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Non-insulin-based insulin resistance (IR) indices serve as the indicators of 
metabolic syndrome (MetS) but have limited value for predicting clinical outcomes. 
Whether the obesity paradox affects the predictive value of these indicators in 
patients with chronic kidney disease (CKD) remains unknown. We  investigated 
whether MetS and non-insulin-based IR indices can predict all-cause mortality 
and renal outcomes in a prospective observational study with stage 1–4 CKD 
Asians (N = 2,457). These IR indices were associated with MetS. A Cox regression 
model including body mass index (BMI) revealed an association between MetS and 
renal outcomes. Among the IR indices, only high triglyceride–glucose (TyG) index 
was associated with adverse renal outcomes: the hazard ratio of Q4 quartile of 
the TyG index was 1.38 (1.12–1.70). All-cause mortality was marginally associated 
with MetS but not high IR indices. Low TyG and TyG–BMI indices as well as 
low BMI and triglyceride were paradoxically associated with increased risks of 
clinical outcomes. The triglyceride-to-high-density lipoprotein cholesterol ratio 
and metabolic score for IR indices were not associated with clinical outcomes. 
In conclusion, MetS and TyG index predict renal outcome and obesity paradox 
affects the prediction of IR indices in patients with stage 1–4 CKD.
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1. Introduction

A continual increase has been noted in the prevalence of 
metabolic syndrome (MetS); MetS was estimated to affect 
approximately one-quarter of the world’s population in 2018 (1). 
MetS is defined as elevated blood pressure, dyslipidemia, increased 
fasting blood glucose levels, and central obesity (2). MetS is 
independently associated with the risks of chronic kidney disease 
(CKD) (3, 4) and microalbuminuria (4). In patients with CKD, the 
prevalence of MetS has been reported to be approximately 65% 
(5). Furthermore, MetS is strongly associated with all-cause 
mortality (6) and adverse renal outcomes (7). However, a study 
involving 25,868 patients with stage 3 or 4 CKD (proportion of 
Caucasian patients, 86.9%) revealed an association of MetS with 
progression to end-stage renal disease (ESRD) but not with 
all-cause mortality (8). A Taiwanese study suggested that the 
effects of MetS on CKD progression are prominent only in 
patients with early-stage CKD without diabetes (9). We previously 
reported a U-shaped association between waist-to-hip ratio and 
all-cause mortality in patients with CKD (10). Further studies are 
required to identify the associations between MetS, CKD 
progression, and all-cause mortality in patients with CKD.

Insulin resistance (IR) is a key indicator of MetS (11, 12). IR is 
common in patients with CKD, which contributes to renal function 
deterioration and increased cardiovascular disease risk (13). The 
mechanism of IR involves the common pathways of metabolite-
driven gluconeogenesis and ectopic lipid accumulation (14). In 
their study involving a Swedish cohort (n = 8,980), Wagner et al. 
revealed that individuals with IR had a high risk of diabetic 
nephropathy than general population (15). The gold standard for 
measuring IR is the hyperglycemic clamp technique, which helps 
quantify the sensitivity of beta cells to glucose and that of tissues 
to insulin (16). Alternative methods of IR measurement include 
insulin-based approaches, such as homeostasis model assessment 
of IR (HOMA-IR) (17) and the quantitative insulin sensitivity 
check index (18), and non-insulin-based approaches, such as the 
triglyceride (TG)–glucose (TyG) index (19), TyG–body mass index 
(BMI) (20), TG-to-high-density lipoprotein cholesterol (HDL-c) 
ratio (21), and metabolic score for IR (METS-IR) (22). 
Non-insulin-based approaches predict IR by substituting insulin 
assessments with assessments of fasting TG level, glucose level, 
lipoprotein level, or BMI; these surrogate indices are easily 
accessible in clinical practice.

Non-insulin-based IR indices are strongly associated with 
MetS. The TyG index has been widely used as an indicator of IR (23); 
its efficacy may be higher than that of HOMA-IR (24). Furthermore, 
the TyG–BMI index (20), TG/HDL-c ratio (25), and METS-IR (22) 
help predict MetS (26, 27). However, few studies have focused on the 
value of these indices for predicting clinical outcomes in patients with 
CKD. A high TyG index is strongly associated with renal function 
progression (28, 29) and diabetic nephropathy in patients with type 2 
diabetes mellitus (DM) (30, 31). This index is also associated with 
all-cause mortality and cardiovascular death (32–34). We previously 
revealed reverse associations between BMI, all-cause mortality (10), 
and renal outcomes (35)—termed the obesity paradox—in patients 
with CKD. Whether clinical outcomes predicted using non-insulin-
based IR indices are also affected by the obesity paradox 
remains unknown.

Considering the obesity paradox, we investigated whether MetS 
and non-insulin-based IR indices can predict all-cause mortality and 
renal outcome in patients with stage 1–4 CKD.

2. Materials and methods

2.1. Study design and participants

This prospective observational study, the Integrated CKD Care 
Program in Kaohsiung for Delaying Dialysis, involved two affiliated 
hospitals of Kaohsiung Medical University, southern Taiwan, and was 
conducted between November 11, 2002, and May 31, 2009 (36). 
We extended the follow-up period to 31 December 2014. The present 
study included patients with stage 1–4 CKD who did not receive renal 
replacement therapy. Patients with acute kidney injury, defined as a 
>50% decrease in estimated glomerular filtration rate (eGFR; 
calculated using the modification of diet in renal disease equation) 
within 3 months; patients who were lost to follow-up within 3 months; 
and patients with CKD were excluded from this study. Finally, this 
study included 2,457 patients with stage 1–4 CKD and a BMI of 15.0–
35.0 kg/m2. To investigate the association of non-insulin-based IR 
indices with renal outcomes and all-cause mortality, the included 
patients were stratified based on four quartiles of the TyG index. 
Informed consent for participation was obtained from all patients. 
This study was approved by the Institutional Review Board of 
Kaohsiung Medical University Hospital (approval number: 
KMUH-IRB-990198).

2.2. Collection of demographic, medical, 
and laboratory data

The baseline variables included the patients’ demographic 
characteristics, such as age, BMI, waist circumference (WC), and sex; 
medical history, such as cardiovascular disease, diabetes, hypertension, 
mean blood pressure (BP), antihypertensive drug use, Charlson 
comorbidity index, MetS, and malnutrition–inflammation–cachexia 
syndrome (MICS); and laboratory findings, such as eGFR, urine 
protein-to-creatinine ratio (Upcr), hemoglobin level, albumin level, 
C-reactive protein (CRP) level, total cholesterol level, and TG level. 
The demographic characteristics served as baseline variables. Data 
regarding patients’ medical history were obtained by reviewing their 
medical charts and interviewing them. The definitions of indicators 
were listed below. Biochemistry measurements were performed 
during screening and baseline visits and then every 3 months, as per 
the protocol. Laboratory data obtained from 3 months before the 
baseline to 3 months after it were averaged and analyzed (Table 1).

2.3. Outcomes

Renal outcomes of interest were renal replacement therapy and a 
50% decrease in eGFR. All-cause mortality was ascertained by 
reviewing death certificates, patient charts, or the National Death 
Index. The models constructed to assess all-cause mortality included 
patients who had undergone renal replacement therapy; patients were 
censored only at death or the end of follow-up.
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2.4. Statistical analysis

The baseline characteristics of all the patients were stratified using 
the TyG index. Categorical data were presented in terms of numbers 
and percentages. Continuous data with a normal distribution were 
presented in terms of mean ± standard deviation values, whereas those 
with a skewed distribution were presented as median and interquartile 
range values. Between-group differences were evaluated using a 
chi-squared test for categorical variables and a one-way analysis of 
variance for continuous variables. Cox proportional hazards 
regression analysis was performed to investigate the association of 
non-insulin-based IR indices with renal outcomes and all-cause 
mortality. Continuous variables with a skewed distribution were 
log-transformed to ensure a normal distribution. Covariates were 
selected after their clinical relevance was considered; this approach is 
consistent with that of our previous study (39). We adjusted for the 
effects of the following covariates: age, sex, eGFR, Upcr (log value), 
cardiovascular disease, smoking, cancer, severe liver disease, 
hypertension, hemoglobin level, BMI, cholesterol level (log value), 
glycosylated hemoglobin level, albumin level, CRP (ln value), and 
phosphorus level. All analyses were performed using SPSS for 
Windows (version 20.0; IBM, Chicago, IL, USA).

3. Results

3.1. Baseline characteristics of patients with 
stage 1–4 CKD stratified by TyG index

The patients (N = 2,457) were stratified by TyG index quartiles 
(Table  2). Of the patients, 35.8% were women, 22.0% had 
cardiovascular disease, 60.5% had hypertension, 49.3% had diabetes, 
and 66.5% had MetS. Their mean age was 62.6 ± 14.4 years, their mean 
eGFR was 40.5 ± 23.1 ml/min/1.73 m2, their mean BMI was 
24.93 ± 3.61 kg/m2, and their median Upcr was 685 (246–1,804) mg/g. 
In patients with stage 1–4 CKD, BMI, WC, sex, diabetes, mean BP, 
antihypertensive drug use, MetS, Upcr, hemoglobin level, total 
cholesterol level, TG level, and all-cause mortality increased with an 

increase in TyG index. However, age, MICS, albumin level, and 
progression to ESRD decreased with an increase in TyG index.

A multivariate linear regression model was constructed for the 
TyG index (Supplementary Table 1); the regression analysis results 
revealed significant (p < 0.05) increases in Upcr (log value), diabetes, 
WC, BMI, hemoglobin level, TG level, and albumin level with an 
increasing value in TyG index. By contrast, a significant (p < 0.05) 
decrease was noted in eGFR with an increase in TyG index.

3.2. Association between MetS and 
non-insulin-based IR indices

We determined the association between MetS prevalence and 
four IR indices by using a fully adjusted logistic regression model 
(Table 3). MetS prevalence significantly increased with an increase 
in TyG index. The odds ratio (OR) with 95% confidence interval 
(CI) values corresponding to TyG index quartiles Q2, Q3, and Q4 
were 2.00 (1.50–2.67), 11.12 (7.91–15.65), and 28.19 (18.18–43.70), 
respectively, compared with the values corresponding to TyG index 
quartile Q1. Similar results with higher ORs were obtained for the 
other indices. MetS prevalence increased considerably with an 
increase in the values of these indices. The OR values corresponding 
to Q4 quartiles of the TG/HDL-c ratio, TyG–BMI index, and 
METS-IR were 48.22 (30.32–76.67), 29.77 (19.11–46.37), and 72.66 
(43.67–120.90), respectively, compared with those corresponding 
to Q1. The p values for the aforementioned comparisons 
were <0.001.

3.3. Association of MetS with renal 
outcomes and all-cause mortality

Table 4 presents the hazard ratios (HRs) corresponding to renal 
outcomes and all-cause mortality stratified by MetS. In the fully 
adjusted Cox regression model adjusted for BMI and traditional 
confounding factors, patients with MetS had substantially high risks 
of adverse renal outcomes (HR: 1.56; 95% CI: 1.27–1.19). However, 

TABLE 1 Definitions of indicators.

Indicators Definition
BMI (Body mass index) Weight (in kg) divided by height squared (in m2).

WC (Waist circumference) Performed in accordance with the protocol outlined by the World Health Organization (37).

TyG index Ln [fasting TG level × fasting glucose level/2] (23).

TG/HDL-c ratio Fasting TG level/HDL-c level (25).

TyG–BMI index TyG index value × BMI (20).

METS-IR Ln [(2 × fasting glucose level) + (fasting TG level) × BMI]/Ln (HDL-c level) (22).

MetS (Metabolic syndrome) MetS components comprised a WC of ≥90 cm in men and ≥ 80 cm in women; systolic BP of ≥130 mmHg, diastolic BP of 

≥85 mmHg, or hypertension; a HDL-c level of >40 mg/dl in men and >50 mg/dl in women; a TG level of ≥150 mg/dl; and a 

fasting blood glucose level of ≥100 mg/dl or a confirmed diagnosis of diabetes.

Charlson comorbidity index Predicts mortality associated with the following 17 comorbidities: acute myocardial infarction, congestive heart failure, 

peripheral vascular disease, cerebral vascular accident, dementia, pulmonary disease, connective tissue disorder, peptic ulcer, 

liver disease, diabetes, diabetes complications, paraplegia, renal disease, cancer, metastatic cancer, severe liver disease, and human 

immunodeficiency virus infection (38).

Mean arterial pressure Sum of one-third of the average systolic BP and two-thirds of the average diastolic BP, which were measured 3 months before and 

after patient enrollment.

Upcr (Urine protein-to-creatinine ratio) Ratio of protein (in milligrams) and creatinine (in grams) in a random spot urine sample.
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patients with MetS exhibited only marginal increases in the risk of 
all-cause mortality (HR: 1.17; 95% CI: 0.91–1.49; p = 0.216).

3.4. Association of non-insulin-based IR 
indices with renal outcomes and all-cause 
mortality

We investigated the association between adverse renal outcomes 
and non-insulin-based IR indices by using a fully adjusted Cox 

regression model (Table 5). A U-shaped association was identified 
between the TyG index and adverse renal outcomes. The risk of 
adverse renal outcomes markedly increased in Q1 (HR: 1.44; 95% CI: 
1.13–1.84), Q2 (HR: 1.57; 95% CI: 1.26–1.95), and Q4 (HR: 1.38; 95% 
CI: 1.12–1.70) of the TyG index compared with that in the reference 
group (TyG index Q3). A reverse association was found between the 
TyG–BMI index and adverse renal outcomes. The risk of adverse renal 
outcomes was significantly higher in Q1 (HR: 1.86; 95% CI: 1.19–2.91) 
and Q2 (HR: 1.57; 95% CI: 1.10–2.23) of the TyG–BMI index 
compared with that in the reference group (TyG–BMI index Q4). No 

TABLE 2 Baseline characteristics of patients with stage 1–4 chronic kidney disease stratified by triglyceride–glucose index.

Triglyceride-glucose index p value#

Q1 Q2 Q3 Q4
No. of patients (n = 2,457) 614 (25.0%) 614 (25.0%) 615 (25.0%) 614 (25.0%)

Demographics/Medical history

Age (years) 62.2 (16.3) 64.4 (14.2) 62.9 (14.0) 60.9 (12.7) <0.001

Body mass index (kg/m2) 23.6 (3.5) 24.7 (3.4) 25.4 (3.4) 26.0 (3.6) <0.001

Waist (cm) 84.3 (12.4) 87.6 (12.2) 89.6 (11.9) 91.2 (12.0) <0.001

Sex (Female) 201 (32.7%) 213 (34.7%) 220 (35.8%) 245 (39.9%) 0.009

Cardiovascular disease 129 (21.0%) 149 (24.3%) 138 (22.4%) 125 (20.4%) 0.613

Diabetes mellitus 196 (31.9%) 248 (40.4%) 320 (52.0%) 447 (72.8%) <0.001

Hypertension 341 (55.5%) 383 (62.4%) 388 (63.1%) 374 (60.9%) 0.056

Antihypertensive drug 238 (38.8%) 256 (41.7%) 283 (46.0%) 295 (48.0%) <0.001

Mean BP (mmHg) 96.48 (12.85) 98.44 (13.07) 100.51 (13.57) 101.67 (13.54) <0.001

Charlson score 3.27 (2.12) 3.38 (2.08) 3.36 (2.03) 3.36 (1.95) 0.792

Metabolic syndrome 226 (36.8%) 334 (54.4%) 509 (82.8%) 566 (92.2%) <0.001

Malnutrition–inflammation 306 (49.8%) 279 (45.4%) 281 (45.7%) 268 (43.6%) 0.042

Laboratory data

eGFR (ml/min/1.73 m2) 36.6 (25.0–50.4) 35.5 (24.5–49.3) 35.7 (25.6–48.4) 32.5 (23.4–46.5) 0.054

UPCR (mg/g) 448 (162–1,182) 570 (224–1,505) 771 (282–1754) 1,231 (369–3,131) <0.001

Hemoglobin (g/dl) 12.0 (2.2) 12.1 (2.2) 12.4 (2.2) 12.3 (2.2) 0.020

Albumin (g/dl) 3.96 (0.47) 3.90 (0.54) 3.90 (0.56) 3.88 (0.59) 0.039

C-reactive protein (mg/L) 0.8 (0.3–4.9) 1.1 (0.3–3.9) 1.0 (0.3–4.5) 1.2 (0.4–5.0) 0.248

Total cholesterol (mg/dl) 178.9 (40.8) 195.5 (45.8) 205.8 (57.8) 225.9 (72.4) <0.001

Triglyceride (mg/dl) 74.3 (23.7) 113.3 (21.8) 158.5 (40.0) 290.0 (251.6) <0.001

Outcomes

ESRD 108 (17.6%) 91 (14.8%) 93 (15.1%) 79 (12.9%) <0.001

All-cause mortality 150 (24.4%) 163 (26.5%) 159 (25.9%) 232 (37.8%) <0.001

Data are presented in terms of means (standard error), medians (interquartile range), or numbers (%). BP, blood pressure; eGFR, estimated glomerular filtration rate; Upcr, urine protein-to-
creatinine ratio; CKD, chronic kidney disease; ESRD, end-stage renal disease.
#p value: Chi square test for categorical variable and one-way analysis of variance for continuous variable.

TABLE 3 Hazard ratios corresponding to metabolic syndrome stratified by the quartiles of various insulin resistance indices.

Q1 Q2 Q3 Q4 p for trend
Triglyceride-glucose index (TyG index)
Unadjusted 1 (reference) 2.05 (1.63–2.57)* 8.24 (6.32–10.75)* 20.24 (14.45–28.36)* <0.001

Fully-adjusted 1 (reference) 2.00 (1.50–2.67)* 11.12 (7.91–15.65)* 28.19 (18.18–43.70)* <0.001
Triglyceride/high density lipoprotein (TG/HDL-c ratio)
Unadjusted 1 (reference) 2.56 (2.03–3.22)* 8.73 (6.71–11.37)* 32.53 (22.24–47.56)* <0.001

Fully-adjusted 1 (reference) 2.87 (2.13–3.88)* 15.55 (10.93–22.13)* 48.22 (30.32–76.67)* <0.001
Triglyceride glucose-body mass index (TyG-BMI index)
Unadjusted 1 (reference) 3.37 (2.66–4.26)* 8.80 (6.77–11.43)* 26.33 (18.65–37.18)* <0.001

Fully-adjusted 1 (reference) 3.81 (2.83–5.13)* 9.62 (6.89–13.44)* 29.77 (19.11–46.37)* <0.001
Metabolic score for insulin resistance (METS-IR)
Unadjusted 1 (reference) 4.01 (3.16–5.10)* 12.26 (9.33–16.11)* 54.66 (35.97–83.05)* <0.001

Fully-adjusted 1 (reference) 4.56 (3.35–6.19)* 16.64 (11.68–23.70)* 72.66 (43.67–120.90)* <0.001

Data are presented in terms of hazard ratios and 95% confidence intervals. The fully adjusted model was adjusted for age, sex, estimated glomerular filtration rate, urine protein-to-creatinine 
ratio (log value), cardiovascular disease, smoking, cancer, severe liver disease, hypertension, hemoglobin level, body mass index, cholesterol level (log value), glycosylated hemoglobin level, 
albumin level, C-reactive protein level (ln value), and phosphorus level. TyG, triglyceride (TG)–glucose; BMI, body mass index; HDL-c, high-density lipoprotein cholesterol; METS-IR, 
metabolic score for insulin resistance.
*p < 0.001, compared with the reference TyG index, TG/HDL-c ratio, TyG–BMI index, or METS-IR.
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prominent associations were observed between TG/HDL-c ratio, 
METS-IR, and adverse renal outcomes.

We also investigated the association between all-cause mortality and 
non-insulin-based IR indices by using a fully adjusted Cox regression 
model (Table  6). The TyG and TyG–BMI indices were reversely 
associated with all-cause mortality. The risk of all-cause mortality was 
significantly higher in Q1 of the TyG index (HR: 1.38; 95% CI: 1.08–1.76) 
compared with that in the reference group (TyG index Q2). Furthermore, 
this risk was significantly higher in the Q1 quartile of the TyG–BMI 
index (HR: 1.87; 95% CI: 1.11–3.14) compared with that in the reference 
group (TyG–BMI index Q4). No strong associations were found between 
all-cause mortality and TG/HDL-c ratio or METS-IR.

3.5. Association of BMI with renal 
outcomes and mortality in patients with 
stage 1–4 CKD

We stratified the HRs corresponding to renal outcomes and 
all-cause mortality by BMI (Supplementary Table 2). A high BMI was 

associated with adverse renal outcomes, whereas a low BMI was 
associated with a higher risk of all-cause mortality. Compared with 
patients with a BMI of 25.1–27.5 kg/m2 (reference group), the risk of 
adverse renal outcomes was significantly higher in those with a BMI 
of 27.6–30.0 kg/m2 (HR: 1.31; 95% CI: 1.02–1.69) and those with a 
BMI of 30.1–35.0 kg/m2 (HR: 1.48; 95% CI: 1.12–1.94). Compared 
with patients with a BMI of 27.6–30.0 kg/m2 (reference group), the risk 
of all-cause mortality was significantly higher in those with a BMI of 
15.1–20.0 kg/m2 (HR: 1.71; 95%: 1.15–2.54) and marginally higher in 
those with a BMI of 20.1–22.5 kg/m2 (HR: 1.39; 95% CI: 0.99–1.96).

3.6. HRs corresponding to renal outcomes 
and all-cause mortality stratified by fasting 
TG and glucose levels

We analyzed the association of fasting TG and glucose levels with 
renal outcomes and all-cause mortality by using a Cox regression 
model (Supplementary Table 3). Low, but not high, fasting TG levels 
were associated with adverse renal outcomes and a heightened risk of 

TABLE 4 Hazard ratios corresponding to renal outcomes and all-cause mortality stratified by metabolic syndrome.

Metabolic syndrome

(−) (+) p for trend

HR for renal outcome

Unadjusted 1 (reference) 1.69 (1.44–1.99)* < 0.001

Fully adjusted 1 (reference) 1.56 (1.27–1.91)* < 0.001

HR for all-cause mortality

Unadjusted 1 (reference) 1.57 (1.29–1.91)* < 0.001

Fully adjusted 1 (reference) 1.17 (0.91–1.49) 0.216

Data are presented in terms of HRs and 95% confidence intervals. The fully adjusted model was adjusted for age, sex, estimated glomerular filtration rate, urine protein-to-creatinine ratio (log 
value), cardiovascular disease, smoking, cancer, severe liver disease, hypertension, hemoglobin level, body mass index, cholesterol level (log value), glycosylated hemoglobin level, albumin 
level, C-reactive protein level (ln value), and phosphorus level. HR, hazard ratio.
*p < 0.001, compared with patients with CKD without metabolic syndrome.

TABLE 5 Hazard ratios corresponding to renal outcome stratified by the quartiles of various insulin resistance indices.

Q1 Q2 Q3 Q4 p for trend

Triglyceride-glucose index (TyG index)

Unadjusted 0.89 (0.72–1.11) 1.03 (0.84–1.27) 1 (reference) 1.61 (1.33–1.95)* < 0.001

Fully-adjusted 1.44 (1.13–1.84)* 1.57 (1.26–1.95)* 1 (reference) 1.38 (1.12–1.70)* < 0.001

Triglyceride/high density lipoprotein (TG/HDL-c ratio)

Unadjusted 1.03 (0.83–1.28) 1 (reference) 1.26 (1.02–1.54)* 1.53 (1.26–1.87)* < 0.001

Fully-adjusted 1.17 (0.93–1.47) 1 (reference) 1.00 (0.81–1.25) 1.06 (0.85–1.31) 0.518

Triglyceride glucose-body mass index (TyG-BMI index)

Unadjusted 0.94 (0.77–1.14) 0.82 (0.67–1.00) 0.87 (0.71–1.06) 1 (reference) 0.223

Fully-adjusted 1.86 (1.19–2.91)* 1.57 (1.10–2.23)* 1.17 (0.90–1.53) 1 (reference) 0.033

Metabolic score for insulin resistance (METS-IR)

Unadjusted 1.00 (0.81–1.22) 0.95 (0.77–1.16) 1 (reference) 1.16 (0.96–1.41) 0.196

Fully-adjusted 1.29 (0.93–1.79) 1.06 (0.84–1.33) 1 (reference) 1.07 (0.85–1.34) 0.432

Data are presented in terms of hazard ratios and 95% confidence intervals. The fully adjusted model was adjusted for age, sex, estimated glomerular filtration rate, urine protein-to-creatinine 
ratio (log value), cardiovascular disease, smoking, cancer, severe liver disease, hypertension, hemoglobin level, body mass index, cholesterol level (log value), glycosylated hemoglobin level, 
albumin level, C-reactive protein level (ln value), and phosphorus level. TyG, triglyceride (TG)–glucose; BMI, body mass index; HDL-c, high-density lipoprotein cholesterol; METS-IR, 
metabolic score for insulin resistance.
*p < 0.001, compared with the reference TyG index, TG/HDL-c ratio, TyG–BMI index, or METS-IR.
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all-cause mortality. A higher risk of all-cause mortality was observed 
in patients with fasting TG levels of <50 mg/dl (HR: 1.41; 95% CI: 
0.83–2.38) and 50–100 mg/dl (HR: 1.34; 95% CI: 1.01–1.78) compared 
with that in patients with a fasting TG level of 150–200 mg/dl 
(reference group). Patients with a fasting TG level of <50 mg/dl had a 
marginally higher risk of all-cause mortality (HR: 1.35; 95% CI: 
0.84–2.17).

High fasting glucose levels were associated with adverse renal 
outcomes and a heightened risk of all-cause mortality. Patients with a 
fasting glucose level of >150 mg/dl had elevated risks of adverse renal 
outcomes (HR: 1.32; 95% CI: 1.05–1.65) and all-cause mortality (HR: 
1.43; 95% CI: 1.09–1.88). Low fasting glucose levels were not 
associated with these adverse clinical outcomes.

4. Discussion

In the present study, four non-insulin-based IR indices (TyG 
index, TyG–BMI index, TG/HDL-c ratio, and METS-IR) were found 
to be associated with MetS. Compared with patients without MetS, 
patients with MetS exhibited a significantly higher risk of adverse 
renal outcomes and a marginally higher risk of all-cause mortality. The 
current evidence between insulin-based IR indices and clinical 
outcomes were debatable and few studies have explored the association 
between non-insulin-based IR indices with mortality and renal 
outcomes. Notably, low values of the TyG and TyG–BMI indices were 
paradoxically associated with higher risks of adverse renal outcomes 
and all-cause mortality (Tables 5, 6). Furthermore, among the IR 
indices, only high TyG index was associated with adverse renal 
outcomes. This paradox may be  explained on the basis of the 
associations of low BMI and low fasting TG level with poor clinical 
outcomes, considering the effects of their components. Early screening 
by MetS or TyG index could help to predict clinical outcomes in 
patients with stage 1–4 CKD.

Our results support the value of non-insulin-based IR indices for 
predicting MetS in patients with CKD. The TyG index appears to be a 
better biomarker of MetS than HOMA-IR (40) and IR indices have 
distinct power for MetS detection (27, 41). In the present study, four 
non-insulin-based IR indices (TyG index, TyG–BMI index, TG/
HDL-c ratio, and METS-IR) effectively predicted MetS in patients 
with CKD. The Q4 quartile of the METS-IR index had the highest OR 
(72.66; 95% CI: 43.67–120.90). Although we considered the obesity 
paradox in our study, MetS was found to be  associated with a 
significantly higher risk of adverse renal outcomes and a marginally 
higher risk of all-cause mortality. These findings corroborate the 
effects of BMI observed in our cohort (mean BMI: 24.93 ± 3.61 kg/m2). 
A high BMI was identified as a risk factor for adverse renal outcomes 
but not all-cause mortality. These findings are consistent with those of 
Navaneethan et al., who conducted a relevant study involving 25,868 
patients with stage 3 or 4 CKD (8). The African American Study of 
Kidney Disease and Hypertension reported no association of MetS 
with CKD progression or mortality in patients (N = 842) with CKD 
and hypertension (mean BMI: 31.4 ± 7.0 kg/m2; eGFR: 25–65 ml/
min/1.73 m2) (7). However, Pammer et  al. revealed significant 
increases in the risks of all-cause mortality and cardiovascular events 
with an increased prevalence of MetS in a large cohort comprising 
German patients (N = 5,110) with stage 1–3 CKD (mean BMI: 
29.8 ± 6.0 kg/m2) (42). These differences may be explained on the basis 
of the distribution of patients with a low BMI or malnutrition. 
Nonetheless, MetS remains a major risk factor for CKD progression.

The effects of MetS on renal outcomes may be explained on the 
basis of IR. IR is associated with metabolite-driven gluconeogenesis 
and ectopic lipid accumulation (14), which is associated with the 
glucose–fatty acid cycle (43). In patients with IR, the pathway-specific 
impairment of phosphatidylinositol 3-kinase–dependent signaling 
may result in an imbalance between the production of nitric oxide 
and the secretion of endothelin-1, which leads to endothelial 
dysfunction (44). IR also promotes the development of cardiovascular 

TABLE 6 Hazard ratios corresponding to all-cause mortality stratified by the quartiles of various insulin resistance indices.

Q1 Q2 Q3 Q4 p for trend

Triglyceride-glucose index (TyG index)

Unadjusted 1.04 (0.82–1.32) 1 (reference) 0.97 (0.76–1.24) 0.94 (0.73–1.20) 0.855

Fully-adjusted 1.38 (1.08–1.76)* 1 (reference) 1.17 (0.91–1.50) 1.03 (0.77–1.37) 0.066

Triglyceride/high density lipoprotein (TG/HDL-c ratio)

Unadjusted 1.02 (0.80–1.31) 1.18 (0.93–1.50) 1.03 (0.80–1.32) 1 (reference) 0.506

Fully-adjusted 1.17 (0.89–1.53) 1.23 (0.96–1.59) 1.00 (0.78–1.30) 1 (reference) 0.256

Triglyceride glucose-body mass index (TyG-BMI index)

Unadjusted 1.53 (1.21–1.95)* 1.11 (0.86–1.44) 1.14 (0.88–1.47) 1 (reference) 0.003

Fully-adjusted 1.87 (1.11–3.14)* 1.24 (0.82–1.89) 1.07 (0.77–1.49) 1 (reference) 0.049

Metabolic score for insulin resistance (METS-IR)

Unadjusted 1.15 (0.90–1.47) 1.14 (0.89–1.46) 1 (reference) 1.08 (0.85–1.38) 0.670

Fully-adjusted 1.17 (0.82–1.66) 1.11 (0.85–1.45) 1 (reference) 1.17 (0.88–1.56) 0.654

Data are presented in terms of hazard ratios and 95% confidence intervals. The fully adjusted model was adjusted for age, sex, estimated glomerular filtration rate, urine protein-to-creatinine 
ratio (log value), cardiovascular disease, smoking status, cancer, severe liver disease, hypertension, hemoglobin level, body mass index, cholesterol level (log value), glycosylated hemoglobin 
level, albumin level, C-reactive protein level (ln value), and phosphorus level. TyG, triglyceride (TG)–glucose; BMI, body mass index; HDL-c, high-density lipoprotein cholesterol; METS-IR, 
metabolic score for insulin resistance.
*p < 0.001, compared with the reference TyG index, TG/HDL-c ratio, TyG–BMI index, or METS-IR.
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diseases by inducing oxidative stress and eliciting inflammatory 
responses (45), further leading to endothelial dysfunction and 
atherosclerotic plaque formation (46). Obesity causes a glomerular 
disease called obesity-related glomerulopathy (47), which increases 
the incidence of CKD (48) and ESRD (49). The mechanisms 
underlying obesity-related renal injury involve hemodynamic 
changes, inflammation, oxidative stress, apoptosis, and renal scarring 
(50). IR and impaired glucose tolerance result in obesity (51) and 
proteinuria (52). MetS leads to increased incidences of CKD (4). The 
ability of non-insulin-based IR indices to predict renal outcomes in 
patients with CKD remains to be confirmed. A large-scale Austrian 
study revealed a strong association between the TyG index and ESRD 
risk (29). Shang et al. demonstrated a U-shaped association between 
the TyG index and diabetic nephropathy (31). In the present study, 
adverse renal outcomes exhibited a U-shaped association with the 
TyG index and a reverse association with the TyG–BMI index. This 
U-shaped association may be explained on the basis of fasting TG 
level and BMI.

The association between insulin-based IR indices and clinical 
outcomes remains debatable. The findings of the studies on the 
association between HOMA-IR and clinical outcomes have been 
inconsistent. A study involving 1,883 patients with mild to 
moderate CKD without diabetics revealed no associations of 
HOMA-IR with renal outcomes, cardiovascular events, or all-cause 
mortality (53). Furthermore, a study involving patients with stage 
2–4 CKD reported no apparent differences between patients with 
IR and those without IR (assessed using HOMA-IR) in terms of 
eGFR (54). CKD progression was slower in patients with lower 
HOMA-IR; however, this insulin-based index failed to predict 
cardiovascular events or all-cause mortality (55). Nevertheless, 
HOMA-IR was reported to be  an independent predictor of 
cardiovascular mortality in patients with ESRD (56). A positive 
association was identified between this insulin-based index and 
CKD progression in Korean adults without diabetes (57). Data 
regarding IR indices in patients with CKD remain limited; hence, 
further studies are required on insulin-based and non-insulin-
based IR (particularly TyG index) indices to reveal their diagnostic 
value for patients with CKD.

Among the non-insulin-based IR indices, low values of TyG and 
TyG–BMI indices were associated with risk of adverse clinical 
outcomes; meanwhile, only high TyG index was associated with 
adverse renal outcomes. Few studies have explored the associations 
between non-insulin-based IR indices and all-cause mortality. A 
U-shaped association was observed between the TyG index and 
all-cause mortality in the general population (32). This index is also 
associated with major cardiovascular events in patients with CKD 
with (58) and without (59) diabetes. Our findings revealed reverse 
associations between the TyG and TyG–BMI indices and all-cause 
mortality in patients with CKD. This paradox may be explained on the 
basis of the associations of low fasting TG level and low BMI with the 
risk of all-cause mortality in these patients. Thus, another obesity 
paradox is evident from the fact that low TyG and TyG–BMI indices 
are indicators of poor clinical outcomes.

BMI is strongly associated with mortality in the general 
population; the association had a J-shaped curve in a study of 1.46 
million White adults (60) and a U-shaped curve in a study of 0.85 
million East Asian adults (61). Vascular diseases, such as ischemic 
heart disease and stroke, contribute to mortality in patients with 

obesity (62). The obesity paradox (63), which is characterized by a 
high BMI and a low mortality risk, is observed in patients with CKD 
in whom protein-energy wasting (PEW) and inflammation serve as 
effective predictors of an early death (64). In these patients, 
malnutrition–inflammation–cachexia syndrome (MICS) was 
common and was identified to be the main cause of cardiovascular 
disease (65) and mortality (66). CKD and ESRD have been reported 
to be associated with PEW (67) and MICS (66). A low BMI ensures an 
increased risk of mortality (68). We previously reported a U-shaped 
association of waist-to-hip ratio with all-cause mortality and a reverse 
association of BMI with adverse renal outcomes and all-cause 
mortality in patients with CKD (10, 35). Therefore, MICS, PEW, and 
inflammation may strongly affect the reverse association between IR 
indices and adverse clinical outcomes.

Non-insulin-based IR indices are affected by their components. 
We investigated the associations of the two components of TyG index, 
namely fasting TG and glucose levels, with clinical outcomes. The 
results suggested that low fasting TG level and high fasting glucose 
level were associated with poor clinical outcomes. In patients with 
CKD presenting with MICS, a lower TG level has been associated with 
a higher risk of all-cause mortality (69). An elevated glucose level is a 
risk factor for adverse macrovascular and microvascular outcomes 
(70), which in turn increase the risks of all-cause mortality and 
adverse renal outcomes. The predictive value of the TyG index for 
adverse renal outcomes may be explained on the basis of the strong 
effects of fasting glucose level over fasting TG level.

The primary strength of the present study lies in its large sample 
size (N = 2,457) and inclusion of patients with stage 1–4 CKD and a 
BMI of 15.0–35.0 kg/m2. To our knowledge, this is the first study to 
explore the associations of various non-insulin-based IR indices with 
adverse renal outcomes and all-cause mortality in patients with 
CKD. The present study had some limitations. First, the cohort 
comprised East Asian patients; therefore, the effects of ethnicity on 
body composition and clinical outcomes could not be investigated in 
this study. Second, baseline anthropometric measurements were used 
in the regression analysis without considering the possible time-
dependent changes in the variables. Third, dietary and medication 
factors were not included in the Cox regression models; these factors 
influence obesity and CKD. Fourth, we included patients with only 
stage 1–4 CKD and not those with stage 5 CKD; therefore, our 
findings may not be applicable to all patients with CKD. Future studies 
are warranted to clarify the nature of the IR index paradox and explore 
the efficacies of various IR indices for predicting adverse renal 
outcomes and all-cause mortality.

5. Conclusion

In the present study, which involved patients with stage 1–4 CKD, 
high non-insulin-based IR indices were associated with MetS. Patients 
with MetS exhibited elevated risks of adverse renal outcomes and 
all-cause mortality. Among the four non-insulin-based indices 
assessed in this study, only a high TyG index was associated with 
adverse renal outcomes, whereas low TyG and TyG–BMI indices were 
associated with all adverse clinical outcomes. The obesity paradox may 
alter the predictive value of these indices. Early screening by MetS or 
TyG index could help to predict clinical outcomes in patients with 
stage 1–4 CKD. In the future, large-scale studies should focus on 
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comparing insulin-based and non-insulin-based IR indices to 
determine their relative predictive values. Our findings may facilitate 
the early screening of renal outcomes and other clinical outcomes in 
patients with stage 1–4 CKD. This study may serve as a reference for 
relevant future studies.
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