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COVID-19 infection causes cognitive changes in the acute phase, but also 
after apparent recovery. Over fifty post (long)-COVID symptoms are described, 
including cognitive dysfunction (“brain fog”) precluding return to pre-COVID level 
of function, with rates twice as high in females. Additionally, the predominant 
demographic affected by these symptoms is younger and still in the workforce. 
Lack of ability to work, even for six months, has significant socio-economic 
consequences. This cognitive dysfunction is associated with impaired cerebral 
glucose metabolism, assessed using 18F-fluorodeoxyglucose-positron emission 
tomography (FDG-PET), showing brain regions that are abnormal compared to 
age and sex matched controls. In other cognitive conditions such as Alzheimer’s 
disease (AD), typical patterns of cerebral glucose hypometabolism, frontal 
hypometabolism and cerebellar hypermetabolism are common. Similar FDG-
PET changes have also been observed in post-COVID-19, raising the possibility 
of a similar etiology. Ketone bodies (B-hydroxybutyrate, acetoacetate and 
acetone) are produced endogenously with very low carbohydrate intake or 
fasting. They improve brain energy metabolism in the face of cerebral glucose 
hypometabolism in other conditions [mild cognitive impairment (MCI) and AD]. 
Long-term low carbohydrate intake or prolonged fasting is not usually feasible. 
Medium chain triglyceride (MCT) is an exogenous route to nutritional ketosis. 
Research has supported their efficacy in managing intractable seizures, and 
cognitive impairment in MCI and AD. We  hypothesize that cerebral glucose 
hypometabolism associated with post COVID-19 infection can be  mitigated 
with MCT supplementation, with the prediction that cognitive function would 
also improve. Although there is some suggestion that post COVID-19 cognitive 
symptoms may diminish over time, in many individuals this may take more than 
six months. If MCT supplementation is able to speed the cognitive recovery, this 
will impact importantly on quality of life. MCT is readily available and, compared 
to pharmaceutical interventions, is cost-effective. Research shows general 
tolerability with dose titration. MCT is a component of enteral and parenteral 
nutrition supplements, including in pediatrics, so has a long record of safety in 
vulnerable populations. It is not associated with weight gain or adverse changes 
in lipid profiles. This hypothesis serves to encourage the development of clinical 
trials evaluating the impact of MCT supplementation on the duration and severity 
of post COVID-19 cognitive symptoms.
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Introduction/background

Current statistics1 report that the SARS-CoV-2 pandemic 
(COVID-19) has exceeded 650 million cases worldwide, with over 6 
million reported deaths. This likely underestimates the numbers as it 
does not capture cases from countries where diagnostic testing is not 
readily available, or untested cases with more mild disease. Worldwide 
new variants keep emerging, and there is persistent infection and 
re-infection.

Following apparent recovery from COVID-19 infection, several 
persistent post-COVID-19 symptoms have been documented in a 
cohort of patients. These post COVID-19 symptoms were first 
reported in the media (1, 2), and data now suggest one in three people 
are not fully recovered after several weeks (3), with as many as fifty 
symptoms being described (4). They include persistent exercise 
intolerance, breathlessness, cough, anxiety, palpitations, poor 
concentration, intense fatigue, mood swings, muscle/joint pains, 
headaches, attention disorder and memory loss or ‘brain fog’ (5). 
Because of the increasing number of cases of acute and long COVID 
worldwide, in October 2021 the World Health Organization clearly 
defined long COVID as a condition that “occurs in individuals with a 
history of probable or biologically confirmed SARS-COV-2 infection 
initially symptomatic at the acute phase, with numerous symptoms 
lasting for at least two months, usually three months, from the onset 
of COVID-19 that cannot be explained by an alternative diagnosis” (6).

People affected with post COVID-19 sequalae are often more 
physically fit and younger at baseline. In addition, women are 
disproportionately affected by these “long haul” symptoms, with a 
prevalence of 64% versus 35% in men (7). The impact of long COVID 
on socioeconomic status is therefore significant [Chen et  al. (5)]. 
Symptoms of possible brain origin include: loss of smell and taste; 
complaints of brain fog; impaired attention and memory function; 
sleep disturbances; pain; emotional disorders; and symptoms related 
to dysautonomia (breathlessness, tachycardia, orthostatic intolerance 
and orthostatic hypotension) (7–9).

The most debilitating symptoms include fatigue (reported in 
73%) and brain fog (28%), which was self-defined as “dementia” in 
at least one study of 30–40-year-olds (7). Additionally, because of 
the varied and non-specific nature of these symptoms, many are 
dismissed by health care providers (10), or are simply not reported. 
Rehabilitation of COVID-19 survivors remains widely neglected 
(11) not only because of this under-recognition, but because most 
health care systems are still overwhelmed with acute cases. Fatigue 
in long-COVID is multifactorial, including ongoing hypoxia, 
disordered lung function, depression and chronic fatigue syndrome 
(11). Fatigue may improve, but this will likely depend on the 
etiology in each case.

The specific etiology of the cognitive symptoms remains unclear. 
Clinicians are increasingly aware that cognitive symptoms are not 
necessarily related to poor pulmonary function and dyspnoea, 
making their potential treatment challenging. There is evidence of 
direct viral spread to the central nervous system (CNS) for COVID-19 
and other coronaviruses (12, 13), as well as adverse effects on the 
CNS from other systemic symptoms, such as hypoxia. Animal studies 

1 www.worldometers.info/coronavirus/

have shown a specific vulnerability of the hippocampus (14). If this 
is the case with COVID-19 infection in humans, it raises the concern 
of the infection having an impact on memory and possible accelerated 
onset of hippocampus-related neurodegenerative diseases such as 
Alzheimer’s dementia (AD). In addition, COVID-19 infection 
worsens cognitive function in those with pre-existing AD, through 
both direct infection effects as well as the pandemic-related social 
and environmental restrictions (15). The mechanism for direct 
infection was investigated in a post-mortem study (16). It suggests 
concomitant COVID-19 infection could amplify pre-existing 
dementia in at least two ways: (1) by modulating the expression of 
proteins that may worsen AD; (2) stressing the already dysfunctional 
neurons especially in areas with abundant hyperphosphorylated tau 
protein and/or β-amyloid-42; (3) potentially increasing 
neuroinflammation (16).

Most of the research focuses on patients requiring admission to 
hospital for COVID-19 infection. However, cognitive symptoms 
especially, can also occur in people who had a seemingly mild 
infection (not requiring hospitalization) from which they apparently 
fully recovered, i.e., their acute viral symptoms resolved (11, 13). In 
one study where 80% of participants had a mild COVID-19 infection, 
28.6% reported new “dementia” symptoms (7).

Importantly, metabolic brain studies (17–21) have shown cerebral 
hypometabolism using 18F-fluorodeoxyglucose-positron emission 
tomography (FDG-PET) imaging. This research shows a consistent 
pattern of frontal hypometabolism and cerebellar hypermetabolism 
in post COVID-19 patients complaining of cognitive deterioration. 
FDG-PET imaging also shows cerebral glucose hypometabolism in 
other conditions associated with cognitive decline such as mild 
cognitive impairment (MCI) and AD (22). This glucose 
hypometabolism can potentially be countered by providing a dietary 
source of substrate to increase serum ketone bodies (23, 24) with, in 
the case of MCI, a direct and significant benefit in several cognitive 
domains (25).

As a therapeutic strategy, endogenous ketosis to correct brain 
glucose hypometabolism requires a significant and prolonged 
reduction in insulin, which is typically achieved by fasting and/or very 
significant reduction in carbohydrate intake. However, both ketone 
bodies and medium-chain fatty acids (MCFA) can also be supplied 
from an exogenous dietary source, such as medium chain triglyceride 
(MCT, C8, caprylic acid), without needing to change energy or 
macronutrient intake. Such a daily MCT supplement partially 
overcomes the cerebral glucose hypometabolism in MCI (25, 26) and 
AD (27, 28) with concomitant improvement in cognitive symptoms 
in the domains of memory, executive function, language, and 
processing speed. Some studies suggest ketone bodies selectively 
target neuronal mitochondrial function (29, 30). Other than the direct 
effect of ketone provision, MCT can also directly inhibit AMPA 
receptors (glutamate receptors), and change cell energetics through 
mitochondrial biogenesis (31).

Hypothesis

Ketosis induced by MCT oil supplementation will improve brain 
energy metabolism post-COVID-19 because ketone bodies will 
correct/bypass persistent brain glucose hypometabolism, resulting in 
better cognitive function and less brain fog. See Figure 1.
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Evaluation of the hypothesis

Generation of ketone bodies

Endogenous
The brain metabolizes 120–130 g/day of glucose (32). It consumes 

16% of the body’s total O2 consumption, despite representing only 
2.0–2.3% of adult body weight. In numerous physiological states, 
including the neonatal period, fasting, calorie restriction, starvation, 
post exercise, and very low carbohydrate diets, the body is able to 
generate ketone bodies (acetoacetate and beta hydroxybutyrate) as an 
alternative brain energy source to glucose (33). Endogenous ketone 
bodies are normally generated by beta-oxidation of long chain fatty 
acids released from adipose tissue. This process is dependent on low 
insulin levels, which enhances lipolysis in white adipose tissue due to 
the suppressed insulin-induced inhibition of hormone sensitive lipase 
(34). In long-term fasting, ketone bodies can supply >60% of the 
brain’s energy requirements (32, 35), and are actually preferentially 
taken up by the brain over glucose when adequate amounts of both 
energy substrates are available (36–39), although glucose will always 
be used in conjunction with ketone bodies. Endogenous ketosis can 
also be induced with a very low carbohydrate high fat (VLCHF) diet 
(40) or a ketogenic diet (41).

Whether ketogenesis or catabolism is normal in COVID-19 acute 
illness or post-COVID is unknown. Indeed, if treatment includes 
intravenous dextrose, insulin will undoubtedly suppress endogenous 
ketone production.

Nutritional (exogenous)
Long term compliance with fasting or VLCHF, LCHF and 

ketogenic diet (KD) regimes is challenging (40). Although the 

cardiometabolic safety of the KD is becoming less of a concern, it 
is still best applied under close medical or dietetic supervision 
(40, 41).

MCT consumption, on the other hand, has the potential advantage 
of inducing nutritional ketosis without the need for a drastic change 
in dietary habits, especially during a time when a person is perhaps 
the least able to adjust (24–28, 30, 39, 42–46). Medium chain fatty 
acids (6-12C) from MCT are rapidly absorbed from the gastrointestinal 
tract, and unlike long chain fatty acids (13-22C), move directly into 
the liver via the portal vein and do not promote triglyceride synthesis 
(23). See Figure 2 (23). Once absorbed some are metabolized into 
ketone bodies, which enter the citric acid cycle to provide energy via 
adenosine triphosphate (ATP). The remainder of the absorbed MCFA 
enter the circulation and cross the blood brain barrier as MCFAs (24, 
31, 47, 48). Unlike long-chain fatty acids, MCFAs are able to directly 
enter mitochondria without the need for carnitine-dependent 
transport. This allows for rapid Beta-oxidation and ATP generation 
(24, 49), which is particularly important in the role of MCT for 
epilepsy management (50–52). Exogenous ketosis from MCT is 
independent of the fasting state, plasma insulin or carbohydrate intake.

There is a direct dose–response relationship between MCT 
consumption, plasma ketone [B-hydroxybutyrate (BHB)] response 
(46) and brain ketone uptake (30). MCT can be consumed per se or 
emulsified into a drink, and is generally well tolerated provided the 
dose is slowly increased (28). Research interest is growing in the use 
of lipid nanoparticles as another potential mode of delivery, perhaps 
allowing for increased doses and better MCT tolerability (53). 
Reducing simple sugar intake while providing MCT may improve 
insulin sensitivity and potentially help endogenous ketosis (54). 
Ketone response can also be easily assessed with finger-prick BHB 
testing (46).

FIGURE 1

Summary of potential mechanism of action of medium chain triglyceride (MCT) consumption for post-COVID-19 cognitive symptoms. MCT, medium 
chain triglyceride; MCFA, medium chain fatty acids.

https://doi.org/10.3389/fnut.2023.1126534
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Long term safety with MCT consumption has been established 
in pediatric populations over the years with the use of MCT in 
pediatric supplements (55). Safety in adults with AD and MCI 
participants has also been shown (28, 56). MCT supplementation 
requires input from knowledgeable physicians, dietitians, or other 
health professionals, to optimize potential beneficial effects and 
minimize side effects.

As previously noted, some of the MCT consumed is converted 
into ketone bodies in the liver, but some also remains as MCFAs in the 
blood, the relative amount of which depends on the MCT consumed. 
For example, C8 MCT produces more ketone bodies than C10 
MCT (47).

Ketone bodies (such as BHB) and MCFAs have been shown to 
be supplementary cognitive fuels in different cellular compartments 
in the brain (57). BHB and MCFAs enter the brain via different 
mechanisms: BHB depends on monocarboxylate transporters; while 

MCFAs appear to diffuse passively across cell membranes (50, 58). 
Studies in animal models suggest that MCFAs are metabolized by 
astrocytes, although they may also support neuronal metabolism (49). 
In contrast, neurons appear to be the primary cellular compartment 
of ketone body metabolism (58). This appears to be a non-competitive 
process (57). It is currently unknown whether, apart from ketone body 
production, MCFAs per se have value as auxiliary fuels to the brain 
(57). However, this data suggests that using MCT per se, rather than 
ketone esters or a ketogenic diet alone, may well provide auxiliary fuel 
to both major cell types in the central nervous system, and may 
be  preferred in conditions where there are defects in glucose 
metabolism in astrocytes and neurons (57).

In epilepsy treated with MCT there is no clear correlation between 
serum ketone body levels and seizure reduction, suggesting that in this 
circumstance, at least, there is a role of the MCFA per se (particularly 
C10 MCFA) for seizure reduction (52). To date, MCT supplementation 

FIGURE 2

MCT absorption and metabolism. LCFA, long chain fatty acids; MCFA, medium chain fatty acids (22) (Figure adapted) (Reproduced with permission by 
the publisher).
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has not be  assessed for cognitive effects in post COVID-19 
cognitive complaints.

Possible causes of cognitive impairment 
post COVID-19

The etiology of post COVID-19 cognitive symptoms continues to 
be  investigated with both direct and indirect causes possible. See 
Figure  3 (59). Vascular disease appears to be  disproportionately 
common in COVID-19 than in comparable infections, whereas 
immunologically mediated neurological conditions are similar in 
frequency (59). The evidence supporting direct central nervous system 
by SARS-CoV-2 as a cause of neurological disease is conflicting (59).

Direct

Direct invasion
Although direct invasion of the central nervous system (CNS) by 

COVID-19 has been reported it is still debated (59) One hypothesis 
of CNS infection through a nasopharyngeal route is supported by 
clinical observations of frequent and persistent anosmia/dysgeusia 
(12, 60, 61).

However, of note, no descriptions of viral inclusions or reactive 
cellular changes typical of true infection have been reported (62, 63), 
and there is no evidence COVID-19 can cross the blood brain barrier 

(59). Contradictory reports from different groups highlight the 
technical challenges involved, and the possibility of viral contaminants 
from the blood or endothelium (59).

Indirect

Immunological

Acute inflammation
The hyperinflammatory state secondary to COVID-19 infection, 

causes a massive release of cytokines and chemokines that could alter 
the permeability of the blood–brain barrier. This phenomenon can 
activate a neuroinflammation cascade (64). A COVID-19 patient 
presented with only mild respiratory symptoms but with encephalitis 
(60), and responded to steroid therapy, suggesting the neurological 
symptoms could have involved a cytokine-mediated 
hyperinflammatory response. Although there was no evidence of 
SARS-CoV-2 in the CSF by RT-PCR, a direct CNS infection could not 
be excluded (50). Since that initial report, several studies have reported 
delirium and encephalitis post-COVID (65, 66).

Increased IL-6 levels in the blood and CSF in some COVID 
patients may support a para-infectious cytokine release, postinfectious 
antibody-or cell-mediated immune mechanism. Cytokines can pass 
the blood–brain barrier, induce central inflammatory responses and 
influence neurotransmitter metabolism and neural plasticity (67, 68). 
They induce dysfunction in brain areas implicated in emotional and 

FIGURE 3

Mechanisms by which neurological disease can occur as a result of COVID-19 infection (59) (Reproduced with permission from the publisher). Figure 
created with BioRender.com.
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behavioral regulation and cognition (such as the prefrontal cortex, 
basal ganglia) and fear and anxiety-related regions (such as the 
amygdala, insula and anterior cingulate cortex) (67).

e Silva and colleagues (68) propose that tumor necrosis factor-α 
(TNF-α) and IL-6 are the two major cytokines upregulated in 
COVID-19 that directly affect brain physiology. These cytokines are 
also upregulated in AD and depression (67), and therefore may 
be  responsible for the mood and cognitive changes identified in 
long-COVID.

Chronic inflammation
Chronic inflammation occurs in several neurological disorders 

(69). The proinflammatory response to COVID-19 may contribute to 
the neurological sequelae. In addition, its effect on the immune system 
further promotes viral propagation. The CNS effects such as brain fog 
may impair individual judgment, affecting behavior and compliance 
with COVID prevention recommendations/protocols, thereby further 
promoting viral propagation (29).

So far, anti-inflammatory therapy has not been shown to be useful 
in affecting long COVID cognitive function, including dexamethasone, 
and tocilizumab (70, 71).

Autoimmune
Female preponderance has led to speculation of a possible 

autoimmune basis for persistent symptoms in long-COVID patients 
(72, 73) with some groups showing elevated anti-nuclear antibody 
(ANA) titers. Hypothetically, COVID-19 could also induce, by 
molecular mimicry-related mechanisms, the production of antibodies 
against neural or glial cells, as demonstrated for HSV-1, Epstein–Barr 
virus, and Japanese encephalitis (62).

Mitochondrial damage
CNS neuronal mitochondrial function requires high oxygen 

levels. SARS-CoV-2 genomic and subgenomic RNA (sgRNA) 
transcripts hijack the host cell’s machinery (74). This viral “hijacking” 
of the mitochondrial genome (74, 75) results in mitochondrial 
dysfunction which compromises the high oxygen demands of the 
neurons causing cerebral hypoxia (29, 76). This selective neuronal 
mitochondrial targeting by SARS-CoV-2 may be  an evolutionary 
advantage, as it causes “brain fog” and behavioral changes that favor 
viral propagation (29, 76).

Vascular
A D-dimer is a degradation product of crosslinked fibrin, and 

reflects ongoing activation of the hemostatic system. With COVID-19 
infection D-dimer levels are known to be elevated, with or without 
venous thromboembolism (65) suggesting microvascular coagulation 
factor activation. Fibrin amyloid microclots have recently been 
identified in patients with long COVID symptoms using fluorescence 
microscopy (77). Failed fibrinolysis of these microclots could 
contribute to micro-capillary blockage and tissue hypoxia, and the 
diversity of symptoms of long COVID (77).

Macrovascular disease is well documented with an increased risk 
for acute cerebrovascular accidents, over and above the risks associated 
with immobility and dehydration (21, 78). Immunologically mediated 
thrombosis may also play a role, with reports of the presence of 
anticardiolipin and antiphospholipid antibodies, as well as lupus 
anticoagulant (73, 79). These are prothrombotic resulting in recurrent 

arterial and venous thromboembolic events (73). Endotheliitis is also 
a likely contributing factor to pathological clotting and cerebral 
vascular events, as well as effects on other organs such as lung, heart, 
kidney and intestine (80).

Brainstem dysfunction
Compared to other brain regions, the brainstem has a relatively 

high expression of angiotensin-converting enzyme 2 (ACE2) 
receptors. Brainstem involvement has been shown in post-mortem 
studies with detection of SARS CoV-2 RNA or proteins in 53% of 
patients. Indeed, a recent hypothesis paper (81) discusses persistent 
brainstem dysfunction in long-COVID. This may be related to direct 
SARS-CoV-2 invasion, or a pathological immune response, or 
vascular activation (81).

Glucose and insulin metabolism in 
COVID-19

The severity, morbidity and mortality due to COVID-19 have 
been shown to be increased in those with pre-existing diabetes and 
obesity (82, 83), and hyperglycemia promotes severity and disease 
progression (84, 85). In addition, COVID-19 has accelerated the 
global pandemic of hyperglycemia (86). Elevated blood glucose acts 
synergistically with COVID-19 to inactivate angiotensin converting 
enzyme-2 which dysregulates glycaemic control in all those cell types 
that are infected by the virus (87). Obesity has been reported to 
be associated with a greater number of long COVID symptoms (88).

Elevated serum ketones per se have only been reported with acute 
COVID-19 infection, but not in long COVID patients. Patients, both 
diabetic and non-diabetic, with acute COVID-19 infection have 
presented with ketosis or ketoacidosis (89). Another group reported 
an initial increase in the ketone body 3-hydroxybutyrate on the first 
day of acute COVID-19 infection, suggesting a ketotic-like state. 
Although this was reduced over a week, it still persisted to a small 
extent beyond 7 days (90).

One of the consequences of inflammation is insulin and 
glucocorticoid receptor resistance (87). These changes result in a 
reduction of glucose availability to peripheral tissues and the brain 
(91), and are particularly relevant following recovery from the acute 
stage while the inflammation remains. In addition, brain glucose 
metabolism might be a factor in the spread of the SARS-CoV-2 virus 
in the brain (92).

Cerebral glucose hypometabolism has also been reported in many 
other viral diseases including SARS, HIV, Hepatitis C, and tick-borne 
encephalitis. Essentially in any viral infection associated with 
encephalopathy (93, 94).

Cerebral glucose hypometabolism in 
COVID-19 (as assessed by FDG-PET 
neuroimaging)

Research groups from around the globe have investigated cerebral 
glucose metabolism in COVID-19, both in the acute stage and over 
time. Initial reports were related to hospitalized patients. From France, 
Helms and colleagues (21) reported on 58 hospitalized COVID-19 
patients. Using magnetic resonance imaging (MRI), they demonstrated 

https://doi.org/10.3389/fnut.2023.1126534
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Juby et al. 10.3389/fnut.2023.1126534

Frontiers in Nutrition 07 frontiersin.org

bilateral frontal hypoperfusion in 11 patients. Cani and colleagues (17) 
reported a case study from Italy of a 77-year-old female hospitalized 
and ventilated for COVID-19 infection with impaired consciousness. 
Her respiratory symptoms subsequently improved, but her cognitive 
issues did not, and an FDG-PET scan showed frontal lobe 
hypometabolism, with bilateral frontotemporal hypoperfusion and 
anterior slowing on the EEG. Subsequently, Guedj and colleagues (20) 
reported on two male COVID-19 patients from France. After recovery 
(requiring admission to intensive care), persistent cognitive 
complaints prompted FDG-PET imaging and showed hypometabolism 
in the pre/post central gyrus, thalamus/hypothalamus, cerebellum and 
brainstem, with brain abnormalities persisting after the remission of 
the infectious phase. Delorme et al. (18), also from France, reported 
on four patients presenting with cognitive symptoms, predominantly 
affecting the frontal lobe, presenting 0–12 days after their COVID-19 
symptoms. All had normal MRI and CSF findings, but consistent 
FDG-PET frontal hypometabolism and cerebellar hypermetabolism. 
All improved clinically with intravenous polyvalent immunoglobulin 
(IVIg) or pulse corticosteroid immunotherapy.

A larger study of 29 post hospitalized subjects from Germany (95) 
also looked at neurological sequelae. At approximately 1-month after 
the acute infection, they showed pathological changes on FDG-PET 
in 10/15 subjects with predominantly frontoparietal hypometabolism. 
These changes were confirmed objectively with impaired frontoparietal 
scores on the Montreal Cognitive assessment (MoCA) tool.

Because many cases of post COVID-19 cognitive decline are not 
associated with severe infection or even hospitalization, this raises 
speculation that there may be  other mechanisms of neurological 
damage in addition to viral load and infection severity, as discussed 
previously. Symptoms of brain fog occur more commonly in those 
people who do not require hospitalization given the “mildness” of 
their COVID-19 symptoms. It is postulated, that the FDG-PET 
abnormalities identified may be an indicator of astrocyte dysfunction 
(96–99), leading to persistent synaptic dysfunction as a potential 
etiology for the identified symptoms and FDG-PET 
hypometabolism (100).

Despite their different clinical presentations, all the patients in 
these trials presented with similar altered FDG-PET pattern: bilateral 
frontotemporal hypoperfusion and cerebellar hypermetabolism. It is 
important to note that this FDG-PET pattern is very distinct, and 
different from that typically seen in patients with delirium, who 
exhibit global cortical hypometabolism (101). FDG-PET findings are 
more strongly associated with clinical symptoms, disease course and 
status than is MRI (except for cerebrovascular events) so some authors 
suggest it should be considered for the initial workup, as well as for 
monitoring treatment in COVID-related encephalopathy (102, 103). A 
recent consensus paper from the European Association of Nuclear 
Medicine (EANM) neuroimaging committee not only confirms the 
hypometabolic profile in patients with long COVID symptoms, but 
they go on to recommend FDG-PET neuroimaging as a way to 
objectively assess brain involvement in long COVID (104). They add 
a caveat that the testing should be done three to six months following 
the initial infection, or with worsening symptoms. They also reiterate 
the importance of a multi-disciplinary approach to also address the 
non-neurological symptoms (104).

Whether brain ketone metabolism is also affected remains to 
be determined.

Natural history of cognitive symptoms

Hospitalized patients
There are still limited data on the natural history of post 

COVID-19 cognitive symptoms. One recent publication (105) 
re-evaluated eight previously hospitalized post COVID-19 patients 
from Freiburg, Germany, six months after initial infection. Although 
there was some improvement in their MoCA score from their initial 
score, it was still below normal cut-offs, and in the range of MCI, with 
persistent deficits in visuo-constructive, executive and memory 
function (105). Their FDG-PET images showed some improvement, 
but compared to normal controls, they still had significantly more 
frontoparietal and temporal hypometabolism. The authors felt this 
slow reversal was due to ongoing subcortical peri-inflammatory 
processes (105).

Kas and colleagues (102) looked at FDG-PET images at baseline, 
1-and 6-months post COVID-19 in seven patients. All had a consistent 
pattern of hypometabolism in many brain areas including the frontal 
cortex, anterior cingulate, insula and caudate nucleus. After six 
months, the majority had improved clinically, but cognitive and 
emotional disorders of varying severity remained, with attention/
executive disabilities and anxio-depressive symptoms. In addition, 
there were lasting prefrontal, insular and subcortical FDG-PET 
abnormalities. Interestingly, while some of their patients almost 
returned to normal cerebral metabolism (even those with initial 
widespread decrease), others only partially improved or, indeed, 
worsened. After having first improved, one patient subsequently 
worsened, with clinical symptoms and a new pattern of brain 
hypometabolism (102). This again raises the question of an associated 
neurodegenerative disorder. None of these patients had SARS-
CoV-2 in the CSF and/or meningitis, nor had FDG-PET anomalies 
limited to the olfactory gyrus that could corroborate a direct viral 
neuro-invasion (102).

Retrospectively evaluating their long COVID patients, Guedj 
and colleagues reported a larger case series of 35, showing similar 
abnormal FDG-PET imaging changes as reported in the acute stage, 
when compared to their database of healthy subjects (106). In a 
prospective case–control study from Italy, Sollini and colleagues 
(107) enrolled 13 long COVID patients, and again showed 
FDG-PET cerebral hypometabolism in the right parahippocampal 
gyrus and right thalamus compared to melanoma patients matched 
for age and sex (107). In their study, brain hypometabolism was 
correlated with current symptoms, rather than the severity of the 
acute infection.

Larger studies of hospitalized patients included one study of 165 
subjects, without baseline cognitive symptoms. They found 40% still 
had ongoing neurological symptoms at the 6-month follow up (108). 
Older age, baseline comorbidities, and infection severity were 
considered to be  major risk factors for ongoing neurological 
symptoms. Neuroimaging was however not included in this study.

Adding to the imperative to explore strategies to address these 
brain changes, is the concerning report that similar patterns of FDG 
PET brain hypometabolism are also seen in pediatric COVID-19 
patients (109). It is possible that some patients may have received 
MCTs via parenteral or enteral nutrition, but currently there are no 
publications specifically discussing this, and whether there was any 
cognitive impact.
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Non-hospitalized patients
There is a paucity of data on non-hospitalized COVID-19 patients 

with neurological symptoms. One report (72) reviewed 100 patients 
attending a Neuro-COVID-19 clinic. Their average age was 43-years, 
and 70% were female. The main neurological complaint (81%) was 
brain fog. This was associated with impaired quality of life, and worse 
attention and working memory cognitive scores compared to 
non-COVID controls. MRI and EEG studies were normal. None of 
their participants had FDG-PET imaging.

Recent reviews have summarized the knowledge to date of 
FDG-PET findings in acute and long COVID-19 (110, 111).

Possible exacerbation of neurodegenerative 
diseases

Given the ongoing nature of the pandemic, long term neurological 
sequelae of COVID-19 are still relatively unknown, including possible 
acceleration of pre-existing neurological diseases. It has been reported 
that FDG brain hypometabolism in the pre-frontal cortex is also 
present in multiple neurodegenerative disorders (such as Parkinson’s 
disease and AD) (24, 112, 113) and neuropsychiatric conditions (114). 
These changes can pre-date clinical symptoms, sometimes by years. In 
fact, new onset Parkinsonism has already been reported post 
COVID-19 infection (115). COVID-19 infection can impact 
pre-existing mild cognitive impairment and Alzheimer’s dementia 
worsening the progression of both (116).

This has generated concern about a “delayed pandemic” of 
neurodegenerative and neuropsychiatric disease (117, 118).

Role of ketone bodies in cognitive function

Although glucose is the main fuel for brain function, under 
certain circumstances, such as prolonged fasting, ketone bodies can 
replace glucose as the main fuel, and provide 50–60% of the brain 
energy needs (119). Even if glucose availability is acutely reduced, by 
experimental hypoglycemia, ketone infusion or medium chain fatty 
acid (MCFA) ingestion preserves cognitive function, and symptoms 
of acute glucopenia are not observed (120, 121).

Ketone bodies are not only for brain energy metabolism; they 
serve as lipogenic and steroid biosynthetic substrates in many tissues 
including the developing brain, lactating mammary gland and liver 
(33). They are avidly oxidized in the heart and muscle, as an alternative 
and glucose-sparing fuel source, and the myocardium is the highest 
ketone body consumer per unit mass (33). Ketone bodies are also 
signaling molecules for cell-surface and intracellular receptors (33), 
and therefore regulate mitochondrial metabolism, energetics, and 
reactive oxygen species (ROS) production (33). This increases seizure 
threshold and is felt to be one of the mechanisms of the beneficial 
effects of ketone bodies in epilepsy (122). They also drive protein 
posttranslational modification and are modulators of inflammation 
and oxidative stress (123). Not surprisingly, therefore, they are being 
investigated for their role in cell metabolism, homeostasis, and 
signaling under a wide variety of physiological and pathological 
states (124).

Ketone bodies generated from MCT consumption not only spare 
glucose, but also support brain metabolism during energy crises, 
without prior adaptations from fasting (125). They have 

neuroprotective effects through two main mechanisms: improved 
mitochondrial function, and regulation of gene expression (126).

Cerebral insulin resistance is known to be a contributing factor in 
AD (127, 128). This brain insulin resistance aggravates toxic Aβ 
production and tau-hyperphosphorylation (129–132). The 
metabolism of ketone bodies mitigates some of the negative CNS 
effects of hyperglycemia (133), thereby improving insulin sensitivity 
and attenuating insulin resistance (134, 135).

Evidence for ketone bodies in other 
cognitive disorders

Neuroinflammation is a common feature in neurodegenerative 
disease and may promote a brain energy crisis (136), and this can 
be mitigated by ketone bodies. MCT use in this hypothesis is not being 
suggested as an anti-inflammatory agent, but for its direct effect on 
cerebral metabolism.

In other neurocognitive disorders associated with documented 
FDG-PET brain hypometabolism, such as MCI and AD, patients 
present with a decline in their cognitive abilities ranging from 
subjective complaints to more objectively and clinically defined 
cognitive deficits. These FDG-PET identified metabolic changes can 
pre-date the clinical neurological deficits (39, 113). In Parkinson’s 
disease, amyotrophic lateral sclerosis, and Huntington disease, 
glucose hypometabolism in selected brain regions is prominent, 
and correlates with disease severity (24, 34). In addition, AD and 
MCI patients have changes in mood often presenting with features 
of depression and apathy, both of which are also seen in the post 
COVID-19 state.

Unlike for COVID-19 infection, there is data in AD and MCI that 
shows, despite impaired cerebral glucose metabolism, cerebral ketone 
uptake is preserved (25, 26).

Exogenous ketone bodies, supplied by MCT consumption, may 
have beneficial effects on cognitive outcomes in both established AD 
and MCI (25, 27, 28, 43–45, 137, 138). Results are sometimes 
conflicting, likely related to different MCT formulations, outcome 
measures, dose, duration, and participant inclusion criteria. A recent 
meta-analysis of the trials of MCT supplementation in AD by 
Avgerinos and colleagues, concluded that MCTs can induce mild 
ketosis and may improve cognition in patients with MCI and AD 
(139). MCT supplement doses used in clinical trials varies depending 
on the study design, MCT composition and formulation. There is no 
clear dosing regime, but data so far suggests a minimum of 28 g of 
MCT is needed daily to have a measurable clinical impact (25–28). 
Dividing the doses (ideally 3–4/day) not only improves tolerability, 
but also facilitates higher levels of ketone bodies and MCFA 
throughout the day.

Other than being a source of brain energy, in mouse models of 
AD, ketone bodies were reported to show cognition-sparing, and 
reduction of amyloid-beta and tau pathology (140, 141). This raises 
the intriguing possibility that MCT consumption could also 
potentially affect the recently described fibrin amyloid microclots felt 
to be contributing to symptoms in long COVID patients (77).

The effect of ketone bodies on feeding behavior, energy 
expenditure, mood and behavior, and neuroprotection have been 
reported, and are summarized in a recent review (123).
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Discussion

The consequences of COVID-19 infection on cognitive function 
in both the acute and long COVID phases, in previously cognitively 
normal patients, has now been well documented. As more patients are 
followed long-term, increased data will become available as to the 
duration, social and psychological consequences of these cognitive 
deficits. What remains to be seen is whether this will translate into the 
development of other neurodegenerative diseases such as Alzheimer’s 
dementia and Parkinson’s disease, and whether this will occur at an 
earlier age of onset than is currently seen. A “delayed pandemic” of 
neurodegenerative and neuropsychiatric disease is predicted (117, 
118). The societal and health systems consequences of this could 
be catastrophic.

In addition, it is now well recognized that COVID-19 infection 
can impact pre-existing mild cognitive impairment and Alzheimer’s 
dementia, worsening the progression of both (116). It can cause 
delirium which may not resolve, or may unmask undiagnosed MCI.

MCT is a component of coconut oil, and readily available 
worldwide. Given the cerebral glucose hypometabolism documented 
post COVID-19, as summarized in Figure 1, we hypothesize that 
treatment of neurological symptoms in post COVID-19 patients using 
MCT supplementation will provide clinical benefit in the short term, 
and perhaps aid functional recovery of the brain in the long term. The 
fact that cerebral glucose hypometabolism has also now been 
documented in the pediatric COVID-19 population is particularly 
concerning, but it is reassuring that there has already been experience 
and an established safety profile with MCT supplementation in the 
pediatric population.

If there is improvement in symptoms with MCT supplementation, 
further research will need to be done to evaluate whether this is a 
direct effect on the cerebral glucose hypometabolism, or whether it is 
an indirect effect through improvement of mitochondrial function; an 
effect on post COVID fatigue; and/or, its anti-amyloid activity 
reducing the number of fibrin amyloid microclots.

To date over 500 million people have had a documented 
COVID-19 infection. Conservatively estimating 30% will experience 

long COVID symptoms, of which 30% will have cognitive complaints, 
leaves at least 45 million people with cognitive decline from their 
baseline. Any strategies to aid in cognitive recovery, or mitigate the 
cognitive effects of the disease will have significant consequences at 
personal, population and health system levels.
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