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The occurrence and development of type 2 diabetes mellitus (T2DM) are

closely related to gut microbiota. Jiaotai pill (JTP) is used to treat type 2

diabetes mellitus, with definite efficacy in clinical practice. However, it is not

clear whether the therapeutic effect is produced by regulating the changes

in gut microbiota and its metabolism. In this study, T2DM rat models were

established by a high-fat diet and low-dose streptozotocin (STZ). Based on

the pharmacodynamic evaluation, the mechanism of JTP in the treatment

of type 2 diabetes mellitus was investigated by fecal metabolism and 16S

rRNA gene sequencing. The results showed that JTP decreased blood glucose

(FBG, HbA1c) and blood lipid (TC, TG, and LDL) levels and alleviated insulin

resistance (FINS, IL-10) in T2DM rats. 16S rRNA gene sequencing results revealed

that JTP increased microbiota diversity and reversed the disorder of gut

microbiota in T2DM rats, and therefore achieved the therapeutic effect in T2DM.

JTP regulated 13 differential flora, which were Actinobacteria, Bacteroidetes,

Firmicutes, Proteobacteria, Eubacteriaceae, Prevotellaceae, Ruminococcaceae,

Clostridium_IV, Clostridium_XlVa, Eubacterium, Fusicatenibacter, Romboutsia,

and Roseburia. Metabolomics analysis showed that JTP interfered with

13 biomarkers to play a therapeutic role in type 2 diabetes mellitus.

They were L-Valine, Choline, L-Aspartic acid, Serotonin, L-Lysine, L-Histidine,

3-Hydroxybutyric acid, Pyruvic acid, N-Acetylornithine, Arachidonic acid,

L-Tryptophan, L-Alanine, and L-Methionine. KEGG metabolic pathway analysis of

the above differential metabolites and gut microbiota by using the MetaboAnalyst

database and Picrust software. It was found that JTP treated type 2 diabetes

mellitus by affecting metabolic pathways such as amino acid metabolism,

carbohydrate metabolism, and lipid metabolism. Spearman correlation analysis

revealed high correlations for 7 pharmacological indicators, 12 biomarkers, and

11 gut microbiota. In this study, the therapeutic effect and potential mechanism
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of JTP on type 2 diabetes mellitus were preliminarily demonstrated by gut

microbiota and metabolomics, which could provide a theoretical basis for the

treatment of T2DM with JTP.

KEYWORDS

Jiaotai pill, type 2 diabetes mellitus, 16S rRNA gene sequencing, UPLC-Q-exactive focus
MS, metabolomics

1. Introduction

Type 2 diabetes mellitus is the most common metabolic disease
(1). With the development of the social economy, the change in
people’s lifestyles (increased energy intake and reduced exercise,
etc.), and the aging of the population, the incidence morbidity
of type 2 diabetes mellitus is increasing year by year worldwide
and has become one of the biggest killers of human health (2).
Glucose and lipid metabolism disorders are the main features of
type 2 diabetes mellitus, and glucose and lipid metabolism disorders
are closely related to the composition of the gut microbiota (3).
Studies have confirmed that glucose and lipid metabolism disorders
can lead to gut microbiota imbalance, while gut microbiota
imbalance aggravates glucose and lipid metabolism disorders (4).
The structure of gut microbiota in type 2 diabetes mellitus is
significantly different compared to healthy subjects. Gut microbiota
imbalance and activation of toll-like receptor 4/stress-activated
protein kinase leads to insulin resistance (5). These observations
highlight that gut microbiota may be a novel diagnostic and
therapeutic target for the treatment of type 2 diabetes mellitus.

Traditional Chinese medicine (TCM) has accumulated a wealth
of experience in the treatment of diabetes in thousands of years
of clinical practice, and TCM can reduce blood glucose through
multiple pathways and multiple targets, with obvious advantages in
the treatment of diabetes and its complications. Increasing evidence
suggests a close association between TCM and gut microbes,
which interact with each other. TCM intervenes in intestinal
microecology by regulating the number and proportion of gut
microbiota, inflammatory factors, signaling pathways, genes, etc.,
which has the effects of regulating gut microbiota, protecting the
intestinal mucosal barrier, restoring intestinal microbial diversity,
and enhancing immune function. Intestinal microecology also
affects the metabolism and absorption of TCM in the body,
which can enhance or reduce the efficacy and change the
toxicity of herbal medicines. Jiaotai Pill was first recorded in
“Han’s Medical Circular,” and consists of Coptis chinensis, and
Cinnamon. It is clinically effective in the treatment of type 2
diabetes mellitus. Modern research has found that Coptis chinensis
significantly inhibits the growth of pathogenic bacteria and
promotes the growth of beneficial bacteria (6, 7). Meanwhile, gut
microbiota converts berberine and safranine in Coptis chinensis
into hydrogenated products and the palmatine in Coptis chinensis
into demethoxylated products, making it easier to be absorbed
and to exert therapeutic effects (8, 9). The cinnamic acid and
cinnamic aldehyde in Cinnamon can regulate the imbalance of
gut microbiota (10, 11). Therefore, it is speculated that JTP can
play a role in the treatment of diabetes by regulating changes
in gut microbiota.

The gut microbiota is both a player and a regulator of
metabolic processes (12). The metabolism of the host is not
only regulated by its genome, but also by symbiotic bacteria.
Metabolomics can efficiently screen biomarkers and deeply analyze
the molecular mechanisms of host health or disease. Combined
metabolomics with microbiomics, a scientific language explaining
the effectiveness of TCM has been established, and it has a good
guiding role in the diagnosis and treatment of clinical diseases
(13, 14).

In this study, based on the pharmacodynamic evaluation
of the efficacy of JTP in the treatment of type 2 diabetes
mellitus, we performed untargeted metabolomics and 16S rRNA
gene sequencing studies on stool samples to investigate the
changes in endogenous metabolites and intestinal bacteria during
the treatment of type 2 diabetes mellitus with JTP. Then, the
relationship between host phenotype, intestinal microbiota, and
metabolites was analyzed by calculating Spearman correlation
coefficients. To investigate the mechanism of JTP for the treatment
of type 2 diabetes mellitus from the perspective of multi-level
integration of biomarkers and gut microbiota.

2. Materials and methods

2.1. Preparation of drugs

Coptis chinensis and Cinnamon were purchased from the
Harbin Branch of Beijing Tong Ren Tang Pharmacy and identified
as the dried rhizome of Coptis chinensis Franch of Buttercup family
and the dried bark of Cinnamomi cortex Presl of Camphoraceous
family by the Teaching and Research Department of Chinese
Medicine Identification of Heilongjiang University of Chinese
Medicine, respectively.

According to the ratio of Coptis chinensis: Cinnamon (10:1),
weigh 500 g of Coptis chinensis and 50 g of Cinnamon, decoct and
extract twice, add 10 times the amount of water each time, decoct
for 40 min. The two decoctions were combined, concentrated
and freeze-dried. A total of 88 g of lyophilized powder was
obtained, the powder yield was 16%. Metformin hydrochloride was
purchased from Shanghai Yuanye Biotechnology Co., Ltd. (batch
number: 201812161).

2.2. Animals and experimental design

In this study, 32 men SD rats, weighing 150 ± 20 g, 7–8 weeks
old, provided by Liaoning Changsheng Biotechnology Co., Ltd.
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were used, license number: SCXK (Liao) 2020–0001. The rats were
housed in an SPF class animal room with a room temperature
of 25 ± 1◦C, relative humidity of 50 ± 5%, and a light cycle of
12 h light/night. Rats were acclimatized for a week with a standard
rodent diet, and water was available ad libitum. The level of fasting
blood glucose (FBG) and body mass were measured. Rats with
normal blood glucose values were screened and randomly divided
into four groups, which were the control group (Con), model
group (Mod), metformin group (MET), and Jiaotai Pill group
(JTP). The model and treatment groups were fed a high-fat diet for
4 weeks with two consecutive injections of 25 mg/kg of STZ (Sigma
Corporation, lot number NO. 18888664). The control group was
fed a conventional maintenance diet for 4 weeks and injected with
an equal volume of citrate buffer intraperitoneally. After 1 week,
blood glucose was stabilized, Jiaotai Pill (6.8 g of raw drug/kg)
was gavaged in the JTP group, metformin (0.2 g/kg) was gavaged
once daily for 10 weeks in the metformin group, and an equal
volume of distilled water was gavaged in the remaining groups. All
experiments were performed following the Declaration of Helsinki
and were approved by the Animal Health and Ethics Committee of
Heilongjiang University of Chinese Medicine (2021012709).

2.3. Determination of FBG, TC, TG, LDL,
HbA1c, FINS, and IL-10 in serum

After the rats fasted for 12 h but water ad libitum, blood was
taken by the tail break method, and the level of fasting blood
glucose (FBG) was measured.

Blood was taken from the abdominal aorta of the rats and
centrifuged at 3,000 rpm for 10 min at 4◦C to collect serum. Total
cholesterol (TC), Triglyceride (TG), and Low-density lipoprotein
(LDL) in rat serum were measured by an automated biochemical
instrument. The enzyme-linked immunoassay was used to detect
glycosylated hemoglobin (HbA1c), fasting serum insulin level
(FINS), and interleukin 10 (IL-10) in rats.

2.4. Histopathology analysis of rat
pancreas

After blood collection, the rat pancreas was carefully separated
and the pancreatic tissues were immersed in 10% neutral-buffered
formalin to prepare pathological sections.

2.5. Fecal DNA extraction and
high-throughput 16S rRNA sequencing

The feces of rats were collected by stimulated defecation and
placed into sterilized 2 ml EP tubes. The collected feces samples
were uniformly sent to Wuhan UW Medical Laboratory Co., Ltd.
for testing, and the Illumina Miseq platform (Illumina Inc., San
Diego, CA, USA) was used for standard bioinformatic analysis
of the bacterial 16S rRNA V3-V4 region. The main procedure
is as follows: take 30 ng of qualified genomic DNA samples
and corresponding fusion primers to configure the PCR reaction

system, set the PCR reaction parameters for PCR amplification,
use Agencourt AMPure XP magnetic beads to purify the PCR
amplification products, dissolve them in Elution Buffer, label them,
and complete the library construction. The libraries were tested
for fragment range and concentration using an Agilent 2100
Bioanalyzer. The libraries that passed the assay were selected
for sequencing on the HiSeq platform (Illumina) according to
the insert size.

2.6. Fecal metabolomics

The collected fecal samples were weighed about 100 mg,
placed in 2 ml centrifuge tubes, and thawed on ice. Added
500 µL of ultrapure water, extracted by ultrasonication at 4◦C
for 5 min, vortex shaking for 30 s, centrifuged at 10,000 rpm
for 15 min at 4◦C. A total of 300 µL of supernatant was placed
in 1.5 ml centrifuge tubes as the first step of extraction. Discard
the remaining supernatant in the fecal sediment, add 500 µL of
methanol, ultrasonic extract at 4◦C for 5 min, vortex shake for
30 s, and centrifuge at 10,000 rpm for 15 min at 4◦C. A total of
300 µL of supernatant was taken as the second extraction solution,
and the two extracts were combined. After vortex shaking for 30 s
and filtration using a 0.22 µm filter membrane, the samples were
transferred to the injection vial and all samples were analyzed in
positive and negative ion modes. A total of 10 mg of each sample to
be tested was mixed and then processed as QC samples according
to the pre-treatment method described above.

Chromatographic separation was performed on a Thermo
ScientificTM Ultra Performance Liquid Chromatograph (Thermo
Fisher Scientific, Waltham, MA, USA), We used an Acquity HSS
T3 (1.8 µm, 100 mm × 2.1 mm; Waters, USA) at 40◦C, The
mobile phase was optimized, and 0.1% formic acid in water and
0.1% formic acid in acetonitrile was selected as mobile phases
A and B, respectively. The injection volume was 1 µL in both
positive and negative ion modes. The mobile phases were used
at a flow rate of 0.4 ml/min with a gradient of 0–3 min at 1.0–
10.0% B, 3–5 min at 10.0–20.0% B, 5–8.5 min at 20.0–40.0% B,
8.5–13.5 min at 40.0–99.0% B, 13.5–14 min at 99.0% B, 14–15 min
at 99.0–1.0% B.

Mass spectrometry (MS) data were acquired by using
Q-Exactive focus mass spectrometer (Thermo Fisher Inc.,
Waltham, MA, USA) in both positive and negative ion modes.
The optimized conditions were as follows: spray voltage was set
to 3,500/3,200 V (±), capillary ion transport temperature was set
to 350◦C, sheath gas flow rate was 45 arb, the auxiliary gas flow
rate was 15 arb, capillary (ion transport) temperature was set to
320◦C, S-lens voltage was set to 75. The full scan range was set
to 60–900 m/z, the resolution was set to 70,000 FWHM on MS1

and 17,500 FWHM on MS2, the AGC target was set to 1E6 on
MS1 and 2E5 on MS2, maximum allowed ion injection time was
set to 100 ms on MS1 and 50 ms on MS2, Top three ddms2 for
identification, isolation window was set to 1.5 m/z, secondary
mass spectrometry collision energy was set to 20, 40, and 60;
vertex excitation was 4–8 s, dynamic exclusion was 8 s, acquisition
data type was profile mode. The multivariate statistical analysis
was used to qualify the potential biomarkers in both positive and
negative ion modes.
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2.7. Statistical analysis

2.7.1. Gut microbiota analysis
The spliced Tags were clustered into Operational taxonomic

unit (OTUs) using the software USEARCH (v7.0.1090_i86linux32).
Sequence Variants (ASVs), ASVs are sequences that are 100%
similar. In turn, the feature table (Feature, a collective term
for ASVs/ASVs, etc.) is obtained. The RDP classifier Bayesian
algorithm was used to analyze the OTU representative sequences
taxonomically, and the cluster composition of each sample was
counted. The function of the microbiota was predicted using
Picrust software.

2.7.2. Metabolomics analysis
Raw data were analyzed using Compound Discoverer 3.2

(CD, Waltham, MA, USA) for matching and identification
of differential biomarkers. Between-group difference analysis
was performed using SIMCA-P (version 14.1, Umetrics, Umea,
Sweden). Metabolic Pathway Analysis was performed by using
MetaboAnalyst 5.0.1

Spearman correlation was used to analyze the association of
differential biomarkers with differential gut microbiota.

Data in a normal distribution were expressed as (mean ± SD).
Student’s t-test or Mann-Whitney U-test was performed to test
the differences between the two groups. Statistical analyses were
performed using SPSS Statistics (version.20.0; SPSS Inc., Chicago,
IL, USA), and p < 0.05 were considered significant.

3. Results

3.1. Rat FBG results

During the model establishment period, the fasting blood
glucose (FBG) of rats showed an increasing trend in the high-fat
diet stage. Compared with the control group, the FBG of the T2DM
model group was significantly increased after the first injection
of STZ (p < 0.01), and the FBG was significantly higher than
11.1 mmol/L after the second injection of STZ. After 7 days, the
FBG of T2DM rats tended to be stable and reached the evaluation
criteria of the type 2 diabetes mellitus model (Figure 1A).

After treatment, compared with the control group, the FBG
level in the model group was significantly higher (p < 0.01).
FBG in the metformin group (MET) and Jiaotai pill (JTP) groups
was significantly lower than that in the model group (p < 0.01)
(Figure 1B).

3.2. Serum levels of HbA1c, FINS, TC, TG,
LDL, and IL-10

Compared with the control group, the serum levels of HbA1c,
FINS, TG, and LDL were highly significantly increased (p < 0.01),
TC levels were significantly increased (p < 0.05), and IL-10

1 https://www.metaboanalyst.ca/

levels were highly significantly decreased (p < 0.01) in the
T2DM model rats.

Compared with the model group, the serum levels of FINS,
TG, and LDL in the JTP group rats were highly significantly lower
(p < 0.01), the level of TC had a decreasing trend, the level of
HbA1c was significantly lower (p < 0.05), and the level of IL-10
was highly significant higher (p < 0.01), the levels of HbA1c, FINS,
TC, TG, and LDL in the MET group were highly significantly lower
(p < 0.01), and IL-10 levels were highly significantly increased
(p < 0.01) (Figures 1C–H).

3.3. Histopathology analysis of rat
pancreas

In the control group, the islets had clear boundaries, regular
morphology, neatly arranged cells, and uniform size, while in the
type 2 diabetes mellitus (T2DM) model group, the islets had fewer
cells, disorganized cell bodies, irregular morphology, most nuclei of
unequal size, and vacuolar degeneration. Compared with the model
group, the islets in metformin group (MET) and Jiaotai pill (JTP)
groups were observed to have a regular shape, more β-cells, neat
edges, and clear boundaries (Figure 1I).

3.4. High-throughput sequencing of 16S
rRNA

In this experiment, based on the 97% similarity OTU obtained,
the trends of the species accumulation curve (Figure 2A) and
species dilution curve (Figure 2B) showed that the sequencing
results had high abundance and uniform species distribution,
which were sufficient to reflect the microbial information in all
samples, and the sequencing data were reasonable for data analysis.
As shown in the figure, sobs (Figure 2E), Chao (Figure 2F),
Shannon (Figure 2G), and ace (Figure 2H) index analysis showed
that the microbial community richness and microbial community
diversity decreased in the model group compared with the
control group, and the microbial community richness showed an
increasing trend after JTP treatment. In addition, we investigated
the similarity of the overall microbial community structure by β-
diversity. The two axes of variation (PCo1 and PCo2) accounted
for 25.66 and 19.21% of the total variance of PCoA, respectively.
And the PCoA plots exhibited clear separation and obvious spatial
clustering (Figure 2C). In addition, similar observations were
obtained in the Non-metric multidimensional scaling (NMDS)
analysis. The JTP intervention shifted the microbial community
structure from the model group to the control group (Figure 2D).

At the phylum level (Figure 2I), the relative abundance of
Actinobacteria, Proteobacteria, and Bacteroidetes was increased
and the relative abundance of Firmicutes was decreased in
the T2DM model group compared to the control group. The
relative abundance of T2DM-induced disruptions in bacterial
phylum levels was reversed after JTP treatment. At the genus
level (Figure 2J), the relative abundances of Desulfovibrio,
Romboutsia, Fusicatenibacter, and Lactobacillus were higher,
and the relative abundances of Roseburia, Clostridium_IV,
Eubacterium, Clostridium_XlVa were lower in the T2DM model
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FIGURE 1

(A) Trends in fasting blood glucose (FBG) values in the control and model groups during the establishment of the type 2 diabetes mellitus (T2DM)
model. ∗p < 0.05, ∗∗p < 0.01 compared to the control group (n = 8). (B–H) Changes in FBG, HbA1c, FINS, TC, TG, LDL, and IL-10 in the control,
model, MET, and JTP groups (n = 8). ∗p < 0.05, ∗∗p < 0.01 compared to the control group, #p < 0.05, ##p < 0.01 compared to the model group.
(I) HE staining results of pancreatic tissue in the control, model, MET, and JTP groups (200×).

group compared to the control group. JTP significantly reduced
the relative abundance of Romboutsia and Fusicatenibacter and
significantly enriched Roseburia, Clostridium_IV, Eubacterium,
and Clostridium_XlVa. At the family level (Figure 2K), the
relative abundance of Desulfovibrionaceae, Prevotellaceae, and
Lachnospiraceae was elevated in the T2DM model group and the
relative abundance of Eubacteriaceae and Ruminococcaceae was
reduced compared to the control group. JTP significantly reduced
the relative abundance of Prevotellaceae and had a significant
enrichment effect on Ruminococcaceae and Eubacteriaceae.

We performed PICRUST analysis to predict the function of gut
microbiota based on the KEGG database. The relative abundance
of 30 pathways was predicted. The top ten pathways were
Carbohydrate metabolism, Amino acid metabolism, Metabolism of
cofactors and vitamins, Metabolism of terpenoids and polyketides,
Replication and repair, Metabolism of other amino acids, Lipid
metabolism, Energy metabolism, Cell motility, and Glycan
biosynthesis and metabolism. And among them, the expression
of Cell motility in the model group was lower than that of the
control group. A callback trend was observed after the intervention
with JTP. The expression of Carbohydrate metabolism, Amino acid
metabolism, Metabolism of cofactors and vitamins, Metabolism
of terpenoids and polyketides, Replication and repair, Metabolism
of other amino acids, Lipid metabolism, Energy metabolism, Cell
motility, and Glycan biosynthesis and metabolism were enriched in
the model group. After JTP intervention reversed the abundance

of Metabolism of cofactors and vitamins, Replication and repair,
Metabolism of other amino acids, Energy metabolism, Glycan
biosynthesis and metabolism (Figure 2L).

3.5. Fecal metabolomics

Total Ion Chromatography (TIC) of quality control (QC)
samples were obtained in both positive and negative ion modes,
consistently showing good peak shape and relatively uniform
distribution, thus verifying that the UPLC-Q-Exactive focus was
stable throughout the detection process (Supplementary Figure 1).

The data of the fecal metabolic profile of rats at key time points
(0, 14, 28, and 35 days) in the T2DM model replication cycle
were analyzed, and a certain grouping of model and control rats
appeared from day 14 of modeling, but there was an intersection
and a significant difference between day 35 of modeling and day
0. This indicates that endogenous substances were changed during
the transformation of healthy rats into T2DM rats (Figures 3A,
D). Analyzing the metabolic profiles of each group after treatment,
the JTP and MET groups were closer to the control group. QC
proved that the method has good stability and repeatability, and
the obtained data are reliable (Figures 3B, E).

To better reveal the differences between the control and T2DM
model group, Orthogonal partial least squares discrimination
analysis (OPLS-DA) analysis [ESI+: R2Y-0.881, Q2-0.779; ESI−:
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FIGURE 2

(A) The species accumulation curves. (B) Species dilution curve. (C) PCoA analysis of each group n = 6. (D) NMDS analysis of each group n = 6.
(E) Sobs indexes n = 6. (F) Chao indexes n = 6. (G) Shannon indexes n = 6. (H) Ace indexes n = 6. (I) Differences in the abundance of bacteria in each
group at the phylum level. Abscissa is sample grouping and ordinate is the relative abundance of annotated species. (J) Differences in the
abundance of bacteria in each group at the family level. Abscissa is sample grouping and ordinate is the relative abundance of annotated species.
(K) Differences in the abundance of bacteria in each group at the genus level. Abscissa is sample grouping and ordinate is the relative abundance of
annotated species. (L) PICRUST analysis to predict the function of gut microbiota based on the KEGG database. PCoA, principal coordinates analysis;
NMDS, non-metric multidimensional scaling.

R2Y-1.000, Q2-0.981 (Supplementary Figure 2)] was used to show
that both the T2DM model group and the control group clustered
significantly and there was a clear separation between the groups
(Figures 3C, F). The data of control and T2DM model groups
were further analyzed to obtain S-splot loading plots (Figures 3G,
J), Variable important in projection plots (Figures 3H, K), and
volcano plots (Figures 3I, L), and finally, the ions with VIP > 1,
p < 0.05, and FC > 1.2 were selected as Candidate biomarkers.
A total of 23 potential biomarkers in T2DM rats were finally
identified (Figure 4A and Supplementary Tables 1, 2), 11 in
positive ion mode, namely: L-Phenylalanine, L-Valine, Choline,

L-Aspartic acid, Serotonin, L-Histidinol, Ureidopropionic acid,
D-Serine, D-Tryptophan, L-Glutamine, and L-Lysine. A total of
12 in the negative ion mode, namely: L-Histidine, L-Threonine,
L-Glutamic acid, 3-Hydroxybutyric acid, Pyruvic acid, Citric acid,
N-Acetylornithine, Fumaric acid, Arachidonic acid, L-Tryptophan,
L-Alanine, and L-Methionine. It involved 34 metabolic pathways
associated with type 2 diabetes mellitus (Figure 4B and
Supplementary Table 3), including 13 with impact >0.1000,
which were: Alanine, aspartate and glutamate metabolism,
D-Glutamine and D-glutamate metabolism, Phenylalanine,
tyrosine and tryptophan biosynthesis, Phenylalanine metabolism,
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FIGURE 3

(A) Metabolic profile during type 2 diabetes mellitus (T2DM) modeling in positive ion mode. (B) Metabolic profile after treatment positive ion mode.
(C) OPLS-DA score plots for the control group and the model group in positive ion mode. (D) Metabolic profile during T2DM modeling in negative
ion mode. (E) Metabolic profile after treatment negative ion mode. (F) OPLS-DA score plots for the control group and the model group in negative
ion mode. (G) Fecal biomarkers in the S-plot between the control group and the model group in positive ion mode. (H) Fecal biomarkers in the VIP
between the control group and the model group in positive ion mode. (I) Fecal biomarkers in the FC between the control group and the model
group in positive ion mode. (J) Fecal biomarkers in the S-plot between the control group and the model group in negative ion mode. (K) Fecal
biomarkers in the VIP between the control group and the model group in negative ion mode. (L) Fecal biomarkers in the FC between the control
group and the model group in negative ion mode.

Arachidonic acid metabolism, Tryptophan metabolism, Histidine
metabolism, Pyruvate metabolism, Citrate cycle (TCA cycle),
Arginine biosynthesis, beta-Alanine metabolism, Cysteine, and
methionine metabolism, Glycolysis/Gluconeogenesis.

Partial least squares discrimination analysis (PLS-DA)
analysis [ESI+: R2Y-0.995, Q2-0.973; ESI−: R2Y-0.952, Q2-0.900
(Supplementary Figure 3)] of the control, model, and JTP groups
on the last day of drug administration showed that the fecal
metabolic profiles of the JTP group were significantly farther from
the model group and closer to the control group (Figures 5A,
B). The results indicated that JTP could significantly regulate the
metabolic profile of T2DM model rats to a healthy state, which
further suggested that JTP could interfere with the occurrence
and development of T2DM. Based on 23 potential biomarkers,
the statistical analysis identified 21 of these biomarkers in the
JTP callback and 13 were statistically significant (Figure 5D). JTP
significantly modulates 8 of these metabolic pathways, namely:
Arachidonic acid metabolism, Tryptophan metabolism, Alanine,

aspartate and glutamate metabolism, Histidine metabolism,
Pyruvate metabolism, Cysteine and methionine metabolism,
Glycolysis/Gluconeogenesis, and Citrate cycle (TCA cycle)
(Figure 5C).

3.6. Correlation analysis for gut
microbiota, biomarkers, and
pharmacological indices

Correlations were calculated using spearman for thirteen
Jiaotai pill (JTP)-regulated potential biomarkers and the seven
pharmacological indicators (Figure 6A). Positive correlations are
shown in red, negative correlations in blue, and those with p < 0.05
and | r| > 0.5 were selected as correlating.

3-Hydroxybutyric acid was positively correlated with FBG,
HbA1c, FINS, TG, LDL and negatively correlated with IL-
10. Arachidonic acid was positively correlated with IL-10 and

Frontiers in Nutrition 07 frontiersin.org

https://doi.org/10.3389/fnut.2023.1135343
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-10-1135343 May 4, 2023 Time: 8:44 # 8

Liu et al. 10.3389/fnut.2023.1135343

FIGURE 4

(A) Heatmap of changes in levels of 23 potential biomarkers in control and model groups. (B) Metabolism pathway analysis of 23 potential
biomarkers with MetPA. MetPA, metabolic pathway analysis.

negatively correlated with FBG, FINS, HbA1c, and TG. Choline
was positively correlated with LDL, FBG, and FINS. L-Aspartic
acid was positively correlated with LDL. L-Histidine was positively
correlated with IL-10 and negatively correlated with FINS, FBG,
and LDL. L-Methionine was positively correlated with LDL,
FINS, FBG, HbA1c, and TG, and negatively correlated with IL-
10. L-Lysine was negatively correlated with FBG, FINS, and
HbA1c. L- Tryptophan was positively correlated with IL-10, and
negatively correlated with FBG, HbA1c, FINS, LDL, and TG.
L-Valine was positively correlated with FBG, FINS, HbA1c, and
LDL, and negatively correlated with IL-10. N-Acetylornithine was
positively correlated with FBG, FINS, HbA1c, LDL, TG, and TC,
and negatively correlated with IL-10. Pyruvic acid was positively
correlated with IL-10, and negatively correlated with FINS, FBG,
HbA1c, and LDL. Serotonin was positively correlated with FBG,
FINS, and TG, and negatively correlated with IL-10.

Thirteen JTP-regulated potential biomarkers were correlated
with the 13 differential gut microbiota using spearman calculations
(Figure 6B). Positive correlations are shown in red, negative
correlations in blue, and those with p < 0.05 and | r| > 0.5 were
selected as correlating.

At the phylum level, the Actinobacteria were positively
correlated with N-Acetylornithine, L-Methionine, L-Valine,
3-Hydroxybutyric acid, Choline, L-Aspartic acid, Serotonin,
and negatively correlated with Arachidonic acid, L-Tryptophan,
L-Lysine, Pyruvic acid, L-Histidine. Bacteroidetes were negatively
correlated with L-Histidine, Pyruvic acid. Firmicutes were
positively correlated with L-Histidine, Pyruvic acid, and
Arachidonic acid and negatively correlated with L-Methionine.
Proteobacteria were positively correlated with Serotonin, L-Valine,
N-Acetylornithine, 3-Hydroxybutyric acid, L-Methionine, and
Choline, and negatively correlated with L-Tryptophan, L-Histidine,
Arachidonic acid, L-Lysine, Pyruvic acid was negatively correlated.

At the genus level, the Clostridium_IV was positively
correlated with Arachidonic acid, L-Tryptophan, Pyruvic acid,
and L-Histidine, and negatively correlated with L-Valine,

N-Acetylornithine, 3-Hydroxybutyric acid, Serotonin, and
L-Methionine were negatively correlated. Clostridium_XlVa was
positively correlated with Pyruvic acid, L-Histidine, Arachidonic
acid, and L-Tryptophan and negatively correlated with 3-
Hydroxybutyric acid. Eubacterium was positively correlated
with L-Lysine. Fusicatenibacter was positively correlated
with L-Methionine, Serotonin, 3-Hydroxybutyric acid, and
N-Acetylornithine, and negatively correlated with L-Histidine,
L-Lysine, Pyruvic acid, L-Alanine, L-Tryptophan, and Arachidonic
acid. Romboutsia was positively correlated with L-Valine and
N-Acetylornithine and negatively correlated with L-Tryptophan,
Arachidonic acid, Pyruvic acid, and L-Lysine. Roseburia was
positively correlated with L-Histidine, Arachidonic acid, Pyruvic
acid, and L-Tryptophan, and negatively correlated with 3-
Hydroxybutyric acid, Serotonin, L-Methionine, N-Acetylornithine,
L-Valine.

At the family level, the Eubacteriaceae were positively
correlated with L-Lysine. Prevotellaceae was positively correlated
with L-Methionine, and negatively correlated with L-Histidine,
L-Lysine, Pyruvic acid, and Arachidonic acid. Ruminococcaceae
was positively correlated with Arachidonic acid, L-Tryptophan, and
negatively correlated with N-Acetylornithine, 3-Hydroxybutyric
acid, Serotonin, L-Methionine, L-Valine.

The biomarkers and gut microbiota with correlation were
correlated with pharmacological indicators, and the Sankey
diagram (Figure 6C) shows that 7 pharmacological indicators, 12
biomarkers, and 11 gut microbiota were highly correlated.

4. Discussion

Type 2 diabetes mellitus model rats established by high-fat diet
and low dose STZ had dry, gray, and loose hair, depression, gradual
loss of body shape, irritability, high urine output, and sour and
pungent taste. The study showed that the rats fed with high-fat diets
exhibited insulin resistance, increased pancreatic islet β cells, and
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FIGURE 5

(A) PLS-DA analysis of the control, model, and JTP groups in positive ion mode. (B) PCA analysis of the control, model, and JTP groups in negative
ion mode. (C) Metabolism pathway analysis of 13 biomarkers of JTP back regulation with MetPA. (D) Scatter plots of the changes in the 13
biomarkers of JTP back regulation in the control, model, and JTP groups, ∗p < 0.05, ∗p < 0.01 compared to the control group, #p < 0.05,
##p < 0.01 compared to the model group (n = 8).

impaired islet β-cell function (15). It was consistent with the results
of HE staining of pancreatic tissues. In the study, it was found
that the levels of FBG, HbA1c, and FINS were increased in the
model rats, which were consistent with the clinical manifestations
of hyperglycemia and insulin resistance in type 2 diabetes mellitus.
The levels of TC, TG, and LDL were increased in the model rats,
which were consistent with the manifestation of dyslipidemia in
type 2 diabetes mellitus. IL-10, which is involved in the regulation of
insulin secretion, β-cell apoptosis, and peripheral insulin resistance,
was reduced in the T2DM model. The successful establishment
of the T2DM model was confirmed by a combination of multiple
aspects. JTP reversed the symptoms of hyperglycemia, insulin

resistance, dyslipidemia, and tissue damage. The efficacy of JTP in
the treatment of type 2 diabetes mellitus was demonstrated.

Based on 16S rRNA sequencing analysis, we observed a
decrease in alpha diversity of gut microbiota in T2DM group
rats through sobs, Chao, Shannon, and ace indexes. Microbial
species diversity is the basis of intestinal nutrient absorption,
metabolism, and immune barrier regulation (16), and a decrease
in flora species diversity affects intestinal function and induces
various diseases. In the JTP group, the above indices increased,
the diversity of flora increased, and the gut microbiota disorder
was restored. Alterations in the gut microbiota were closely
associated with T2DM, consistent with previous findings (17, 18).
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FIGURE 6

(A) Spearman correlation analysis of biomarkers and pharmacological indices. (B) Spearman correlation analysis of biomarkers and gut microbiota.
(C) Sankey diagrams for the interconnection of pharmacological indicators, biomarkers, and gut microbiota.

In this study, PCoA and NMDS analysis were used to analyze the
similarity (β-diversity) of the gut microbiota of the samples. Two-
dimensional plots of both PCoA and NMDS showed that samples
from the T2DM group were far from the other three groups, and
samples from the control and T2DM groups clustered on the left
and right sides of the horizontal axis, respectively. The samples
of the JTP group and MET group were distributed on the side
of the control group, indicating that the structure of intestinal
microflora after JTP and MET treatment was more similar to that
of the control group.

In our study, the dominant microorganisms in the rat gut
mainly included Firmicutes, Bacteroidetes, Proteobacteria, and
Actinobacteria. The stability of these flora plays an important
role in immune regulation, energy metabolism, and substance
metabolism, which are essential factors for the maintenance of
human health and a mirror reflecting the internal environment of
the organism (19). Compared to the control group, the relative
abundance of Actinobacteria, Proteobacteria, and Bacteroidetes
in the gut microbiota was increased and the relative abundance
of Firmicutes was decreased in the T2DM group. Carbohydrates
and proteins in the gut are metabolized and hydrolyzed primarily
by Firmicutes, whereas steroids, polysaccharides, and bile acids
are metabolized by Bacteroidetes (20, 21). Studies have shown
that short-chain fatty acids not only provide energy for intestinal
epithelial cells but also enhance the intestinal defense barrier.

Firmicutes are the main species that ferment carbohydrates
into various short-chain fatty acids (21). As the abundance
of Firmicutes decreases, these protective effects are weakened,
which is likely to induce the occurrence of type 2 diabetes
mellitus. The increase in abundance of Bacteroidetes and the
disturbance of lipid and energy metabolism further accelerate gut
microbiota disorders and contribute to the development of type
2 diabetes mellitus (22). Bacteroidetes accelerate the secretion
of lipopolysaccharides and thus cause insulin resistance (23).
The increased abundance of Actinobacteria and Proteobacteria
in the T2DM group, with gut microbiota imbalance, triggers
increased intestinal wall permeability which allows a large number
of intestinal bacteria to translocate and distribute in blood and
tissues, causing insulin resistance.

The study also confirmed that the abundance of Gram-
negative pathogenic bacteria (family level: Prevotellaceae; genus
level: Romboutsia, Desulfovibrio)was increased when type 2
diabetes mellitus occurred. Gram-positive bacteria (family level:
Eubacteriaceae, Ruminococcaceae; genus level: Clostridium_IV,
Clostridium_XlVa, Eubacterium, Roseburia) decreased in
abundance. The increase of Gram-negative bacteria will cause
an increase in cytosolic toxicogenic LPS (24). In particular,
there is an increase in the abundance of endotoxin-producing
Desulfovibrio (Desulfovibrio), which impairs intestinal barrier
function and leads to high levels of circulating LPS (25). The
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reduction of beneficial bacteria such as Clostridium increases
intestinal permeability. At this point, gut microbiota toxins enter
the circulatory system, causing inflammation and then leading to
insulin resistance.

PICRUST analysis revealed that gut microbiota is involved in
metabolic pathways such as amino acid metabolism, carbohydrate
metabolism, and lipid metabolism affecting type 2 diabetes mellitus.
Metabolomics was used to further analyze the metabolism of rats.
The JTP callback of metabolic pathways associated with type 2
diabetes mellitus is described below.

Metabolomics studies have shown that T2DM rats are
always accompanied by abnormal amino acid metabolism.
L-Phenylalanine and L-Tryptophan belong to the aromatic amino
acids (AAA), which affect insulin resistance and dyslipidemia,
and play an important role in type 2 diabetes mellitus (26).
L-Phenylalanine is involved in glucose and fat metabolism in
the body through oxidative conversion to tyrosine catalyzed
by phenylalanine hydroxylase. It has been reported that
L-Phenylalanine levels are elevated in type 2 diabetic patients
and T2DM rat models (27). This is consistent with the results of
our results that the level of L-Phenylalanine in feces of T2DM group
increased. L-Tryptophan is an important metabolite involved in
the regulation of inflammation and may reduce blood glucose
levels in T2DM rats by relieving inflammation and promoting
insulin sensitivity (28, 29). Gut microbiota can decompose
tryptophan to produce indole, and long-term increased indole
levels can inhibit mitochondrial metabolism, reduce intracellular
ATP concentration, and reduce ATP-sensitive potassium channel
opening. This inhibits the secretion of gastrointestinal hormones
such as pancreatic hyperglycemic polypeptide (30). In the T2DM
model group, Actinobacteria, Proteobacteria, Fusicatenibacter, and
Romboutsia were elevated in abundance, and L-Tryptophan and
Pyruvic acid levels decreased, which were correlated and negatively
correlated. The levels of L-Phenylalanine and L-Tryptophan were
increased after JTP treatment. Valine belongs to the branched chain
amino acids (BCAA). In our study, it was higher in the T2DM
model group than in the control group. It was shown that increased
BCAA levels can lead to increased insulin secretion and islet β-cell
depletion in T2DM patients (31). Abnormal BCAA metabolism can
lead to the accumulation of valine, resulting in β-cell mitochondrial
dysfunction and high sensitivity to insulin resistance. It can be used
as a characteristic biomarker of type 2 diabetes mellitus. Aspartate
and glutamate metabolism can inhibit Akt phosphorylation (32),
and activation of Akt phosphorylated insulin promotes glycogen
synthesis and inhibits gluconeogenesis in the liver, thereby lowering
blood glucose (33). L-Aspartic acid and L-Glutamic acid, as core
aspartate and glutamate metabolism metabolites, were increased in
the T2DM model group. Histidine metabolism is a key metabolic
pathway affecting type 2 diabetes mellitus, and L-Histidine is a core
metabolite of histidine metabolism. Histidine supplementation has
been found to suppress the inflammatory response and improve
insulin resistance. L-Lysine significantly improves the structure
and function of glycosylated lysozyme in vitro and is an effective
therapeutic supplement for T2DM (34). L-Histidine and L-Lysine
levels are decreased in the T2DM model. l-Methionine undergoes
demethylation and further hydrolysis to form cysteine. Agullo-
Ortuno et al found that homocysteine levels are an indicator
of diabetes risk (35). In this study, L-Methionine levels were
increased in the T2DM model group. In summary, the regulation

of amino acid metabolism may have significant implications for
the treatment of diabetes, and JTP plays a therapeutic role in type
2 diabetes mellitus by regulating Tryptophan metabolism, Alanine,
aspartate and glutamate metabolism, Histidine metabolism,
Cysteine and methionine metabolism.

Carbohydrate metabolism was significantly altered in T2DM
rats. Pyruvic acid is the end product of glycolysis and the starting
point for gluconeogenesis, and can be generated by transamination
and participate in energy metabolism to provide energy to living
cells and organisms (36, 37). The pyruvate dehydrogenase complex
converts Pyruvic acid to acetyl coenzyme A and enters the
tricarboxylic acid cycle (38).

At the same time, Pyruvic acid can be fermented into
succinate, lactate, and acetyl-CoA by gut microbiota and further
metabolized into SCFAs. This affects changes in levels of
glycolysis/gluconeogenesis and pyruvate metabolism (39). In this
study, Firmicutes was found to be positively correlated with Pyruvic
acid, and Actinobacteria, Bacteroidetes, and Proteobacteria were
negatively correlated with Pyruvic acid. Pyruvic acid levels are
decreased and energy metabolism is disturbed in diabetic patients.
Pyruvic acid levels reverted to normal after JTP treatment.

Lipid metabolism is highly associated with the development
of type 2 diabetes mellitus (T2DM). Arachidonic acid is a
polyunsaturated fatty acid that inhibits lipogenesis and promotes
lipolysis (40)and plays an important role in regulating lipid
metabolism in the body (41). A decrease in Arachidonic acid has
been reported to affect lipid metabolism disorders in type 2 diabetes
mellitus. At the same time, our experimental results showed that
TC, TG, and LDL levels were increased in T2DM model rats,
which is consistent with previous reports. Arachidonic acid is
present in the structural phospholipids of cell membranes (42)and
delays the progression of type 2 diabetes mellitus by increasing
the fluidity of cell membranes and increasing the number of
insulin receptors and their affinity for insulin. Our study found
a positive correlation between Ruminococcaceae and Arachidonic
acid, consistent with previous studies (43). Ruminococcaceae
produces SCFAs that stimulate glucagon secretion and increase
satiety, thereby regulating fat and cholesterol synthesis and
regulating lipid metabolism in humans (44). After 4 weeks of
JTP treatment, the level of Arachidonic acid in feces increased
and the abundance of Ruminococcaceae increased, suggesting that
JTP improves type 2 diabetes mellitus by regulating Arachidonic
acid and Ruminococcaceae to improve lipid metabolism disorders,
inflammation, and insulin secretion.

This study mainly focuses on the changes in gut microbiota and
metabolite detection in JTP intervention in T2DM rats. The animal
indicators are currently limited to the phenotypic part. In the
future, experiments are needed to further improve the exploration
of pathways and mechanisms.

5. Conclusion

In summary, Jiaotai pill (JTP) decreased blood glucose and lipid
levels and reduced insulin resistance in type 2 diabetes mellitus
(T2DM) rats. Potential biomarkers and key functional bacteria
were identified for JTP treatment in T2DM rats. These results
suggest that JTP can increase microbiota diversity and restore gut
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microbiota balance. It improves metabolic pathways such as amino
acid metabolism, carbohydrate metabolism, and lipid metabolism
associated with type 2 diabetes mellitus, and plays a therapeutic
role in T2DM rats.
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