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Background: Selenium is an essential nutrient and trace element required for

human health and plays an important role in antioxidative and anti-inflammatory

processes. However, the long-term impact of selenium levels on the health of

patients with chronic kidney disease remains unclear.

Method: Participants in this study were 3,063 CKD adults from the Third National

Health and Nutrition Examination Survey (NHANES 1999–2000, 2003–2004,

and 2011–2018). The mortality status and the cause of death of the study

participants were obtained from the National Death Index records. For all-cause

and cardiovascular disease (CVD) mortality, the models employed to estimate

hazard ratios (HRs) and 95% CI were Cox proportional hazard models and

competing risk models, respectively.

Result: During the follow-up period, 884 deaths occurred, including 336

heart-disease-associated deaths. The median (IQR) concentration of serum

selenium was 181.7 (156.1, 201.5) µg/L. After full adjustment, serum selenium

levels were associated with a decreased risk of mortality in patients with CKD,

including all-cause and CVD mortality (P<0.001). The multivariate-adjusted HRs

(95%CI) were 0.684 (0.549–0.852) for all-causemortality (Ptrend < 0.001) and 0.513

(0.356–0.739) for CVD mortality (Ptrend < 0.001) when selenium concentrations

were compared according to the extreme quartiles. Selenium levels are inversely

associated with an increased risk of all-cause mortality and CVD mortality. Similar

results were observed in subgroup and sensitivity analyses.

Conclusion: Higher serum selenium concentration was independently associated

with a decreased risk of all-cause and CVD mortality in patients with CKD.
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Introduction

Chronic kidney disease (CKD) is a serious health problem that poses a major threat to

over 15–20% of the global general population and has become a significant challenge for

society and healthcare systemsworldwide (1). AmongMedicare patients in theUnited States,

the incidence of CKD has reached 14.5% and is higher in older adults (2–4). Patients with
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CKD suffer from obviously high morbidity of comorbid

cardiovascular diseases (CVDs), including arrhythmias and

coronary artery disease (CAD) (1, 5). In the progression of CKD

and comorbid CVDs, pro-inflammatory processes, oxidative stress,

and vascular endothelial dysfunction can amplify and induce each

other (6–8). Among the vicious circuits formed by pathological

changes, oxidative stress can promote the development of chronic

inflammation in patients with CKD and worsen renal injury

(6, 9–13).

Selenium, an essential nutrient and trace element, plays a

crucial role in anti-inflammatory and antioxidant processes (14).

In the general population, meat and eggs are important dietary

sources of selenium, whereas flour and rice are alternative dietary

sources (15). Dietary selenium is absorbed in the intestinal tract and

transformed into different metabolites through various metabolic

pathways (16–18). Available dietary selenium is determined by

the form of selenium (including organic and inorganic forms)

and type of food (including meats, grains, and seafood) (16, 19).

Insufficient dietary intake of selenium and selenium deficiency are

important health challenges that induce Keshan disease, Kashin–

Beck disease, autoimmune diseases, and CVDs (14, 20, 21).

However, existing evidence reveals that high selenium levels have

a beneficial impact on the incidence of various diseases in the

general population, whereas supplementation with selenium has

demonstrated controversial results (14, 22–33). Among patients

with CKD with extremely high pro-inflammatory status and

oxidative stress, who always have abnormal metabolisms of

various trace elements, investigations regarding the beneficial

effects of selenium are controversial and limited. One prospective

study suggested that the serum selenium levels of patients with

hemodialysis were similar to those of the general population

(34), whereas three observational studies revealed that the serum

selenium levels of patients with CKD were lower than those of

healthy adults (28, 30, 32). Some intervention studies found that

selenium supplementation may play a beneficial role in patients

with CKD (35, 36), while a randomized controlled trial (RCT)

indicated that oral administration of selenium does not decrease

the prevalence of type 2 diabetes and leads to an increased risk

of this disease during the follow-up period (37). To the best of

our knowledge, no study has examined the long-term impact of

serum selenium levels on all-cause mortality and CVD mortality

in patients with CKD.

In the present study, we prospectively investigated the

association of serum selenium levels with all-cause and CVD

mortality among patients with CKD from the National Health and

Nutrition Examination Survey (NHANES).

Methods

Study population

National Health andNutrition Examination Survey (NHANES)

is a nationally representative survey of the US civilian non-

institutionalized population that is conducted by the National

Center for Health Statistics (38). Since 1999, the NHANES has

collected data continuously and released datasets every 2 years. The

datasets contain information from personal interviews, physical

examination results, and laboratory data. The NHANES cohort

has been widely used to explore the associations between nutrients

and mortality in the general population and different disease states

(38–40). We conducted this cohort study using individuals from

the NHANES 1999–2000, 2003–2004, and 2011–2018 cohorts with

selenium measures and assessments of CKD.

Measurement of selenium levels and the
diagnosis of chronic kidney diseases

As reported, the measurement method for serum selenium

levels was inductively coupled plasma–dynamic reaction cell–mass

spectrometry. In detail, the blood samples of participants were

collected in containers, and then, the samples clotted and were

centrifugated at 1,115× g for 15min. The serum samples were then

stored under the proper freezing conditions and were prepared for

transport to the laboratory. Based on the Kidney Disease Improving

Global Outcomes (KDIGO) guideline, the estimated glomerular

filtration rate (eGFR) and urinary albumin-to-creatinine ratio were

used to define CKD (41). Using the Chronic Kidney Disease

Epidemiology Collaboration (CKD-EPI) equation, the eGFR of

every participant was calculated. CKD was graded as follows:

participants with eGFR ≥ 90 ml/min/1.73 m2 and albuminuria

were categorized into stage 1; participants with eGFR of 60–89

ml/min/1.73 m2 and albuminuria were categorized into stage 2;

participants with eGFR of 30–59 ml/min/1.73 m2 were categorized

into stage 3; participants with eGFR of 15–29 ml/min/1.73 m2 were

categorized into stage 4; and the participants with eGFR of <15

ml/min/1.73 m2 were categorized into stage 5.

Mortality outcome of the study population

The source of mortality information was data collected from

the National Death Index, until 31 December 2018. The follow-

up time for each participant was examined from the time of

participation to the date of death or 31 December 2018. Using

the International Statistical Classification of Diseases and Related

Health Problems, 10th revision (ICD-10), the underlying cause

of death was identified in this database. In the present study, we

examined the effect of serum selenium levels on all-cause and CVD

mortality. Specifically, codes I00–I09, I11, I13, and I20–I51 were

defined as CVD deaths in ICD-10.

Covariates assessment

All data were obtained from the NHANES 1999–2000,

2003–2004, and 2011–2018 cohort databases. Demographic

characteristics included in the present study were age, sex, race,

family poverty-to-income ratio, body mass index (BMI), and

smoking status. Serum triglyceride, total cholesterol, and uric acid

concentrations were obtained from laboratory test results. Data on

diabetes and hypertension were obtained as chronic comorbidities.

Using total family income divided by the poverty threshold, the

family poverty-to-income ratio was calculated. The smoking status
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FIGURE 1

Flow chart.

of every participant was measured. The study population was

categorized into smokers (smoking now or not smoking now but

>100 cigarettes in life) and never smokers (<100 cigarettes in

life). Diabetes was diagnosed according to a self-reported doctor’s

diagnosis of diabetes or laboratory test results. Positive laboratory

test results included glycated hemoglobin (HbA1c) of ≥6.5%,

fasting blood glucose of ≥7.1 mmol/L, random serum glucose of

≥11.1 mmol/L, and 2-h serum glucose of ≥11.1 mmol/L based on

oral glucose tolerance tests.

Statistical analyses

Serum selenium concentrations were classified into four

categories according to quartiles. Continuous variables are

expressed as the mean (standard deviation), while categorical

variables are expressed as numbers (proportions). Continuous

and categorical demographic variables were compared using the

analysis of variance (ANOVA) and the chi-square test.

First, we examined the correlation between serum selenium

levels and mortality in patients with CKD using restricted cubic

spline analyses. The Kaplan–Meier model analyses were conducted

to estimate the cumulative incidence of all-cause death, whereas

competing risk model analyses were employed to estimate the

cumulative incidence of cardiovascular death. We examined the

impact of different serum selenium levels on all-cause mortality

using the Cox proportional hazards analysis models, whereas we

investigated the impact of different serum selenium levels on

cardiovascular-cause mortality using competing risk models. In

model 1, the estimatedmodels were adjusted for variables including

age, sex, and race. In model 2, based on model 1, the estimated

models were further adjusted for family income–poverty ratio,
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TABLE 1 Baseline characteristics of participants with CKD according to serum selenium in NHANES (1999–2000, 2003–2004, and 2011–2018)a.

Serum selenium concentration (µg/L)

Characteristics Total Q1 < 156.1 Q2
156.1–181.7

Q3
181.7–201.5

Q4
201.5–734.8

P

Number of patients, n 3,063 766 768 762 767

Sex (%)

Male 1,478 (48) 354 (46) 357 (46) 352 (46) 415 (54) 0.003

Female 1,585 (52) 412 (54) 411 (54) 410 (54) 352 (46)

Age, years 64.0 (16.3) 70.0 (13.0) 63.5 (17.1) 61.5 (17.2) 60.9 (16.2) <0.001

Ethnicity (%)

Non-Hispanic white 1,455 (48) 449 (59) 331 (43) 327 (43) 348 (45) <0.001

Other 1,608 (52) 317 (41) 437 (57) 435 (57) 419 (55)

Family income–poverty ratio 2.3 (1.5) 2.3 (1.5) 2.2 (1.5) 2.2 (1.5) 2.4 (1.6) 0.148

Family income–poverty ratio (%)

>3.0 896 (29) 222 (29) 226 (29) 209 (27) 239 (31) 0.11

1.1–3.0 1,478 (48) 396 (52) 354 (46) 373 (49) 355 (46)

≤1.0 689 (22) 148 (19) 188 (24) 180 (24) 173 (23)

BMI, kg/m2 29.9 (7.1) 28.9 (6.5) 29.9 (7.5) 30.5 (7.3) 30.3 (7.2) <0.001

Smoke status (%)

Never smoker 1,516 (49) 348 (45) 384 (50) 403 (53) 381 (50) 0.034

Smoker 1,547 (51) 418 (55) 384 (50) 359 (47) 386 (50)

Triglycerides, mg/dl 167.8 (128.3) 155.2 (123.8) 151.0 (101.7) 167.0 (116.9) 197.8 (158.9) <0.001

Cholesterol, mg/dl 192.5 (46.8) 194.7 (46.6) 187.4 (44.0) 188.6 (45.0) 199.5 (50.4) <0.001

Uric acid, mg/dl 6.0 (1.6) 6.1 (1.6) 6.0 (1.7) 5.9 (1.6) 6.1 (1.6) 0.111

Serum creatinine, mg/dl 1.2 (0.7) 1.2 (0.8) 1.2 (0.9) 1.1 (0.6) 1.1 (0.5) <0.001

eGFR, mL/min/1.73m2 70.2 (28.8) 62.2 (24.9) 69.0 (29.8) 72.6 (29.6) 76.9 (28.8) <0.001

Urinary creatinine, mg/dl 117.1 (78.0) 112.2 (69.5) 119.6 (82.9) 115.0 (78.2) 121.5 (80.3) 0.078

Urinary albumin, µg/ml 201.2 (664.8) 202.8 (767.0) 226.0 (828.2) 202.2 (559.7) 173.8 (424.0) 0.498

Hypertension (%)

No 836 (27) 178 (23) 226 (29) 224 (29) 208 (27) 0.02

Yes 2,227 (73) 588 (77) 542 (71) 538 (71) 559 (73)

Diabetes (%)

No 1,840 (60) 501 (65) 459 (60) 449 (59) 431 (56) 0.002

Yes 1,223 (40) 265 (35) 309 (40) 313 (41) 336 (44)

CKD stage (%)

Stage 1–2 1,543 (50) 304 (40) 374 (49) 410 (54) 455 (59) <0.001

Stage 3–5 1,520 (50) 462 (60) 394 (51) 352 (46) 312 (41)

aContinuous variables are presented as means (SD). Categorical variables are presented as numbers (percentages).

Q, quartile; BMI, body mass index; eGFR, estimated glomerular filtration rate; CKD, chronic kidney diseases.

No missing values.

BMI, serum triglycerides, serum total cholesterol, and serum uric

acid. In model 3, based on model 2, the estimated models were the

fully adjusted models, further adjusted for diabetes, hypertension,

and smoking status. In model 4, serum selenium concentrations

were analyzed as the continuous variable, and the results were fully

adjusted for model 3. To confirm the previous correlation, age (≥65

or <65 years), sex (male or female), BMI (≥30 or <30 kg/m2),

race (non-Hispanic white or other), smoking status (smoker or

never smoker), and various subgroup analyses were performed.

Different sensitivity analyses were performed by excluding different

subgroups of participants as follows: (1) participants who died

within 1 year; (2) participants with CKD stages 3–5, and (3)
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FIGURE 2

The cumulative incidence of all-cause death in the four study groups during the follow-up period.

participants with CKD stages 1–2. All statistical analyses were

performed using R version 4.1.0.

Results

The current analysis included 3,063 individuals, and the

complete preparation process is shown in Figure 1. The baseline

characteristics of the study participants based on quartiles of

serum selenium concentrations are presented in Table 1. In these

participants, the median (interquartile range) serum selenium

concentration was 181.7 (156.1–201.5)µg/L; the mean age was 64.0

± 16.3 years, 48% were male, and 48% were non-Hispanic white.

Higher serum selenium levels were associated with participants

who were male, younger, of other races (different from non-

Hispanic white), never smokers, and with a higher eGFR.

Of the 3,063 participants, during the follow-up period, 884

deaths occurred, including 336 cardiovascular deaths. The median

follow-up period was 59 months. The Kaplan–Meier curve revealed

that participants with higher serum selenium concentrations had

significantly higher survival rates during the follow-up period

(P < 0.0001; Figure 2). Similar results were observed between

selenium concentrations and CVD mortality (Figure 3). The

cumulative incidence of cardiovascular death in the different

quartiles from Q1 to Q4 was 19.5, 17.5, 9.0, and 9.0%, respectively

(P < 0.001), with a follow-up time of 120 months. Higher

selenium levels were consistently correlated with a reduction in all-

cause mortality among participants with CKD after multivariate

adjustment (Table 2). As shown in Table 2, after multivariate

adjustment, the hazard ratios (HRs; 95% CI) of the different

quartiles from Q1 to Q4 were 1 (reference), 0.866 (0.724–1.035),

0.737 (0.596–0.911), and 0.684 (0.549–0.852), respectively (Ptrend
< 0.001). In model 4, all-cause mortality decreased by 0.5%

for every 1% increase in serum selenium concentration (HR

0.995, 95% CI, 0.993–0.997; P < 0.001). A consistent correlation

between selenium levels and all-cause mortality was observed

according to the restricted cubic spline analysis results (P < 0.001;

Figure 4A). A similar inverse correlation between serum selenium

concentration and CVD mortality was observed, and higher serum

selenium levels were correlated with a reduction in CVD mortality

(Table 3). After multivariable adjustment, the HRs (95% CI) of

the different quartiles from Q1 to Q4 were 1 (reference), 0.834

(0.633–1.100), 0.526 (0.370–0.748), and 0.513 (0.356–0.739; Ptrend
< 0.001), respectively. For every 1% increase in serum selenium

concentration, the risk of CVD mortality decreased by 0.8% (HR

0.992, 95% CI, 0.989–0.996; P < 0.001). A non-linear dose–

response relationship between serum selenium levels and CVD

mortality was also determined (P = 0.001; Figure 4B).

When subgroup analyses were based on age, sex, race, BMI, and

smoking status, a similar correlation was found between selenium

levels and all-cause mortality (Table 4). We also investigated the

correlation between selenium levels and CVD mortality using

subgroup analysis (Table 5). When subgroup analyses were based

on age, sex, race, BMI, and smoking status, the correlation

of selenium levels with all-cause mortality and CVD mortality

was unchanged.

After excluding the special participants from the sensitivity

analyses, the analyses were repeated using a fully adjusted

model (model 3; Supplementary Table 1). The correlation of

serum selenium concentration with all-cause mortality and CVD
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FIGURE 3

The cumulative incidence of cardiovascular-cause death in the four study groups during the follow-up period.

TABLE 2 All-cause mortality according to quartiles of serum selenium concentrations among patients with CKDa.

Serum selenium concentration (µg/L)

Characteristics Q1 < 156.1 Q2 156.1–181.7 Q3 181.7–201.5 Q4 201.5–734.8 P-trend

All-cause mortality

Number of deaths/total 478/776 177/768 119/762 110/767 884/3,063

Model 1b 1 0.903 (0.756, 1.078) 0.748 (0.605, 0.924) 0.693 (0.557, 0.862) P < 0.001

Model 2c 1 0.916 (0.766, 1.095) 0.753 (0.608, 0.931) 0.706 (0.566, 0.88) P < 0.001

Model 3d 1 0.866 (0.724, 1.035) 0.737 (0.596, 0.911) 0.684 (0.549, 0.852) P < 0.001

Model 4e 0.995 (0.993, 0.997) P < 0.001

aCox proportional hazards models were used to estimate the HRs (95% CIs) of all-cause mortality according to quartiles of serum selenium concentrations. Q, quartile.
bModel 1 was adjusted for age (continuous), sex (male or female), and race (non-Hispanic white or other).
cModel 2 was adjusted for age (continuous), sex (male or female), race (non-Hispanic white or other), family income–poverty ratio (>3.0, 1.1–3.0, and ≤1), BMI (≥30 or <30 kg/m2), serum

triglycerides (≥200 or <200 mg/dL), serum total cholesterol (≥240 or <240 mg/dL), and serum uric acid (≥7 or <7 mg/dL).
dModel 3 was adjusted for age (continuous), sex (male or female), race (non-Hispanic white or other), family income–poverty ratio (>3.0, 1.1–3.0, and ≤1), BMI (≥30 or <30 kg/m2), serum

triglycerides (≥200 or <200 mg/dL), serum total cholesterol (≥240 or <240 mg/dL), serum uric acid (≥7 or <7 mg/dL), diabetes (yes or no), hypertension (yes or no), and smoking status

(smoker or never smoker).
eContinues model (each per 1% increase in serum selenium concentrations) adjusted by variables in model 3.

mortality was also unchanged after excluding participants who died

in the 1st year during the follow-up period. Sensitivity analyses after

excluding patients with CKD stages 1–2 or stages 3–5 indicated

similar results.

Discussion

To the best of our knowledge, this is the first prospective

study to investigate the correlation between serum selenium

concentration and mortality among patients with CKD. In this

study, we revealed a correlation between serum selenium levels

and all-cause mortality and CVD mortality after multivariable

adjustment for age, sex, serum triglyceride concentration, serum

total cholesterol concentration, serum uric acid concentration,

BMI, smoking status, hypertension, and diabetes. Based on

the results of various analyses, we confirmed the reliability of

these findings.

Selenium is an essential nutrient and trace element necessary

for human health that plays a crucial role in antioxidative

metabolism and homeostasis (42). Selenium compounds from

daily intake include selenite, selenocysteine, selenomethionine, and

methylselenocysteine, which have different metabolic pathways

and metabolites (43–47). Selenium can prevent the formation

of atherosclerotic lesions and improve endothelial function by

reducing superoxide generation and preventing mitochondrial

DNA damage (48–52). Epidemiological evidence also confirmed

the health benefits of high serum selenium levels in reducing

Frontiers inNutrition 06 frontiersin.org

https://doi.org/10.3389/fnut.2023.1127188
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Zhu et al. 10.3389/fnut.2023.1127188

FIGURE 4

(A) Restricted cubic spline analyses between serum selenium concentrations and all-cause mortality; (B) Restricted cubic spline analyses between

serum selenium concentrations and cardiovascular-cause mortality.

deaths and CVD events. Jayedi et al.’s dose–response meta-analysis

supported that serum selenium levels and daily intake of selenium

were inversely correlated with all-cause mortality (53). Kuria et al.

found that high selenium concentration was associated with a

decreased risk of CVD incidence and mortality, and a higher

dietary intake of seleniumwas associated with decreased cancer risk

after adjusting for age, BMI, and smoking status (54, 55).

In the current study, we found that serum selenium levels were

lower in older participants among patients with CKD. This was

similar to the results of the study by Schiavon et al., who revealed

that serum selenium levels decreased years before death (56). Our

results indicate that the correlation of serum selenium levels with

all-cause mortality and CVD mortality was not associated with

age. Similar results were obtained when subgroup analyses were

based on sex and race. Smoking is an important risk factor for

various types of progressive diseases and may significantly increase

oxidative stress (57, 58), The results of the current study revealed

that higher concentrations of selenium also significantly correlated
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TABLE 3 CVD mortality according to quartiles of serum selenium concentrations among patients with CKDa.

Serum selenium concentration (µg/L)

Characteristics Q1 < 156.1 Q2 156.1–181.7 Q3 181.7–201.5 Q4 201.5–734.8 P-trend

CVDmortality

Number of deaths/total 185/776 74/768 40/762 37/767 336/3,063

Model 1b 1 0.878 (0.670, 1.153) 0.560 (0.394, 0.794) 0.535 (0.371, 0.771) P < 0.001

Model 2c 1 0.865 (0.657, 1.139) 0.540 (0.380, 0.767) 0.525 (0.363, 0.758) P < 0.001

Model 3d 1 0.834 (0.633, 1.100) 0.526 (0.370, 0.748) 0.513 (0.356, 0.739) P < 0.001

Model 4e 0.992 (0.989, 0.996) P < 0.001

aCompeting risk models were used to estimate the HRs (95% CIs) of cardiovascular-cause mortality according to quartiles of serum selenium concentrations. Q, quartile.
bModel 1 was adjusted for age (continuous), sex (male or female), and race (non-Hispanic white or other).
cModel 2 was adjusted for age (continuous), sex (male or female), race (non-Hispanic white or other), family income–poverty ratio (>3.0, 1.1–3.0, and ≤1), BMI (≥30 or <30 kg/m2), serum

triglycerides (≥200 or <200 mg/dL), serum total cholesterol (≥240 or <240 mg/dL), and serum uric acid (≥7 or <7 mg/dL).
dModel 2 was adjusted for age (continuous), sex (male or female), race (non-Hispanic white or other), family income–poverty ratio (>3.0, 1.1–3.0, and ≤1), BMI (≥30 or <30 kg/m2), serum

triglycerides (≥200 or <200 mg/dL), serum total cholesterol (≥240 or <240 mg/dL), serum uric acid (≥7 or <7 mg/dL), diabetes (yes or no), hypertension (yes or no), and smoking status

(smoker or never smoker).
eContinues model (each per 1% increase in serum selenium concentrations) adjusted by variables in model 3.

TABLE 4 Subgroup analyses of the associations between serum selenium concentrations and all-cause mortality among CKD patientsa.

Serum selenium concentration (µg/L)

Characteristics Q1 < 156.1 Q2 156.1–181.7 Q3 181.7–201.5 Q4 201.5–734.8 P-trend

Age, y

<65 1 0.836 (0.523, 1.337) 0.605 (0.36, 1.015) 0.493 (0.296, 0.82) 0.003262

≥65 1 0.902 (0.742, 1.096) 0.798 (0.631, 1.008) 0.748 (0.585, 0.955) 0.007641

Sex

Male 1 1.070 (0.846, 1.352) 0.718 (0.535, 0.964) 0.643 (0.478, 0.865) 0.00109

Female 1 0.675 (0.508, 0.897) 0.787 (0.576, 1.075) 0.797 (0.572, 1.111) 0.07929

Ethnicity (%)

Non-Hispanic white 1 0.987 (0.786, 1.239) 0.739 (0.563, 0.97) 0.696 (0.529, 0.915) 0.00289

Other 1 0.701 (0.524, 0.937) 0.685 (0.485, 0.968) 0.644 (0.443, 0.936) 0.00813

BMI, kg/m2

<30 1 0.922 (0.739, 1.151) 0.727 (0.547, 0.967) 0.765 (0.58, 1.009) 0.014546

≥30 1 0.794 (0.585, 1.077) 0.738 (0.531, 1.025) 0.560 (0.389, 0.807) 0.00147

Smoking status

Never smoker 1 1.024 (0.777, 1.347) 0.816 (0.589, 1.13) 0.738 (0.522, 1.045) 0.06053

Smoker 1 0.798 (0.63, 1.01) 0.704 (0.531, 0.933) 0.651 (0.49, 0.866) 0.000728

aCox proportional hazard models were used to estimate the HRs (95% CIs) of all-cause mortality according to quartiles of serum selenium concentrations. Results were adjusted for age (≥65 or

<65), sex (male or female), race (non-Hispanic white or other), BMI (≥30 or <30 kg/m2), and smoking status (smoker or never smoker).

BMI, body mass index; Q, quartile.

with the reduction of all-cause mortality and CVD mortality

in these patients. Similar results were obtained when subgroup

analyses were based on BMI. CKD stage is a key risk factor for CVD

mortality in patients (59, 60). Our results revealed that in both CKD

stages 1–2 and 3–5, higher levels of serum selenium were correlated

with a reduction in all-cause mortality and CVD mortality.

In the general population, the serum selenium concentration

associated with minimal mortality is 130–150 µg/L (61, 62).

However, there is an intrinsic conflict between long-term health

benefits based on epidemiological evidence and the controversial

results of selenium supplementation studies in humans (14, 24–33,

62). Countering this mystery, there are some possible explanations

for this problem. First, in laboratory studies, selenite is the most

common form of selenium, whereas most human studies use

SeMet as the most popular supplement (14). This difference in

chemical formmay explain the differences in health effects between

the studies. Second, the metabolites of cells and in vitro studies

are different from those of in vivo studies and human studies
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TABLE 5 Subgroup analyses of the associations between serum selenium concentrations and CVD mortality among CKD patientsa.

Serum selenium concentration (µg/L)

Characteristics Q1 < 156.1 Q2 156.1-181.7 Q3 181.7-201.5 Q4 201.5-734.8 P-trend

Age, y

<65 1 0.584 (0.283, 1.210) 0.466 (0.203, 1.070) 0.213 (0.080, 0.570) <0.001

≥65 1 0.901 (0.669, 1.212) 0.599 (0.380, 0.822) 0.611 (0.415, 0.920) <0.001

Sex

Male 1 0.957 (0.664, 1.380) 0.491 (0.299, 0.806) 0.470 (0.284, 0.779) <0.001

Female 1 0.667 (0.433, 1.028) 0.559 (0.336, 0.931) 0.588 (0.340, 1.018) 0.014

Ethic

Non-Hispanic white 1 0.923 (0.652, 1.306) 0.489 (0.308, 0.777) 0.502 (0.317, 0.795) <0.001

Other 1 0.694 (0.441, 1.092) 0.534 (0.305, 0.934) 0.482 (0.263, 0.884) 0.0064

BMI, kg/m2

<30 1 0.949 (0.672, 1.342) 0.541 (0.331, 0.886) 0.565 (0.344, 0.929) 0.0039

≥30 1 0.664 (0.422, 1.044) 0.492 (0.298, 0.811) 0.425 (0.247, 0.730) <0.001

Smoking status

Never smoker 1 0.922 (0.608, 1.399) 0.826 (0.515, 1.324) 0.488 (0.268, 0.892) 0.022

Smoker 1 0.791 (0.546, 1.147) 0.355 (0.208, 0.605) 0.531 (0.335, 0.841) <0.001

aCompeting risk models were used to estimate the HRs (95% CIs) of all-cause mortality according to quartiles of serum selenium concentrations. Results were adjusted for age (≥65 or <65),

sex (male or female), race (non-Hispanic white or other), BMI (≥30 or <30 kg/m2), and smoking status (smoker or never smoker).

BMI, body mass index; Q, quartile.

because of different environments and metabolic pathways. Third,

excess selenium may harm normal glucose metabolic pathways

and enhance the generation of peroxisome proliferator-activated

receptor gamma (PPARγ) (63, 64). Therefore, previous studies

have supported that those in the general population with serum

selenium levels of 122 µg/L or higher may not need selenium

supplementation (63). However, this is different for patients with

CKD. Existing evidence indicates that serum selenium levels are

lower in patients with CKD than those in the general population

(28, 30, 31, 65). In the present study, we found that a higher

concentration of serum selenium was correlated with decreased all-

cause mortality and CVD mortality in patients with CKD. This is

consistent with Ruiz et al.’s study, which found that adult patients

on hemodialysis with lower selenium levels had a higher risk of

death (65). In our study, the relationship between serum selenium

levels and mortality among patients with CKD was different from

the dual relationship confirmed in the general population. There

are several potential explanations for this difference. First, the

baseline levels of serum selenium and dietary intake of selenium

in the two study populations were different (28, 30). Second, the

oxidative stress levels in the two study populations were different,

and abnormal oxidative stress levels were associated with abnormal

seleniummetabolism (1, 66). Third, serum selenium levels may not

accurately reflect serum selenoprotein levels (14).

The present study has some strengths. First, the follow-up time

of our study is long. Second, because the dietary intake of selenium

in patients with CKD varied during the follow-up period, we used

serum selenium levels as a better measure of selenium levels. Third,

after adjusting for various covariates, the inverse correlation of

selenium levels with all-cause mortality and CVD mortality was

also evident, which confirmed the robustness of this association.

Fourth, the subgroup analysis results indicated that the association

existed generally in these subgroups of patients with CKD, which

may reveal the universality of this association.

The present study has some limitations. First, although the

current study was a cohort study, every participant’s follow-up

data were limited. Second, there was only one serum selenium

concentration data point at the baseline, but the dietary intake of

selenium changed gradually during the follow-up period, especially

when the stages of CKD in patients progressed over years; thus,

the baseline level of serum selenium may not accurately reflect

the long-term level of serum selenium. Third, the dietary intake

of selenium varies worldwide, and the level of serum selenium in

our study participants was relatively high (14, 62). Thus, our results

may not accurately reflect the association between selenium status

and mortality in populations with lower serum selenium levels.

Fourth, selenium’s biological activities are mediated by selenium

metabolites such as selenoproteins. Accurate measurement of

selenoprotein and other selenium metabolites will reveal the

underlying metabolism between serum selenium and mortality.

Finally, the correlation is not causation; therefore, our results

cannot prove causality because of the inherent limitations of

observational studies.

Conclusion

Higher serum selenium concentration was independently

associated with a decreased risk of all-cause mortality and CVD

mortality in patients with CKD.
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