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Introduction: Bioactive peptides based on foodstu�s are of particular interest

as carriers for calcium delivery due to their safety and high activity. The

phosphorylated peptide has been shown to enhance calcium absorption and bone

formation.

Method: A novel complex of peptide phosphorylation modification derived from

soybean protein was introduced, and the mechanism, stability, and osteogenic

di�erentiation bioactivity of the peptide with or without calcium were studied.

Result: The calcium-binding capacity of phosphorylated soy peptide (SPP)

reached 50.24 ± 0.20 mg/g. The result of computer stimulation and vibration

spectrum showed that SPP could chelate with calcium by the phosphoric acid

group, carboxyl oxygen of C-terminal Glu, Asp, and Arg, and phosphoric acid

group of Ser on the SPP at a stoichiometric ratio of 1:1, resulting in the formation

of the complex of ligand and peptide. Thermal stability showed that chelation

enhanced peptide stability compared with SPP alone. Additionally, in vitro results

showed that SPP-Ca could facilitate osteogenic proliferation and di�erentiation

ability.

Discussion: SPP may function as a promising alternative to current therapeutic

agents for bone loss.

KEYWORDS

phosphorylation, peptide-calcium chelate, characterization, thermal stability, osteogenic

di�erentiation, calcium supplement

1. Introduction

Calcium is an essential element that is crucial for the maintenance of bone health.
The deficiency of calcium leads to rickets in children and osteoporosis in adults (1, 2).
Numerous calcium supplementation on the market emerged, but many questions remain
for various calcium salts with stability and absorption. Ion calcium supplements are easily
influenced by phytates, oxalate, and non-fermentable fiber of food and may induce the
formation of insoluble calcium salt precipitation under intestinal conditions (3). Thus,
calcium-binding peptides from foodstuff became a new source of calcium-enriched nutrients
with the potential to overcome the limitations of simple calcium intake.

Bioactive peptides normally contain 2 to 20 amino acid residues and are abundant
in hydrophobic amino acids (4). These bioactive motifs exhibited properties such as
antihypertensive, antimicrobial, and excellent health effects as antioxidants (5–7). It has been
reported that bioactive peptides could chelate with calcium ions to form stable complexes
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with superior absorptivity based on mineral binding functions
(8, 9). Nowadays, various calcium-binding peptides have been
obtained from food resources, including phosvitin hydrolysates,
porcine plasma protein hydrolysates, and wheat germ protein
hydrolysates (10–12). Among them, casein phosphor-peptides
have been reported to be desired mineral carriers that can
strengthen elemental mineral absorption, mostly chelated with
calcium through the negatively charged phosphate group (13).

In our preliminary experiments, DEDEQIPSHPPR
dodecapeptide from soy yogurt was confirmed to possess
36.64 ± 0.04 mg/g calcium-chelating capacity (14). Previous
studies found that the calcium chelation capacity is closely related
to their molecular mass, amino acid compositions, sequences, and
spatial conformation (15, 16). The carboxyl groups of Asp and Glu,
the δ-N in the imidazole ring of His, and the ε-amino nitrogen of
Lys are considered to play a critical role in calcium binding (17).
Among them, His mainly depends on the accumulation of cyclic
side chains, and nitrogen atoms on the imidazole ring can also be
used as hydrogen bond donors and acceptors with calcium ions
under different conditions to improve calcium-binding ability
(18). However, our study showed that the binding ability of His
is obviously lower than that of Asp and Glu (19). Additionally,
the primary structure of SPP contains serine residues with free
hydroxyl groups, which are sites for the modification with the
phosphate group, thus contributing to calcium-binding capacity
(20). Luo et al. (21) also confirmed that factors such as phosphate
residue and amino acid composition on serine and molecular
structure affect the calcium absorption activity and mechanism
of CPP. Therefore, we tried to phosphorylate soybean peptides to
improve calcium-binding capacity.

Taking all of these into account, the main purpose of this study
was to prepare phosphorylated soy peptides calcium complex, to
explore its calcium-binding mechanism by computational docking
and spectroscopic methods, to investigate the thermal stability and
the ability to promote osteogenic proliferation and differentiation
in vitro. The study could provide comprehensive descriptions of
developing new food therapy options to prevent calcium deficiency.

2. Materials and methods

2.1. Materials

Polypeptide SPP isolated from soy yogurt with a purity of
98% was synthesized by Nanjing Peptide Industry Biotechnology
co., ltd. Bile salts, trypsin, and pepsin were products of Sigma–
Aldrich (St. Louis, MO). All commercial reagents were of
analytical grade.

2.2. Molecular dynamic simulation

The Desmond program was performed to study high-
performance molecular dynamic simulation properties for SPP
and calcium. The initial SPP structure was parameterized in
Maestro 11.8 with Epik protonation, following conducting energy
minimization at pH 7.0. Then, the solvent system was developed
using the system builder platform under SPC mode building

an explicit solvation cube with a 10Å × 10Å × 10Å margin
added 0.75 mol/L Ca2+. Meanwhile, the cube was injected with
Cl− as a counter ion to equalize the charge on the OPLS_3E
force field. The peptide calcium complex system was initially
balanced for 100 nanoseconds (ns) using an NVT ensemble.
The simulation process is as follows: step 1, Brownian dynamics
NVT, T = 10K, small time steps, restraining on heavy solute
atoms, 100 ps; step 2: NVT, T = 10K, small time steps,
controlling of heavy solute atoms, 12 ps; step 3: NPT, T =

10K, restraining on heavy solute atoms, 12 ps; step 4: NPT,
restricting on solute heavy particles, 12 ps; step 5: NPT, no
restrictions, 24 ps; step 6: NPT, no restraints, 100 ns. Subsequently,
the system stability was determined by analyzing the MD
simulation results of 100 ns, including calculating root mean
square deviation (RMSD), root mean square equation (RMSF),
the radius of gyration (Rg), and the number of hydrogen bonds
(H-bonds).

2.3. Calcium-binding capacity analysis

After synthesis, 3 mg/mL SPP and 5mM CaCl2 were
mixed in 20mM sodium phosphate buffer solution (pH =

7.8) maintained at 40◦C for 30min through a shaker water
bath, followed by dialysis to remove other elements and
centrifugation (4,000 g, 4◦C, 20min). We collected supernation
to determine calcium content inductively coupled plasma-atomic
emission spectrometry (ELAN DRC II, PerkinElmer, Waltham,
United States).

2.4. Fabrication of peptide–calcium chelate

Peptide–calcium complex preparation was performed
following the method of Cai with slight modification (16). In
brief, the stock solution of SPP (10 mg/mL) was mixed with CaCl2
at a ratio of 2:1. The pH was adjusted to 8.0 using 1M NaOH
dropwise. After that, the mixture of SPP/CaCl2 was shaken at
37◦C at 140 rpm in a water bath for 20min, and absolute ethanol
(90mL) was added to remove the free calcium. The final solution
was, then, placed in a dialysis bag for 48 h and centrifuged for
10min at 10,000 g. The collected precipitation was lyophilized in
a vacuum desiccator (ALPHA1-2LDplus, Marin Christ, Osterode,
Germany), and thus, the peptide–calcium chelate was prepared for
subsequent experiments.

2.5. Isothermal titration calorimetry (ITC)

Isothermal titration calorimetry was tested for the
characterization of the thermodynamic parameters of SPP
binding with calcium. Both the peptide and the SPP-Ca chelate of
SPP were dissolved in a Tris-HCl buffer solution. The sample was
degassed followed by filtration through a 0.22µm filter. 2.5mM
of DEDEQIPSHPPR was loaded into the ITC cell, and then, the
CaCl2 solution (50mM) was loaded into the ITC syringe. During
measurements, 20 drops were injected into the sample cell. The
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titration parameter was configured to inject CaCl2 every 5min with
volumes of 2.5 µL. Nano Analyze software (TA Instrument-Waters
LLC, New Castle, Delaware) was applied for evaluating the raw
data based on data fitting.

2.6. Analysis of binding sites of calcium on
SPP

2.6.1. Ultraviolet spectroscopy
The ultraviolet absorption spectra of SPP and SPP-Ca were

determined utilizing an ultraviolet spectrophotometer (UV-1200,
Xiaofen Instrument Co. Ltd., Guangzhou, China). A stock solution
of the peptide was prepared (0.02 mg/mL, pH = 8.0), and then
0.2, 0.4, 0.6, and 0.8mM of CaCl2 were constantly shaking at 50◦C
for 1 h, and the measurement was conducted over the wavelength
ranged from 190 to 400 nm.

2.6.2. Fourier transform infrared spectroscopy
Infrared spectra of samples were obtained by an infrared

spectrophotometer (IS50, Thermo Nicolet Co., Waltham, MA)
within a scope of 4,000 to 400 cm−1. Pellets were created by mixing
the sample with KBr and pressing them to form disks. Circular
Dichroism Spectroscopy

Phosphorylated soy peptide (SPP) and SPP-Ca chelate were
dissolved in distilled water, making a final concentration of 0.5
mg/mL. The CD spectra were searched by a Chirascan-plus CD
spectrometer (Applied Photophysics, Surrey, UK). All experiments
were taken over from 200 to 260 nm with programmed 0.5 nm
intervals at 25◦C.

2.7. Thermal stability analysis of
peptide–calcium chelate in vivo

A thermogravimetric/differential scanning calorimeter
(STA449C, Netzsch, Germany) was used to investigate the
thermal decomposition of SPP-Ca chelate. Approximately 5mg
of lyophilized sample was weighed and heated from 40 to 600◦C
with a heating rate of 20◦C/min and Nitrogen flow rate of
30 mL/min.

2.8. Cell proliferation assay

The influence of the SPP-Ca chelate on MC3T3-E1 cells
promoting osteoblast proliferation was quantified using an MTT
assay proposed by Wang et al. (22). In brief, MC3T3-E1 cells at a
density of 1 × 104 cells/well were grown in 96-well tissue culture
plates for 24 h. The medium was replaced by SPP at concentrations
of 0, 0.7, 7, and 70µM and SPP-Ca at a concentration of
70µM and incubation for 72 h. For survival assay, the cells
were treated with 10 µL MTT solution (5 mg/mL in PBS), and
the plate was kept in the incubator for 3 h. After that, 150 µL
DMSO was added into each well followed by shaken 96-well
plates for 10min. Finally, the optical density was determined at

570 nm by a microplate reader (Molecular Devices, San Jose, CA,
United States).

2.9. ALP activity assay

Alkaline phosphatase (ALP) activity is a recognized osteogenic
differentiation marker of MC3T3-E1 cells. Cells were grown in a
complete medium at a density of 1 × 104 cells/well and cultured
for 48 h. Then, the medium was changed to a differentiation
medium. After 4 days of incubation, fresh serum containing various
concentrations of SPP (0.7, 7, and 70µM) and SPP-Ca (70µM)
was added and kept for 24 h at 37◦C. Next, the cells were rinsed
with PBS buffer, lysed with 70 µL of ice-cold lysis buffer which
was supplemented with PMSF per well, and broken down using a
cell disruptor (BiLon 92-II, Beijing, China). The ALP activity and
protein concentration were tested using an Alkaline Phosphatase
Assay Kit at OD405 and a BCA Protein Assay Kit at OD562 nm.

2.10. Statistical analysis

Each experiment was carried out in triplicate, and data were
presented as the mean ± SD. The results were subjected to one-
way analysis of variance (ANOVA) by the program SPSS Statistics
26.0 (SPSS Institute, Chicago, IL, United States), and the significant
statistical differences were set at p < 0.05.

3. Results

3.1. Molecular dynamic simulation of
SPP-Ca

Molecular docking was used to visualize the binding site and
patterns between the small molecule ligand and the receptor
(23). In this study, molecular docking technology was carried
out to predict bound conformations of binding for Ca2+ to
SPP at a molecular level. Materials Studio 6.0 software package
was performed to calculate the docking results accurately. The
structure of peptides was optimized on a model based on the
density functional theory. The molecular dynamics simulation
snapshot (0, 20, 50, and 100 ns) of SPP-calcium chelate is shown
in Figure 1A. The RMSD presented a significant tendency to be
stable ranging from 2 to 6 Å with the increasing of snapshot. As
expected, SPP has undergone a marked conformational change,
with various number of contiguous ion binding sites ranging from
0 to 5. For 0 ns, calcium ions were uniformly distributed in the
energy minimization system. Subsequently, the number of binding
sites gradually increased and reached a stable value of 5 after
100 ns (Figure 1B). Many studies revealed that the presence of
negatively charged acidic amino groups was responsible for the
covalent bonding of metal ions (4, 12), which was also supported
by Figure 1C. In addition, phosphate groups are also involved in
chelation. Thus, the result demonstrated the possibility of SPP
binding to calcium ions.
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FIGURE 1

Illustration of molecular dynamic analysis simulation for SPP-Ca. (A) RMSD stability analysis, changes of RMSD of SPPs with simulated time during

molecular docking; (B) snapshots of molecular dynamics simulation of SPP-calcium chelate at (0, 20, 50, and 100 ns), the green ball represents Ca2+,

the gray ball represents carbon atom on amino acid, the blue ball represents nitrogen atom on amino acid, the red ball represents oxygen atom on

amino acid, and the white ball represents hydrogen atom on amino acid; (C) molecular dynamic analysis simulation chelation of SPP-Ca complex

based on density functional theory calculation in the Materials Studio 6.0 software package at 100 ns.

3.2. Determination of the binding
stoichiometry and binding constant with
SPP-calcium complex

3.2.1. Analysis of the calcium-binding activity of
the SPP

In our study, SPP was confirmed to possess a calcium-binding
capacity of 50.24 ± 0.20 mg/g. Moreover, the molecular weight
of SPP was 750.65 Da determined by LC-MS, as shown in the
Supplementary Figure 1, supporting prior research that the peptide
with low molecular weight demonstrates an enhanced affinity to
calcium (24, 25). The high proportion of acidic amino acids in
SPP also has been reported to contribute to calcium chelation
(26, 27). Therefore, SPP could act as an effective carrier in
delivering calcium.

3.2.2. Determination of the binding stoichiometry
and binding constant

Isothermal titration calorimetry (ITC) is a powerful technique
for understanding the interaction of ligand-binding peptide (28).
The thermodynamic parameters showed that binding to calcium
generated negative changes in enthalpy and entropy values (1H =

−2.224 kJ/mol, 1G = −24.02 kJ/mol), which demonstrated that
the reaction occurs spontaneously and is an exothermic process
(Figure 2). In addition, the exothermic reaction yielded by the
formation of a coordination bond between Ca2+ and phosvitin
exerted a negative effect on1H.Meanwhile, the high absolute value
of 1S (66.40 J/mol·K) revealed that the association process was
electrostatic interaction-driven. The estimated stoichiometric ratio
(n) was 1.577, manifesting that the stoichiometric ratio of peptide
and calcium was 1:1.
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FIGURE 2

ITC analyses of the SPP reacting with calcium ions. The upper panel

exhibits a representative calorimetric titration curve. CaCl2 (50mM)

was titrated into 2.5mM of the peptide solution at 25◦C. The lower

panel shows the integrated areas corresponding to each titration,

plotted as a function of the Ca2+/peptide molar ratio. The solid line

represents the best curve fit obtained by using an independent

binding site model.

3.3. Mechanism of SPP-Ca chelation by
spectroscopy

3.3.1. Ultraviolet spectroscopy analysis
Ultraviolet-visible (UV) spectroscopy is recognized as an

excellent method to analyze peptide conformational changes
induced by the binding of calcium. The peptide–calcium complex
formation involving organic ligands and metal ions could produce
different UV spectra because of the transfer or disappearance of
the original absorbance peaks or the emergence of new absorption
peaks (15). Figure 3A shows that SPP has a specific absorption
peak at ∼200 nm, representing the characteristics of n→π∗ in the
amide bond. After cooperating with calcium, it can be observed
that the absorption band intensity of the amide bond increased
significantly from 1.227 to 1.338 in themagnifiedUV spectra image,
suggesting a hyperchromic effect. The transformation may be due
to polarization changes generated by auxochrome groups (–OH, –
NH2) and chromophore groups (–C = O, –COOH) (29). Hence, it
could be concluded that the nitrogen atom of –NH and –NH2, the
oxygen atom of –C = O and –COOH, and the phosphate group of
SPP might be involved in calcium binding.

3.3.2. FTIR analysis
The FTIR analysis could be utilized to observe characteristic

absorption peak variations in position, peak number and intensity
of amides and carboxylates, and further to reflect the interaction
between ligand andmetal ion (30).With this in mind, we attempted
to explore changes induced by chelation in SPP by FTIR analysis.

As presented in Figure 3B, the dominant spectral peaks are
contributed by the amide I (1,700–1,600 cm−1) ascribed to C =

O bonds stretching and amide II groups (1,600–1,500 cm−1) and

assigned to the folding of N–H bonds and stretching of C–N
bonds, respectively (31, 32). In the spectra of SPP-Ca, the band at
1,660.64 and 1,542.11 cm−1 shifted to 1,656.16 and 1,572.18 cm−1,
with decreased intensity. These results indicated that the amino
groups and carboxylate groups of peptides might be involved in the
covalent binding reaction with calcium ions (33). Furthermore, the
wave numbers at 1,450.13, 1,203.22, and 1,071.28 cm−1 shifted to
1,447.44, 1,319.69, and 1,101.95 cm−1, respectively, when bound
with calcium, it might be attributed to the carbonyl oxygen
contribute to the calcium chelate activity. Similar observations in
the spectra were found in schizochytrium protein hydrolysates
bound with calcium (16). The absorption peak of 3,346.21 cm−1

moved to the higher frequency of 3,384.49 cm−1 in the chelation
procedure, indicating that hydrogen bonds were replaced with N–
Ca bonds (34). In addition, the absorption band at 995.09 cm−1

corresponding to P-O-C stretching vibrations reduced to 990.22
cm−1 after chelation, which was attributed to the combination of
P–O with calcium (35).

The results confirmed that the carboxyl oxygen group, amino
group, and phosphoric acid group might be involved in the chelate
reaction of SPP and calcium ions.

3.3.3. Conformation analysis
Circular dichroism (CD) spectra are a classical method for

fast determination of peptide secondary structure. Figure 3C shows
that the presence of calcium induces different conformations. One
negative peak emerged at ∼196 nm in the original peptide, which
demonstrated random coil conformation (36). After chelating, the
secondary structure of SPP changed as follows: the α-helix, β-turn,
and random coil conformation contents decreased, whereas the
percentage of β-sheet increased.

3.4. Thermal stability analysis of SPP-Ca

The thermostability changes between SPP and SPP-Ca chelate
are presented in Figure 4. The thermal decomposition reaction of
SPP underwent 76.35% weight loss throughout the process, and
the Td value of SPP corresponding to the three stages was 69.05,
196.73, 292.17, 360.48, and 417.30◦C, respectively. These existed
endothermic peaks were probably due to the C–N bond groups in
SPP (37). Whereas, for SPP-Ca, some prominent shift endothermic
peaks were observed at 72.50, 219.16, 331.77, 395.83, and 446.94◦C
accompanied by greater weight loss.

3.5. E�ect of SPP and SPP-Ca complexes
on proliferation and osteogenic
di�erentiation in MC3T3-E1

As shown in Figure 5A, the MTT assay indicated that SPP
dose-dependently increase the cell viability of MC3T3-E1 cells. The
greatest facilitating proliferation osteoblast activity was observed
in 70µM SPP reaching 143.52% with no obvious cytotoxic effect.
Interestingly, SPP-Ca achieved stronger activity to promote the
proliferation osteoblast at an equal concentration (Figure 5B).
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FIGURE 3

UV spectra (A), FTIR spectra (B), and circular dichroism spectra (C) of SPP and SPP-Ca.

Then, we further investigated the biological effects of SPP-Ca
on differentiation. The ALP activity reached 0.014, 0.015, 0.018,
and 0.020 U/mg at 0.7, 7, and 70µM SPP treatment, respectively
(Figure 5C). In summary, 70µM SPP significantly increased the
osteogenic differentiation of MC3T3-E1. Therefore, the SPP-Ca
group used a fixed concentration in the further experiment.
Treatment with 70µM SPP-Ca resulted in a significant increase
in the ALP activity of MC3T3-E1 cells when compared with the
control group.

4. Discussion

The motivation for this study stemmed from a previous
study on soy peptide (DEDEQIPSHPPR) stimulating osteoblast
differentiation (22). Interestingly, current published literature
highlighted the crucial role of phosphorylated modification
in calcium binding or further absorption, offering theoretical

support for the efficacy and feasibility of the modification
that we performed. In this study, phosphorylated soy peptide
SPP (DEDEQIPPHPPR) was innovatively synthesized and
employed as materials, and the possible interaction mechanism
between the SPP and calcium, stability of SPP-calcium
complexes, and their promoting osteogenesis activity were
comprehensively investigated.

The chemically synthesized SPP with a sequence of Asp-
Glu-Asp-Glu-Gln-Ile-Pro-Ser-O-PO2−

3 -His-Pro-Pro-Arg
(DEDEQIPPHPPR, 1,499.43) had a calcium-binding activity
of 50.24 ± 0.20 mg/g. Generally, it is well established that the
binding ability of calcium ions for peptides not only depends on
the length and net charge of peptides but also on specific amino
acid groups and amino acid composition (16, 38). The functional
calcium-binding site in peptide bond contains an O atom of the
carbonyl group and an N atom of the amino group or imino
group. Liu et al. (26) suggested that wheat germ protein-derived
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FIGURE 4

TG-DSC analysis of SPP (A) and SPP-Ca (B).

FIGURE 5

Proliferation of osteoblast response to SPP (A) and SPP-Ca (B). MC3T3-E1 was treated with di�erent concentrations (0.7, 7, and 70µM) of SPP and

SPP-Ca (70µM) for 72h. Changes in the ALP activity of MC3T3-E1 treated with di�erent concentrations of SPP and SPP-Ca (C). n = 5. Data are

presented as means ± SEMs and analyzed by one-way ANOVA followed by Tukey’s multiple comparison test. *p < 0.05, **p < 0.01, and ***p < 0.001

vs. vehicle. ##Indicated significant di�erences, p < 0.05.
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calcium-binding peptides are rich in Glu, Asp, and Arg. Bao et al.
(27) pointed out that the calcium-binding site of polypeptide might
be carboxyl groups of Asp and Glu. Consequently, both the Asp and
Glu residues in the SPP might contribute to chelation with calcium
ions. Though phosphorylation of serine residues might provide
suitable binding sites for positively charged metals. However,
previous studies have shown that phosvitin phosphopeptides (39),
herring egg phosphopeptides (40), and CPPs (41) were 468 ±

152.80, 90.08 ± 2.02, and 60.17 mg/g, respectively, much higher
than that of the SPP isolated from soy yogurt. When calcium
content reached a high level, the steric hindrance of phosphate
groups might be strengthened, which could not be conducive to
the chelation of SPP with amino groups and carboxyl groups, so
similar calcium-binding ability cannot be achieved.

Molecule docking results showed that the SPP possesses
certain calcium-binding abilities (Figure 1). Generally speaking, the
combination between macromolecules and small ligands is driven
by non-covalent bonds involving hydrogen bonding, van derWaals
forces, hydrophobic interactions, and electrostatic attractions,
which are often determined by thermodynamic parameter values
(42). Through ITCmeasurement, it can be concluded that chelation
produced an exothermic reaction of 4.224 kJ/mol. In addition, the
exothermic reaction yielded by the formation of a coordination
bond between Ca2+ and phosvitin exerted a negative effect on
1H. Similar results were also observed in the binding of calcium
to VHS(p)S(p) and VLPVPQK (43, 44). When 1H < 0 and 1 s
> 0, the electrostatic forces dominated. Moreover, the estimated
stoichiometric ratio of SPP and calcium was 1:1, which also
occurred in EDLALLEK peptide that was reported by Sunwhere the
binding of EDLALLEK peptide to Ca2+ occurred mostly through
the carboxyl oxygen atom of Glu and Asp at a ratio of 1:1 (17).

To clarify the interaction patterns between SPP and calcium,
a variety of spectral analyses have been used. Both UV and
FTIR spectra results indicated that there was a complex of SPP
and calcium via the carboxyl oxygen group, amino group, and
phosphoric acid group. Corresponding conformational changes are
shown in Figure 3C. The increase in β-turn under the presence
of Ca2+ greatly docks of peptide in the hydrophobic cavity and
ultimately promote the transport of Ca-chelated form across
the plasma membrane, indicating that the chelation reaction
between SPP and calcium produced a much more ordered
and compact structure (45, 46). Considering previous research,
chelation does change the structure of SPP, and it will affect
thermal stability. Thus, additional study is required to confirm
this possibility.

Compared with SPP, the chemical bonds breaking of SPP-
Ca required higher energy-generating alterations in thermal
denaturation temperature. Chelation enhanced the thermal
stability of SPP which gives unique advantages in the applications
in the functional food field. Many studies also have reported
that the application of naturally bioactive peptide calcium
chelates generally positively regulating the proliferation and
differentiation of osteoblasts, thus preventing bone loss (47, 48).
Cell proliferation plays a vital role in the first stage of the osteoblast
phenotype (49). We also found that SPP-Ca exhibited biological
effects on promoting osteogenesis in MC3T3-E1. In our study,
SPP-Ca with concentrations ranging from 0.7 to 70µM was

added for 72 h. MTT assay indicated that SPP-Ca showed a
concentration-related stimulation in response to increase cell
viability. Similar results were also obtained for the binding of
calcium to bovine collagen peptides and chum salmon skin
gelatin hydrolysates (50, 51). Moreover, ALP activity was the
most widely recognized biochemical marker for osteoblastic
activity (52). It was worth noting that the ALP activity of peptide
increased slightly in the presence of calcium. Taken together,
SPP-Ca treatment positively regulated osteoblast proliferation
and differentiation.

5. Conclusion

In conclusion, a specific soy yogurt peptide with calcium-
chelating ability was chemically synthesized with phosphorylation
modification, and its binding mechanism was investigated. The
results showed that SPP chelated with calcium mainly through
carboxyl oxygen of Glu, Asp, and Arg at a stoichiometric
ratio of 1:1 and phosphoric acid group, resulting in the
formation of a stable complex. SPP-Ca chelate exhibited
superior effects in promoting osteoblast proliferation and
differentiation than peptide alone in vitro assays. Additionally,
the peptide can be simply and directly synthesized, which
is conducive to future large-scale production of SPP-Ca as
a calcium supplement. However, further research is also
required to identify the therapeutic effects of SPP-Ca against
bone diseases.
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