It is a type of osteoarthritis characterized by
cartilage tissue atrophy, degradation, and necrosis. It is the most
prevalent in youngsters between the ages of 5 and 13 years. The
primary signs include swollen joints, shortened fingers and toes,
growth retardation, and stunting (35, 40). Patients with KBD have
unusually low selenium levels in the hair and whole blood, and
markedly decreased glutathione peroxidase levels in the blood
(35, 40). A 0.1% sodium selenite aqueous solution is often used to
treat children with KBD, with great results (41). A meta-analysis
of 10 randomized controlled studies revealed the efficacy of
selenium supplementation in the treatment of individuals with
KBD; however, the data are limited by the possibility of bias

(42). Zou et al.’s meta-analysis of KBD indicates that selenium
supplementation is useful for preventing KBD in children (43). In a
double-blind, randomized, controlled experiment, Moreno-Reyes
et al. reported that supplementation with 100 g of selenium per
day reduced clinical symptoms of KBD in children aged 5 to
15 years (44).

3.3.2. KD
KD is a endemic cardiomyopathy that is prevalent in parts

of China lacking in selenium. It is the most common in
children between the ages of 2 and 10 years and in women
of reproductive age. KD occurs across northeast to southwest
China. The disease’s primary clinical manifestations include acute
or chronic heart attacks marked by exhaustion, arrhythmia,
and palpitation following limited exertion, inappetence, cardiac
insufficiency, cardiac hypertrophy, and congestive heart failure. It
is classified into four clinical subtypes: acute, subacute, chronic, and
latent. Except for the latent form, case fatality rates are quite high.
Pathological changes include numerous foci of cardiac necrosis and
fibrosis. Ultrastructural examinations have revealed that membrane
organelles, such as the mitochondria, and the sarcolemma are the
first to be affected. The disease has a seasonal prevalence and can
emerge as soon as three months following exposure to conditions
that increase the risk of myocarditis (35, 45).

The mean hair selenium concentration in KD areas is
<0.122 mg/kg, whereas it is >0.200 mg/kg in non-KD areas. The
selenium concentrations in KD patients’ muscle, heart, liver, and
kidneys are 10-fold lower than those in healthy people (35). The
WHO recommends a minimum selenium intake of 21 mg/d for
men and 16 mg/d for women to avoid KD development (46).
Oral selenium is a very effective preventative strategy during the
first three months of the KD risk period. Oral sodium selenite
successfully prevents KD and considerably reduces its incidence
rate (41). In a 10-year follow-up study of 302 patients with chronic
KD and congestive heart failure, Zhu et al. showed that weekly
supplementation with 1 mg of selenium decreased mortality (47).
A comprehensive review and meta-analysis of Kawasaki disease
indicate that selenium supplementation considerably lowers the
incidence of Kawasaki disease (48).

Biochemical and clinical investigations have suggested that
reduced glutaminase activity may decrease mitochondrial defense
against peroxide-induced membrane damage and thus cause KD
(36). KD is caused by selenium deficiency in association with
coxsackie enterovirus infection. Inadequate selenium intake results
in reduced selenoprotein anti-oxidant activity, and oxidative
damage to viral DNA enhances its toxicity (49).

3.3.3. Nervous system disease
Selenium is differentially distributed in various parts of the

brain, with peak concentrations in gray matter-rich areas and
glands (50). When a diet has insufficient selenium, brain selenium
is retained in the organs, interfering with the normal supply
route and resulting in the development of severe neurological
dysfunction (51). Selenium plays a critical role in the brain and
selenium deficit results in neurodegenerative diseases such as
Alzheimer’s disease, Parkinson’s disease, and epilepsy (38, 52).
Nervous system diseases can be avoided by supplementation
with selenium-rich yeast. Selenium supplementation is effective
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in reducing intractable epileptic seizures in children (39).
Cardoso et al. conducted a randomized, controlled study of 40
Alzheimer’s patients over a period of 24 weeks. The studies
demonstrated that supplementation with 30 mg of selenium
per day can enhance the selenium concentration in the central
nervous system, halt neurodegeneration, and assist Alzheimer’s
disease patients (53). In a clinical investigation, erythrocyte lipid
peroxidation and glutathione peroxidase activity were greater
in individuals with refractory epilepsy than in normal adults;
nevertheless, supplementation with 200 g/day decreased lipid
peroxidation, glutathione peroxidase activity, and morbidity in
epileptic patients (54).

3.3.4. Virus infection susceptibility caused by
selenium deficiency

The development of early HIV infection has been associated
with low plasma selenium levels. Subclinical malnutrition is a
significant factor in the development of AIDS. However, there is
compelling evidence that the magnitude of selenium deficiency is
predictive of the occurrence of AIDS and associated mortality (37,
55). Selenium deficiency also enhances the toxicity of other RNA
viruses, such as hepatitis B virus, and of hemolytic anemia. The
underlying mechanisms are currently being investigated.

4. Human health-promoting effects
of selenium

Selenium is an essential trace element in the human
body, and supplementation with selenium has been shown to
benefit human health. Selenium has anti-oxidant, anti-cancer,
immunomodulatory, hypoglycemic, and intestinal microbiota-
regulating properties, and its mechanisms of action have been
investigated (Figure 2).

4.1. Anti-oxidant effects

When an organism is stressed or diseased, excess free radicals
are generated and react with unsaturated lipids in the cell
membranes, resulting in lipid peroxidation and severe damage to
the biological system. Selenium is a component of glutathione
peroxidase, which can convert hydroperoxide into hydroxy fatty
acids, limiting lipid peroxidation by free radicals and lowering
oxidative stress (56). It is widely recognized that selenium plays a
direct or indirect role in removing intracellular free radicals (57,
58). Anti-oxidants prevent or mitigate oxidative DNA damage, and

FIGURE 2

Health-promoting effects of selenium and its mechanisms of action. Selenium possesses anti-oxidant, anti-cancer, immunomodulatory,
hypoglycemic, and intestinal microbiota-regulating properties. It acts as an anti-oxidant by lowering oxidative stress and deoxynucleotide levels. It
functions as an anti-cancer agent by inducing apoptosis and cell-cycle arrest, preventing tumor cell invasion and metastasis, and promoting DNA
damage repair. It exerts immunomodulatory effects by affecting non-specific immunity (e.g., macrophages and neutrophils) and specific immunity
(e.g., T and B lymphocytes). It exerts hypoglycemic action by regulating the IRS-PI3K-Akt signaling pathway. It regulates the intestinal microbiota by
regulating prostaglandins.
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anti-oxidant enzymes require mineral cofactors, such as selenium
for glutathione peroxidase and zinc and copper for superoxide
dismutase (59, 60). Selenium functions as a redox center, protecting
tissues from free radical-induced cell damage. Selenase and
thioredoxin reductase are both capable of reducing nucleotides
in deoxyribonucleic acid and thus maintain intracellular redox
homeostasis (39).

An excess amount of reactive oxygen species (ROS) in the
bloodstream causes DNA damage and oxidative stress in cells
(61). Cells are predisposed to oxidative stress when their anti-
oxidant contents are low or their ROS levels high. Selenium can
prevent an overabundance of ROS, preserve the redox state of
cells, and suppress oxidative stress (62). Fujieda et al. demonstrated
that selenium deficiency results in a considerable decrease in
glutathione peroxidase activity, which results in an increase in
oxidative stress levels, and that sodium selenite treatment is efficient
in ameliorating this condition (63). Plasma selenium levels are
adversely correlated with oxidative stress levels in children with
upper respiratory tract infections, patients with oral orofacial
inflammatory disease, and pregnant women (64–66). However,
Gać et al. measured plasma selenium concentrations, oxidative
stress levels, and total anti-oxidant status in 337 children (mean
age: 8.53 ± 1.92 years) and found that the plasma selenium
concentration was not negatively correlated with oxidative stress
levels, but was positively correlated with the total urine anti-
oxidant status. Increased plasma selenium concentrations in
healthy children have been shown to improve their overall anti-
oxidant status (67). Thus, selenium exhibits anti-oxidant activity
and suppresses oxidative stress, hence protecting the human
body from oxidative stress-induced damage (4). Studies have
demonstrated that high dosages of selenium can elicit cytotoxicity
by elevating intracellular ROS, resulting in DNA damage and
oxidative stress. High doses of selenium can also cause decreased
immunological function and carcinogenic effects (68). Zachariah
et al. studied the effects of high dosages of selenium on endothelial
cells and reported that high doses of selenium inhibited NO
bioavailability and angiogenesis. In addition to inducing ER stress
and increasing the generation of ROS, selenium at high dosages
can cause endothelial dysfunction (69). Consequently, selenium
administration at high dosages induces oxidative stress, resulting in
cytotoxicity and endothelial dysfunction. These findings highlight
the significance and potential dangers of selenium supplementation
as an antioxidant.

Owing to its anti-oxidant action, selenium is frequently
employed in product development as a bioactive ingredient.
Mileti et al. demonstrated that the addition of sodium selenite
greatly improved DPPH clearance and Fe2+ chelation during
exopolysaccharide synthesis (70). According to Xia et al., adding
modest concentrations of selenium (0.5 and 1.0 mmol/L) increased
the germination rate of alfalfa seeds and their superoxide
dismutase, catalase, ascorbate peroxidase, and peroxidase activities,
and decreased their malondialdehyde content (71). Forootanfar
et al. reported that selenium-containing nanoparticles and
selenium dioxide had DPPH radical-scavenging activities of
23.1 ± 3.4% and 13.2 ± 3.1%, respectively, at the same
dose (200 µg/mL). However, findings from reduction capability
measurements indicated that selenium dioxide has higher electron
donor activity than selenium-containing nanoparticles (72). Xiao

et al. developed nanoparticles containing selenium that exhibit
strong anti-oxidant activity (73).

In conclusion, selenium, both organic and inorganic, exhibits
anti-oxidant effects (63). The organic forms are selenoprotein and
SeC, and selenoprotein has a critical physiological role in the
body. Approximately 50% of all known selenoproteins have anti-
oxidant properties (39). Inorganic selenium acts as an anti-oxidant
by lowering oxidative stress and increasing DPPH-scavenging and
Fe2+-chelating abilities (63).

4.2. Anti-cancer effects

The association between selenium and cancer has long been
a source of controversy. However, in recent years, numerous
studies have demonstrated the efficacy of selenium in suppressing
carcinogenesis and enhancing immunity and anti-oxidant capacity.

Recently, there has been a surge of interest in the development
of nanomaterials with increased anti-cancer activity and less
adverse effects on the body as prospective cancer treatment
options. In this light, selenium-containing nanoparticles are being
investigated as potential cancer treatment agents because selenium
is an essential trace element and nanomaterials containing selenium
are more biocompatible. Selenium-containing nanomaterials have
been found to have anti-ovarian cancer and anti-bone tumor
properties. Toubhans et al. demonstrated that inorganic selenium
nanoparticles triggered nanomechanical responses, changes in cell-
surface roughness and membrane hardness, and cell apoptosis
in SKOV-3 and OVCAR-3 ovarian cancer cells, indicating that
selenium effectively inhibits the growth of ovarian cancer cells
(2). Selenium-doped hydroxyapatite nanoparticles are frequently
employed as bone-induction biomaterials. Barbanente et al.
demonstrated that hydroxyapatite nanoparticles doped with
selenium at low concentrations are biocompatible and may be used
to treat bone cancers (74).

Selenium molecules in food undergo metabolic
transformations via various pathways, producing a diversity
of selenium metabolites with varying biological activities.
Redox-active selenium metabolites have improved nucleophilic
capabilities and high reactivity, making them powerful anti-cancer
agents (75). At present, selenite is the most effective dietary
selenium anti-cancer medication licensed by the United States
Food and Drug Administration. When selenium is in the + 4
oxidation state as sodium selenite, it can react directly with
the cysteine clusters found in the catalytic subunits of enzymes
such as protein kinase C. Selenium compounds can oxidize the
sulfhydryl groups in the catalytic domain of protein kinase C
to disulfide bonds, inactivating the enzyme (76). This is because
it oxidizes key thiol-containing enzymes and generates ROS. In
addition, selenium compounds exert cytotoxic effects by acting as
pro-oxidants, disrupting cellular redox homeostasis, and triggering
selenium-induced apoptosis in mutant abnormal cells (57, 77).

Selenium promotes apoptosis, an important anti-cancer
mechanism. Methylselenic acid (MSeA) has been found to increase
caspase-mediated apoptosis by downregulating survivin, Bcl-
xL, and Mcl-1 expression (78, 79). In LNCaP human prostate
cancer cells, selenite induced p53 Ser-15 phosphorylation and
caspase-mediated apoptosis (80). MSeA exposure induced caspase-
mediated apoptosis in DU145 human prostate cancer cells, which

Frontiers in Nutrition 05 frontiersin.org

https://doi.org/10.3389/fnut.2023.1136458
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-10-1136458 March 10, 2023 Time: 16:19 # 6

Sun et al. 10.3389/fnut.2023.1136458

was associated with reduced phosphorylation of protein kinase B
(Akt) and extracellular regulated kinase 1/2 (81). MSeA-induced
G1 arrest in DU145 cells was associated with increased p27kip1
and p21cip1 expression (82). Selenium induced cell-growth arrest
and death in vivo, which was associated with decreased cyclin D1
expression, increased p27kip1 expression, and the activation of
c-Jun NH2-terminal kinase (JNK) (83).

Inhibition of tumor cell invasion and metastasis is
another important anti-cancer mechanism of selenium. Matrix
metalloproteinase (MMP)-2 and MMP-9 degrade the extracellular
matrix and basement membrane and play key roles in tumor
invasion and metastasis. The urokinase-type plasminogen activator
(uPA) system has been associated with tumor invasion, metastasis,
and decreased patient survival time (84). Selenite inhibits tumor
cell invasion by inhibiting the expression of MMP-2, MMP-9,
and uPA (85).

Stimulating DNA damage repair also is an important anti-
cancer mechanism of selenium. Given the critical role of
selenoproteins (such as glutathione peroxidases and thioredoxin
reductases) in anti-oxidant defense and maintaining a reducing
cell environment, selenium can accelerate the DNA damage repair
response by enhancing selenoprotein production (86). SeM boosts
p53 activity and protects cells from DNA damage via its anti-
oxidant activity (87). However, Duffield-Lillico et al. discovered in
a double-blind, randomized, placebo-controlled clinical study that
selenium supplementation did not prevent basal cell carcinoma
but increased the incidence of squamous cell carcinoma and
non-melanoma skin cancer (82). Algotar et al. observed in a
5-year double-blind, randomized, placebo-controlled experiment
that selenium intake of 200 or 400 µg per day increased the
incidence of non-melanoma skin cancer (88). In a major clinical
research study including 5,345 men, Kristal et al. reported that
supplementation with selenium raised the risk of prostate cancer
by 91% in men who previously ingested appropriate quantities of
selenium (89). In a 22-year follow-up analysis of 4,459 patients
with non-metastatic prostate cancer, Kenfield et al. reported that
selenium supplementation of 140 µg or more per day may
increase prostate cancer mortality (90). Thus, supplementation
with selenium raises the incidence of squamous cell carcinoma,
non-melanoma skin cancer, and high-grade prostate cancer (91).

In conclusion, selenium functions as an anti-cancer agent by
triggering apoptosis and cell-cycle arrest, preventing tumor cell
invasion and metastasis, and promoting DNA repair. The anti-
cancer effects of selenium in colon, skin, breast, liver, lung, and
rectal cancers have since long been documented. Selenium has
great clinical potential as an anti-cancer agent (2, 3, 92–96).
However, selenium supplementation raises the risk of squamous
cell carcinoma, non-melanoma skin cancer, and high grade prostate
cancer (91).

4.3. Immunomodulatory effects

The immune system is the most effective barrier against
pathogen invasion. It recognizes and eliminates antigenic
foreign substances and cooperates with other body systems
to preserve homeostasis and physiological balance. Natural

killer (NK) cells are vital immune cells that are involved in
anti-tumor, anti-viral infection, and immunological control
functions. Selenium is required for the regular functioning of
the immune system and can affect non-specific immunity (e.g.,
macrophages and neutrophils) and specific immunity (e.g., T
and B lymphocytes). Selenium deficiency results in immune
system dysfunction, which harms immunological function.
Broome et al. demonstrated that selenium supplementation raised
plasma selenium levels, the body’s exchangeable selenium pool,
lymphocyte phospholipids, and cytosolic glutathione peroxidase
activity. Selenium supplementation boosts cellular immune
responses and the expression of cytokines by enhancing interferon
secretion and increases early peak T cell proliferation and T
helper cell counts. Subjects supplemented with selenium exhibited
quick poliovirus elimination and the reverse transcriptase-PCR
products of polioviruses recovered from their feces had a low
number of mutations (97). Selenium supplementation promotes
lymphocyte proliferation in response to mitogens, increases
the expression of high-affinity IL-2 receptors, and enhances
tumor cytotoxicity and NK cell activity mediated by cytotoxic
lymphocytes (97, 98). Selenium supplementation has also been
found to boost NK cell activity, T cell proliferation, lymphokine-
activated killer cell activity, delayed onset of cutaneous allergy
reactions, and vaccine-induced immunity in experimental
animals (5).

Selenoprotein is thought to play a role in the epigenetic
control of pro-inflammatory genes. Narayan et al. demonstrated
that selenium supplementation decreased histone H4 acetylation
at K12 and K16 in the COX-2 and TNF-α promoters and
of the p65 subunit of the redox-sensitive transcription factor
nuclear factor kappa B in primary and immortalized macrophages,
indicating the critical role of selenoprotein in inhibiting histone H4
acetylation (99). T cell acute lymphoblastic leukemia/lymphoma
is a chemotherapy-sensitive hematologic malignancy. Wu et al.
demonstrated that ethylene glycol selenoprotein-induced apoptosis
in T cell acute lymphoblastic leukemia/lymphoma cells is
mediated by caspase activation and increased ROS via the
activation of mitochondrial signaling pathways (100). Jiang et al.
demonstrated that selenium-enriched chitosan oligosaccharide
effectively enhanced phagocytosis, anti-inflammatory cytokine
secretion in peritoneal macrophages, phagocytotic, spleen, and
thymus indices, and immunity, with no obvious toxicity, in
Kunming mice (96). Albumin acts as a carrier of nutrients,
whereas globulin is an immunoprotein. The albumin-to-globulin
ratio in serum is a useful indicator of animal nutrition and
immunological function (101). Interleukin (IL)-2 is a component of
cellular immune responses and a critical immunological regulator,
regulating cell development, differentiation, and proliferation and
contributing to the resolution of viral or bacterial infection. In
laying hens, a selenium-enriched earthworm powder containing
1.0 mg/kg selenium increased albumin, globulin, immunoglobulin
G, and IL-2 expression levels (101).

Macrophages of the M2 phenotype produce anti-inflammatory
cytokines, such as IL-10, which suppress tumor development (102).
Selenium supplementation improved migratory and phagocytic
activities in selenium-deficient macrophages and promoted the
transition from the pro-inflammatory M1 phenotype to the anti-
inflammatory M2 phenotype, thereby lowing pro-inflammatory
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action (103). Selenium supplementation also provides protection
against endogenous oxidative stress in neutrophils (104). In the
elderly, increased serum selenium levels are positively associated
with an increase in the number and activity of NK cells. Selenium
has been shown to boost the expression of the IL-2 receptor on
the NK cell surface, thus increasing the proliferation and clonal
expansion of cytotoxic precursor cells and the lytic activity of
activated NK cells (105). Activated NK cells exhibit cytotoxicity
toward tumor cells and release immunoregulatory molecules such
as IFN-γ and TNF-α (106). Selenium supplementation has been
shown to have an effect on T cell activation and function (107).
For example, a selenium-rich diet can shift the balance of T helper
1/T helper 2 cells toward the T helper 1 phenotype and increase
IFN and CD40 ligand levels (108). However, Ivory et al. have
shown that selenium administration increases IL-10 release and
decreases CD8 T cell granzyme B levels in the blood (91, 109).
Not only do perforin and granzyme destroy virus-infected cells
and tumors, but they also modulate the immune response to viral
infections (110). Immune modulation is impacted both positively
and negatively by selenium administration, as demonstrated by the
preceding results.

In conclusion, selenium can protect neutrophils from
endogenous oxidative stress, increase the migratory and phagocytic
activity of macrophages and promote the anti-inflammatory
M2 type, and increase the lytic activity of NK cells in order to
exert immunomodulatory effects. Selenium can also exert an
immunomodulatory effect through the recruitment of T helper
1 cells and the release of pro-inflammatory cytokines. However,
selenium can also diminish the number of CD8 T cells and
granzyme B, which impacts the control of the immune system.

4.4. Hypoglycemic effects

Diabetes mellitus is a chronic metabolic endocrine disease
that affects a large proportion of the global population. Diabetes
affects approximately 425 million adults worldwide and this
number has been projected to increase to 629 million by
2045 (111). Serum selenium levels do not appear to be
related with newly diagnosed type 2 diabetes in humans,
although they are considerably increased in individuals with
type 2 diabetes. Selenium supplementation has been shown to
increase the incidence of type 2 diabetes in elderly people,
particularly men with high baseline selenium levels, but not
in the general population (112, 113). However, a recent high-
quality randomized controlled study showed that supplementation
with selenium (200 µg/d) in the form of selenide yeast
or L-selenomethionine had no effect on the incidence of
type 2 diabetes (114). Therefore, it has been suggestion that
increased selenium consumption may be associated with an
increased risk of developing diabetes (115). In a study involving
in 41,474 subjects, Lin et al. found that dietary selenium
intake was positively associated with increased plasma glucose
and glycosylated hemoglobin levels, as well as the risk of
developing diabetes (116). Additionally, they observed a positive
association between serum selenium levels and increased plasma
glucose and glycosylated hemoglobin levels. This supports the
notion that elevated plasma selenium levels are related with

an increased risk of developing diabetes (117, 118). This is
primarily because high selenium intake increases the expression of
peroxisome proliferator-activated receptor coactivator (PGC-1), a
transcriptional coactivator involved in cellular energy metabolism,
which may be one of the primary causes of hyperglycemia
associated with high selenium intake (119).

However, appropriate selenium supplementation is a critical
component in controlling glucose homeostasis in humans (120).
El-Borady et al. demonstrated that selenium nanoparticles can
help prevent hyperglycemia by lowering plasma glucose levels.
Selenium nanoparticles also enhanced insulin levels in the plasma
and pancreas of diabetic rats and repaired damaged pancreatic
tissue. Additionally, selenium nanoparticles reduced oxidative
stress at the transcriptional and cellular levels and enhanced
glutathione peroxidase activity (111). Chen et al. demonstrated that
supplementing diabetic rats with selenium normalized the glucose-
6-phosphatase, lactate dehydrogenase, and glycogen phosphorylase
activities and restored glycogen levels to their pre-diabetic levels.
Selenium supplementation may enhance glucose uptake and
metabolism in the liver by regulating glucose metabolic enzyme
activity and mediating insulin-like actions in diabetes (121).

Selenium polysaccharide has a substantial hypoglycemic effect
as a particular target of the IRS-PI3K-Akt signaling pathway (122).
Polysaccharides may have several hypoglycemic mechanisms. First,
polysaccharides have been shown to increase PI3K expression.
Second, selenium polysaccharide has been shown to activate
Akt and phosphorylate Glut-4. Third, selenium polysaccharide
may inhibit GSK-3 action, thus increasing glycogen synthesis
and boosting glycogen synthesis (123). However, Zhou et al.
have shown that long-term feeding of mice, rats, and pigs
with a high-selenium diet (0.4–0.30 mg/kg diet) results in
hyperinsulinemia, hyperglycemia, insulin resistance, and glucose
intolerance (124). Several studies have demonstrated that a high
selenium intake may enhance the activity of GPx1 and other
selenoproteins, thereby altering the function of major regulators
of glycolysis, gluconeogenesis, and fat synthesis, thereby increasing
the prevalence of diabetes (125–130). Ogawa-Wong et al. have
demonstrated an increased incidence of type 2 diabetes in
individuals with high selenium levels at baseline. Therefore, long-
term supplementation with high doses of selenium increases the
likelihood of diabetes, and selenium supplementation may have
detrimental effects on those who already have adequate selenium
levels (131).

In conclusion, selenium has potential as a medicine in the
treatment of diabetes, but the optimal dose of selenium requires
additional research.

4.5. Regulation of the intestinal
microbiota

Intestinal microbes significantly contribute to human
physiology by regulating the maturation and proliferation of
intestinal cells, aiding food digestion, protecting against harmful
bacteria, and regulating the intestinal mucosal immune response
(132, 133). Dietary components, particularly trace elements, can
affect the colonization of the gastrointestinal tract and the makeup
of the microbiota structure. Selenium supplementation increases
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the diversity of the microbial community and has various effects
on different microbiota categories. Thus, selenium has a unique
role in many microbiota (134).

Selenium shows specific antibacterial activity against
pathogenic bacteria such as Escherichia coli in the complex
context of the cecal microbiota, without affecting the abundance
of other community members (135). Lin et al. demonstrated
that selenium administration improved the diversity and relative
abundance of intestinal microbes, restored some intestinal
microbiota, and increased methylmercury breakdown and
excretion in rats exposed to methyl mercury (136). Approximately
a fifth of the intestinal microbiota is capable of expressing
selenoprotein, and selenium availability affects selenoprotein
expression (137). Selenoproteins are required for various activities
in both bacteria and mammalian hosts (138). Dietary selenium
has an effect on the composition of the intestinal microbiota
and gastrointestinal tract colonization, which in turn affects
the host’s selenium status and selenoprotein expression (137).
Takahashi et al. demonstrated that selenium-methyl SeC and
selenocyanate are converted to selenomethionine by intestinal
bacteria, indicating that selenium compounds can be converted
to selenomethionine by the microbiota and subsequently utilized
by the host (134). Using 16S rRNA gene amplicon sequencing to
analyze bacterial communities and microbial metabolic pathways,
Kang et al. found that the administration of selenium-enriched
Lactobacillus plantarum significantly increased the metabolization
of selenocysteine, selenocystathionine, and selenomethionine,
as well as plasma selenium levels and anti-oxidant capability in
mice (139).

Selenoprotein affects the intestinal microbiota and increases
the expression of hematopoietic PGD2 synthase (HPGDS), which
catalyzes PGD2 synthesis in immune cells such as macrophages and
T cells. PGD2 dehydrates and isomerizes spontaneously to create
prostaglandins J2 (113 -PGJ2) and 112-PGJ2, respectively, and
112-PGJ2 can be transformed into 15-deoxy-112,14-prostaglandin
J2 (15d-PGJ2) to alleviate inflammation. As ligands for the
transcription factor peroxisome proliferator-activated receptor-γ

(PPARγ), PGD2 metabolites can bind to PPAR-response elements
in the HPGDS promoter and upregulate its expression, forming a
feed-forward loop (140).

In conclusion, selenium can regulate the intestinal microbiota
by controlling various prostaglandins.

5. Effects of selenium in different
populations

The WHO recommends a selenium consumption of 34 µg/d
for men and 26 µg/d for women, taking into account sex and
bodyweight differences (141). According to the most recent report
on dietary selenium reference intake in China, the recommended
daily intake of selenium varies slightly across populations (23). An
in-depth study in China and elsewhere revealed that women are
deficient in selenium during pregnancy and lactation. Increasing
the dietary selenium intake in pregnant and nursing women can
successfully prevent miscarriage and reduce fetal teratogenicity
(142). International attention has been focused on selenium
intake, and recommended selenium intake standards for various
populations have been established (Table 1) (141, 143–146). Low
serum selenium status has been associated with disease risk
(Table 2). Diseased populations benefit from a moderate selenium
intake, and the ingested dose and action mechanism have been
investigated (Figure 3).

5.1. Effects of selenium in HIV-positive
patients

AIDS damages the immune system. It impairs immune
function by destroying the human immune system’s most vital
cells, CD4 + T lymphocytes. As a result, HIV-infected individuals
are susceptible to various diseases, are at an increased risk of
developing malignant tumors, and have a high mortality rate (147).

TABLE 1 Recommended dietary selenium intakes for various regions and according to the WHO.

Age (years)/pregnancy
status

WHO (µg/d) (141) Northern Europe
(µg/d) (144)

Japan (µg/d) (143) China (µg/d)
(145)

USA (µg/d)
(146)

Women Men Women Men Women Men

0–0.5 6 – – – –

0.5–1 10 15 – – –

1–3 17 20 8 9 25 20

4–6 22 25 10 10 30 30

7–9 21 30 15 15 40 30

10–13 26 32 35 40 20 22.5 55 40

14–17 26 32 40 50 20 30 60 55

18–49 26 34 40 50 20 32.5 60 55

50–64 26 34 40 50 20 30 60 55

65–79 25 33 40 50 20 30 60 55

≥80 25 33 40 50 20 30 60 55

Pregnant women 28-30 – 55 – 24 – 66 60

Lactating women 35-42 – 55 – – – 78 70

“–” indicates that no data are available.
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TABLE 2 Relationship between serum selenium status and disease risk.

T Serum Se concentration (µ g/L) Effect

HIV ≤85 Increased HIV morbidity and mortality (39, 148)

–

Cancer <130 All-cause mortality and increased cancer mortality (154)

>150

Prostate cancer <130 Increased incidence and mortality of prostate cancer (154, 157)

>170

CVD ≤55 Increased morbidity and mortality from CVD (167)

>145

IBD ND Increased incidence, severity, duration and colon cancer risk of IBD (169, 171)

ND

“–” indicates that no data are available.

FIGURE 3

Beneficial effects and mechanisms of selenium supplementation in various diseases. Selenium supplementation can provide protection for
populations with AIDS, cancer, CVD, and IBD. Supplementing HIV-infected people with 200 µg selenium per day enhanced the CD4 count,
stimulated CD4 + T cell differentiation into T helper 1 cells, and decreased the HIV-1 viral load, thus decreasing HIV incidence and enhancing patient
survival. Supplementing prostate cancer patients with 200 µg of selenium per day prevented cell carcinogenesis, enhanced the body’s immunity and
anti-oxidant capacity, and reduced the incidence and mortality of prostate cancer. In a CVD population, supplementation with 200 µg selenium per
day reduced lipid oxidation, platelet aggregation, and inflammation, thus decreasing CVD morbidity and mortality. Supplementing an IBD population
with 200 µg of selenium per day relieved intestinal inflammation and restored epithelial barrier integrity, thereby decreasing the incidence, severity,
duration, and risk of IBD-associated colon cancer.

Selenium is required for normal immune system function and
is an essential nutrient for AIDS patients. Selenium deficiency
can result in immune system dysfunction, leading to reduced
immunological function. Low plasma selenium levels are a strong
predictor of HIV infection prognosis, and the degree to which
plasma selenium levels drop is predictive of HIV incidence and
mortality (6, 7).

CD4 count declines have been associated with decreases in
plasma selenium levels in more than 20 publications. HIV patients
who are selenium-deficient are 20 times more likely to die of
HIV-related causes than those who have sufficient selenium (39).
Selenium deficiency is defined as a plasma concentration of
selenium that is less than or equal to 85 µg/L (148). Selenium

promotes the differentiation of CD4 + T cells into T helper 1 cells,
which is related with a decrease in the incidence of hospitalizations
for coinfection in HIV-positive individuals (149). Baum et al.
conducted a 24-month randomized, placebo-controlled study of
878 HIV-positive people who had never received antiretroviral
treatment (150). The study findings indicated that taking a daily
multivitamin and 200 µg of selenium in the early stages of HIV
disease greatly decreased the risk of immunological decline and the
incidence of HIV-related events. In a double-blind, randomized,
placebo-controlled study in 450 adult male and female HIV
patients, Hurwitz et al. found that nine months of selenium
supplementation successfully enhanced blood selenium levels,
prevented HIV-1 viral load progression, indirectly improved CD4
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counts, decreased morbidity, and improved survival rates (151).
Kamwesiga et al. undertook a 24-month, multicenter, double-
blind, placebo-controlled, randomized clinical study, including 300
adult HIV patients. The results indicate that supplementation with
200 g of selenium per day can dramatically slow the pace of
CD4 cell count reduction in HIV patients (152). In conclusion,
supplementation with 200 g of selenium per day can minimize the
risk of impaired immunity and the incidence of HIV and enhance
the survival rate of HIV patients.

5.2. Effects of selenium in cancer patients

Cancer is a major public health problem worldwide and the
second leading cause of death. Each year, an estimated 18.1 million
new cases of cancer and 9.6 million cancer deaths occur globally
(153). As a result, cancer imposes a significant global economic
burden. Current clinical cancer treatments are inadequate in terms
of effectiveness and biocompatibility. The association between
selenium and cancer has long been a source of debate in the human
health field. In recent years, extensive research has been conducted
to demonstrate the efficacy of selenium in suppressing cellular
carcinogenesis and enhancing the immune system and the body’s
anti-oxidant capacity.

In a representative sample of the US population, non-
linear relationships between serum selenium levels and all-cause
and cancer mortality were observed; a negative association was
observed at low selenium concentrations (<130 µg/L), whereas
a moderate positive correlation was observed at high selenium
concentrations (>150 µg/L) (154). The SELECT study revealed
that selenium supplementation is related with an increased risk
of prostate cancer in men with high baseline selenium levels
(122). Supplementation of selenium in selenium-deficient people
has been demonstrated to lower the risk of prostate cancer. In
a seven-year, double-blind, randomized, placebo-controlled study
in 32,400 man, Lippman et al. found that daily supplementation
of 200 µg of selenium did not lower the incidence of prostate
cancer in men who already consumed an adequate amount of
selenium (155). A randomized controlled study by Duffield-Lillico
et al. revealed that daily supplentation of 200 µg of selenium per
day considerably decreased the incidence of prostate cancer in
men with baseline selenium concentrations < 123.2 µg/L (156).
Hurst et al. conducted a meta-analysis of blood selenium levels
and non-linear dose-response relationships in 13,254 subjects with
and 5,007 cases of prostate cancer and found that increasing
serum selenium to 170 µg/L lowered the incidence of prostate
cancer (157). Thus, selenium supplementation will help reduce
cancer incidence and mortality in individuals who are deficient
in selenium or have a minor deficiency (158). However, selenium
supplementation is harmful to people with enough selenium and
increases cancer incidence and death in individuals with high
baseline selenium levels.

5.3. Effect of selenium in CVD patients

CVD is the leading cause of death worldwide (159). The burden
of CVD is expected to increase with the aging population. Aging,

smoking, obesity, elevated cholesterol levels, unhealthy eating
habits, level of education, blood pressure, diabetes, and genetics
have an effect on the risk of CVD (160).

Selenium has been shown to protect against CVD by
suppressing lipid oxidation, platelet aggregation, and inflammation
(161, 162). A study on the effect of long-term selenium yeast
(200 µg/d) and coenzyme Q10 supplementation on cardiovascular
mortality in elderly Swedes revealed that supplementation
protected the heart in those with low baseline selenium levels (≤ 85
µg/L), but had no effect in those with plasma selenium levels > 85
µg/L (163). In a 12-year randomized, placebo-controlled study
in 443 elderly subjects in good health, Alehagen et al. found
that daily intake of 200 mg coenzyme Q10 and 200 µg selenium
for four years significantly reduced cardiovascular mortality, and
cardiovascular mortality was still decreased by more than 40% eight
years after the four-year intervention (164). Yin et al. examined
vitamin intake in 39,757 American adults using dietary recall data
and found that consuming 207.8 µg selenium daily lowered CVD
incidence and mortality (165). Additionally, a negative relation
has been observed between selenium and total CVD through
weighted quantile sum regression analysis (166). A meta-analysis
of prospective observational studies revealed a non-linear relation
between CVD risk and plasma selenium concentrations between
30–165 µg/L, but a substantial negative correlation in the range
55–145 µg/L; thus, the relation between baseline selenium status
and the incidence of CVD may be non-linear and U-shaped (167).
A meta-analysis of randomized controlled trials revealed that daily
supplementation of 200 µg of selenium significantly enhanced
blood selenium concentrations, whereas daily supplementation of
100 µg had no effect on CVD (167).

In conclusion, persons with low baseline selenium levels may
benefit from supplementation, and supplementation with 200 g
of selenium per day may reduce CVD morbidity and mortality;
however, the preventive effect of selenium against CVD has not
been demonstrated. To establish the association between selenium
and CVD, larger clinical trials in populations with varying selenium
levels are required. Future research should take into account the
importance of selenium status, dosing, and safety.

5.4. Effect of selenium in IBD patients

IBD refers to a specific type of chronic inflammatory illness
of the intestine, mostly including Crohn’s disease and ulcerative
colitis (168). The incidence of IBD has been increasing over
the last decades, mainly due to nutritional and environmental
imbalances (169).

Selenocysteine is a selenoprotein involved in the regulation
of inflammation (140). Serum selenium levels have been found
to be decreased in patients with IBD (169). In New Zealand, the
incidence rate of Crohn’s disease is among the highest and the mean
plasma selenium levels among the lowest in the world (170). Serum
selenium levels have been demonstrated to be adversely associated
with the severity and length of IBD and the risk of colon cancer, and
selenium may serve as a non-invasive biomarker of IBD activity and
severity (171). Additionally, dietary selenium has been shown to be
beneficial at resolving intestinal inflammation and reestablishing
epithelial barrier integrity (140, 172). Selenium supplementation
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decreased colitis-associated inflammation and enhanced mouse
survival in mice treated with dextran sodium sulfate (173).

In summary, low plasma selenium levels are associated with
an increased risk of IBD. Selenium supplementation may help
patients with IBD resolve their intestinal inflammation. The
causative link between selenium deficiency and IBD requires
further investigation.

6. Conclusions and future
perspectives

Numerous studies have established that selenium possesses
anti-oxidant, anti-cancer, blood glucose-lowering, and immune
system-strengthening properties. Selenium supplementation
benefits human health in various ways, most notably in terms
of immunological responses and cancer prevention. Selenium
supplements can be used to treat conditions such as HIV, IBD,
CVD, and cancer. Selenium supplementation is most often
accomplished through the use of inorganic sodium selenite, organic
selenium, selenium nanoparticles, or selenium-enriched yeast.
However, the relationship between selenium and human health
is complex, and its “duality” makes research on its health effects
difficult. Additionally, the non-linear dose-response relationship
between selenium status and health is U-shaped; individuals with
low baseline selenium levels may benefit from supplementation,
whereas those with acceptable or high selenium levels may
experience detrimental effects. Selenium has an extremely narrow
range between deficiency and toxicity, and baseline selenium levels
vary among populations. Safe methods and doses of selenium
intake and the baseline selenium range suited for selenium
supplementation remain to be established in future.
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67. Gać P, Pawlas N, Porêba R, Porêba M, Markiewicz-Górka I, Januszewska L, et al.
Interaction between blood selenium concentration and a levels of oxidative stress
and antioxidative capacity in healthy children. Environ Toxicol Pharmacol. (2015)
39:137–44. doi: 10.1016/j.etap.2014.11.011

68. Wang N, Tan H, Li S, Xu Y, Guo W, Feng Y. Supplementation of micronutrient
selenium in metabolic diseases: its role as an antioxidant. Oxid Med Cell Longev. (2017)
2017:7478523. doi: 10.1155/2017/7478523

69. Zachariah M, Maamoun H, Milano L, Rayman M, Meira L, Agouni A.
Endoplasmic reticulum stress and oxidative stress drive endothelial dysfunction
induced by high selenium. J Cell Physiol. (2021) 236:4348–59. doi: 10.1002/jcp.30175
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