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The coronavirus disease 2019 (COVID-19) pandemic challenges our collective

understanding of transmission, prevention, complications, and clinical management

of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection.

Risk factors for severe infection, morbidity, and mortality are associated with

age, environment, socioeconomic status, comorbidities, and interventional timing.

Clinical investigations report an intriguing association of COVID-19 with diabetes

mellitus and malnutrition but incompletely describe the triphasic relationship, its

mechanistic pathways, and potential therapeutic approaches to address each malady

and their underlying metabolic disorders. This narrative review highlights common

chronic disease states that interact epidemiologically and mechanistically with the

COVID-19 to create a syndromic phenotype—the COVID-Related Cardiometabolic

Syndrome—linking cardiometabolic-based chronic disease drivers with pre-, acute,

and chronic/post-COVID-19 disease stages. Since the association of nutritional

disorders with COVID-19 and cardiometabolic risk factors is well established, a

syndromic triad of COVID-19, type 2 diabetes, and malnutrition is hypothesized that

can direct, inform, and optimize care. In this review, each of the three edges of this

network is uniquely summarized, nutritional therapies discussed, and a structure for

early preventive care proposed. Concerted efforts to identify malnutrition in patients

with COVID-19 and elevated metabolic risks are needed and can be followed by

improved dietary management while simultaneously addressing dysglycemia-based

chronic disease and malnutrition-based chronic disease.

KEYWORDS

cardiometabolic, cardiometabolic-based chronic disease, coronavirus, COVID-19, COVID-
related cardiometabolic syndrome, malnutrition, SARS-CoV-2, type 2 diabetes

Introduction

The coronavirus disease 2019 (COVID-19) pandemic spread rapidly worldwide in less
than a year and activated an unprecedented acceleration of medical research, revealing a new
understanding of the relationships among viral infections and chronic metabolic diseases.
The juxtaposition of threat and swift knowledge acquisition observed during the COVID-19
pandemic contrasts starkly with the slower rise in prevalence of chronic cardiometabolic diseases
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and the growing clinical knowledge of residual health risks
determined over many decades (1). Of note, cardiometabolic drivers,
risk factors, and resulting chronic metabolic states interact with
COVID-19 to create a syndromic phenotype of hazards for disease
severity, morbidity, and mortality, as well as long-term insults
to quality of life, symptom burden, and socioeconomic impact.
In a recent narrative review, the COVID-Related Cardiometabolic
Syndrome (CIRCS) (2) was introduced based on consistent and
compelling evidence linking pre-, acute, and chronic/post-COVID-
19 disease stages with cardiometabolic-based chronic disease
(CMBCD) (3, 4).

The CMBCD framework is a novel vehicle to expose
opportunities for early and sustainable prevention and is comprised
of three dimensions: (1) staged progression over time (1- “risk,”
2- “predisease,” 3- “disease,” and 4- “complications”); (2) multiple
interacting primary (genetics, environment, and behavior/lifestyle)
and secondary/metabolic (abnormal adiposity, dysglycemia,
hypertension, dyslipidemia, and nutrition) drivers; and (3) social
determinants of health and transcultural factors (SDOH/TF)
(Figure 1) (3–5). Many of the conventional terms commonly used
to describe cardiometabolic risk factors are now subsumed in
driver-based chronic disease models. For instance, in adiposity-based
chronic disease (ABCD), overweight is stage 2, obesity is stage 3, and
obesity-related complications is stage 4 (3). In dysglycemia-based
chronic disease (DBCD), insulin resistance is stage 1, prediabetes is
stage 2, type 2 diabetes (T2D) is stage 3, and diabetes complications is
stage 4 (3, 6). In malnutrition-based chronic disease (MBCD), which
is under development, malnutrition is stage 3, and malnutrition
complications is 4. The purpose of incorporating the CMBCD model
into this discussion is to provide a template for understanding a
specific interaction between CIRCS and nutritional status.

In a recent scoping review, various nutritional disorders are
linked with pre-, acute, and chronic/post COVID-19 stages (7).
A distillation of the complex interactions of CIRCS and nutrition
prompts a hypothesized syndromic triad with COVID-19, T2D,
and malnutrition as key inter-related disease states (Figure 2).
The purpose of constructing this new triad model is to expose
early opportunities for better lifestyle, glycemic, and nutritional
management of patients with COVID-19. The present narrative
review will summarize key epidemiological and mechanistic aspects
of these networked relationships, discuss relevant nutritional
therapies, and propose testable hypotheses and structure for early
preventive care.

Abbreviations: ABCD, adiposity-based chronic disease; ARDS, acute
respiratory distress syndrome; ASPEN, American Society for Parenteral
and Enteral Nutrition; ALM, appendicular lean mass; CDC, centers for
disease control; CGM, continuous glucose monitor; CIRCS, COVID-related
cardiometabolic syndrome; CMBCD, cardiometabolic-based chronic disease;
CONUT, controlling nutritional status; COVID-19, coronavirus disease 2019;
DBCD, dysglycemia-base chronic disease; DSNF, diabetes-specific nutrition
formula; EN, enteral nutrition; ESPEN, European Society for Parenteral and
Enteral Nutrition; GNRI-geriatric nutrition risk index; HbA1c, hemoglobin A1C;
HBCD, hypertension-based chronic disease; ICU, intensive care unit; IL-6,
interleukin-6; LBCD, lipid-based chronic disease; MBCD, metabolic based
chronic disease; PNI, prognostic nutritional index; PPE, personal protective
equipment; RAAS, renin-angiotensin-aldosterone system; SARS-CoV-2,
severe acute respiratory syndrome coronavirus 2; SCCM, society of critical
care medicine; SDOH/TF, social determinants of health/transcultural factors;
T1D, type 1 diabetes; T2D, type 2 diabetes; TFN, tumor necrosis factor.

Methodology

To guide this initiative, a virtual meeting of coauthors was held
in December 2021 to establish investigative questions, objectives,
and methods to support the syndromic triad concept and to plan
reporting if findings were thought worthy of publication. Study
populations of interest include adults who contracted COVID-19
infections that were complicated by either pre-existing or newly
developed T2D and malnutrition to determine if this triad of
illnesses exists and has a noticeable impact on clinical outcomes.
World literature was searched for relevant articles involving
the stated population using several tradition engines (PubMed,
Google, Cochrane, Embase, and Science Direct) without language
or geographic restrictions. The following terms, alone and in
combinations, directed the searches: COVID-19, coronavirus; type
2 diabetes, malnutrition, epidemiology, mechanisms, adiposity-based
chronic disease, cardiometabolic-based chronic disease, dysglycemia-
base chronic disease, hypertension-based chronic disease, lipid-
based chronic disease, metabolic based chronic disease, therapy,
treatment, nutrition, and outcomes. Meaningful publications (181
references) among the hundreds that were identified in multiple
literature searches report data regarding epidemiologies and disease
mechanisms that link triad components as well as clinical
information related to outcomes for studied populations. Retrieved
information was assessed to confirm or deny the existence of the
triad and to propose clinical care to address each component and its
drivers, which was the aim of the initiative.

Edge 1: COVID-19 and type 2 diabetes

Epidemiology

Adults with COVID-19 are more likely to develop T2D than
those with other acute upper respiratory infections (8). In an analysis
of retrospective data from the US Veterans Administration (VA),
there are increased risks of incident T2D and additional disease
burden among patients with COVID-19 (n = 181,281) vs. both
contemporary control patients (n = 4,118,911) and also historical
controls (n = 4,286,911) without infection (9). In a study of
hospitalized adults, the prevalence of diabetes is higher among those
with a positive vs. negative COVID-19 test result 30 days after testing
(10). The Centers for Disease Control and Prevention (CDC) reports
an observed increased risk for T2D in patients <18 years of age
who had COVID-19, compared to those without COVID-19 and
those with pre-pandemic acute respiratory infection (11). Moreover,
incident cases of pediatric T2D and severity of illness as reflected by
the degree of diabetic ketoacidosis at presentation are greater during,
compared with before, the pandemic (12); but also worth noting,
some increase could have been associated with other issues such as
delayed healthcare or supply shortages rather than infection. Pooled
data from four observational studies show that SARS-CoV-2-infected
patients compared with healthy controls carried a 59% higher risk of
developing incident diabetes in the post-acute phase (13). However,
in this study, a high degree of heterogeneity and a short follow-up
period in the contributing studies (4 months) are limitations of the
meta-analysis expressed by investigators.

In a single large retrospective cohort study of VA in- and
outpatient men without preexisting diabetes, SARS-CoV-2 infection
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FIGURE 1

The CMBCD template. The CMBCD model comprises 3 dimensions: (1) Staged progression over time along the top row; (2) interactions among
metabolic drivers culminating in CVD in the far-left column; and (3) adapting each cell in the stage x driver matrix to SDOH/TF. Prevention modalities are
indicated as P0–P4. Primary drivers are genetics, environment, and behavior/lifestyle. The SARS-CoV-2 virus responsible for COVID-19 intersects with
CMBCD at the level of inflammation in stage 1. This CMBCD template provides context for the novel syndromic triad of COVID-19, T2D, and
malnutrition, which is depicted by the red cells and bright red triangle network. ABCD, adiposity-based chronic disease; CMBCD, cardiometabolic-based
chronic disease; COVID-19, coronavirus disease 2019; CVD, cardiovascular disease; DBCD, dysglycemia-based chronic disease; HBCD,
hypertension-based chronic disease; LBCD, lipid-based chronic disease; MBCD, malnutrition-based chronic disease; P0, primordial prevention; P1,
primary prevention; P2, secondary prevention; P3, tertiary prevention; P4, quaternary prevention; SDOH, social determinants of health; TF, transcultural
factors; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2. Adapted from (4).

is associated with a higher risk of incident (120 days, OR 2.56 [95%
CI 2.32–2.83]) and all time (237 days, OR 1.95 [1.80–2.12]) diabetes
(14). In contrast, among women, who comprised 14% of the total
VA study population, an association is not definitively established
(120 days, 1.21 [0.88–1.68]; all time, 1.04 [0.82–1.31]; p-values were
both <0.1) (14).

Many observational studies highlight compelling relationships
among cardiometabolic conditions, COVID-19 infection, and
severity of illness, with up to 94% of hospitalized patients presenting
with at least one significant comorbidity (15–18). In a large cohort
(n = 5,700) of hospitalized patients (17), diabetes, hypertension, and
obesity are among the top comorbidities associated with COVID-19
infection, with similar patterns replicated globally in other analyses
(19). Data also demonstrate a disproportionately high number of
COVID-19 deaths in people with diabetes (20, 21). Likewise, obesity,
with characteristic insulin resistance (22), also carries a higher risk for
COVID-19 death (21).

Hyperglycemia is indicated by elevated fasting plasma glucose,
post-challenge plasma glucose, and hemoglobin A1c (A1C) levels,
and arises from a pancreatic β-cell defect following chronic exposure
to insulin resistance. Hyperglycemia is associated with inflammation,
coagulation disorders, low oxygenation, and higher risk of mortality
in patients with COVID-19, compared to those without COVID-19
(6, 23). In the intensive care unit (ICU), poorly controlled diabetes
with moderate-severe obesity greatly increases the risk of COVID-
19-related mortality (24, 25).

Type 2 diabetes and obesity are two principal risk factors for
the development of severe COVID-19 symptoms, and individuals
with these comorbidities constitute a specific risk group (26). Of
related interest, patients with type 1 diabetes (T1D), among other
observed factors, require intensive care for COVID-19 twice as often
as controls and are more likely to die (HR 2.90, 95% CI 1.66–5.47) of
their COVID-19 infection (27).

Abnormal adiposity (i.e., elevated waist circumference and/or
body mass index [BMI]), dysglycemia (i.e., insulin resistance
or hyperglycemia [prediabetes or T2D]), elevated blood pressure
(i.e., hypertension), dyslipidemia (i.e., hypertriglyceridemia and
low concentration of high-density lipoprotein cholesterol), and
residual risks (e.g., microalbuminuria and other features of insulin
resistance) often cluster together as metabolic syndrome, which
exhibits a higher odds for intensive care unit (ICU) requirement,
invasive ventilation, ARDS (acute respiratory distress syndrome), and
mortality compared to individual cardiometabolic risk factors (28,
29). Metabolic syndrome differs from CMBCD by only considering
specific features for each metabolic driver at a particular timepoint,
not as a staged progression over time based on pathophysiology,
and not incorporating SDOH/TF. Aggregate cardiometabolic risk,
individual risk factors, and vulnerability to severe COVID-19 each
increase with age (30). Thus, cardiometabolic risk factors can be
considered discretely as modifiable COVID-19 risk factors, which
can be addressed with preventative approaches (i.e., “primordial” to
prevent risk; “primary” to prevent disease; “secondary” to prevent
disease progression; “tertiary” to prevent suffering and mortality in
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FIGURE 2

Syndromic triad of COVID-19, T2D, and malnutrition. The three edges
(1, 2, and 3) of this triangle network represent epidemiological
associations and pathophysiological mechanisms that connect each
of the nodes (COVID-19, T2D, and malnutrition) and are discussed in
the text. Recognition of this triad should prompt earlier consideration
of nutritional and glycemic interventions in patients with COVID-19.
COVID-19, coronavirus disease 2019; T2D, type 2 diabetes.

advanced disease; and “quaternary” to prevent overmedicalization at
each disease stage).

Mechanisms

Infection with SARS-CoV-2 appears to alter pancreatic β-cell
function and consequently reduce insulin secretion, while the
accompanying hypercytokinemia promotes insulin resistance (30,
31). This combination of decreased insulin secretion and sensitivity
induces and then aggravates hyperglycemia. Evidence from animal
models have demonstrated markers of diminished immune function
in hyperglycemic states (32). In human studies, phagocytosis function
is restored in subjects with T2D following an intensive glycemic
control intervention combining medication, insulin, and dietary
modifications provided in a clinical trial (33). In effect, a vicious cycle
is created by the bidirectional relationship wherein T2D worsens
COVID-19 severity and COVID-19 worsens dysglycemia.

Relative hyperglycemia for an individual at a certain time, as
opposed to absolute hyperglycemia, is defined as a blood glucose
concentration at a particular timepoint divided by the estimated
average glucose based on a current A1C level (34). This measure,
also referred to as “stress hyperglycemia ratio” (SHR) is typically
measured at hospital or ICU admission to predict clinical outcomes.
The SHR controls for background glycemia in patient evaluations
and is also a superior marker of critical illness compared to absolute
measurements. The SHR is associated with adverse outcomes for
patients with moderate-to-severe COVID-19 (35), including elevated
in-hospital morbidity and mortality (34).

An early investigation of patients with COVID-19 (n = 99;
67% men, 33% women) in Wuhan, China reports arterial and/or
endocrine comorbidities in 53%, and hyperglycemia in 52% of those
studied (36). Subsequently, diabetes, predominantly T2D, emerges
as one of the most common and consequential comorbidities to
worsen outcomes for those infected with the SARS-CoV-2 virus (37).
New-onset hyperglycemia, with and without T2D, is also commonly
observed with COVID-19 (38) and may result from inflammation,
metabolic stress, and/or steroid therapy.

Regardless of underlying diabetes, stress-induced hyperglycemia
is a well-documented occurrence during acute infections and has

been observed even in mild cases of COVID-19 (35). The purported
mechanisms causing hyperglycemia rely on the imbalance between
insulin action and insulin secretion, and are primarily instigated
by inflammation, cytokine action, neuroendocrine mechanisms, and
counter-regulatory hormones (3). For a patient with T1D, the degree
of hyperglycemia can be severe due to the presence of absolute
insulin deficiency. The acute rise of blood glucose levels and catabolic
processes can lead to diabetic ketoacidosis, a life-threatening event.
In a patient with T2D, the severity of the hyperglycemia may not
be a medical emergency, but the prolonged nature is associated
with increased risk of cardiovascular morbidity and mortality (39).
Hyperglycemia can also result in increased morbidity and mortality
due to decompensation of the immune system in the face of
glucotoxicity (40).

The mechanisms of increased morbidity and mortality associated
with acute or chronic hyperglycemia in diabetes are multifocal.
The increased cytokines of an acute inflammatory response are
known to globally blunt insulin receptor responsiveness (41). Poor
insulin receptor function disproportionally allows degradation of the
visceral fat compartment releasing a repertoire of proinflammatory
adipokines such as leptin and adiponectin (42). The blunting
of glucose uptake and insulin action by adipokines further
aggravates hyperglycemia. In addition, increased inflammatory
cytokines combined with proinflammatory adipokines promote
the glycation of proteins, rendering them pro-adherent and
prothrombotic (43). The net effect of an overabundance of
these reactive glycated proteins promotes endothelial dysfunction,
thrombosis, hypertension, compromised cellular function, and organ
dysfunction (44).

Of particular interest in patients with SARS-CoV-2 infection
is the exploitation of the angiotensin-converting enzyme (ACE)-
2 receptor as an entry point into cells and initiation of infection.
Patients with T2D have an overactive renin–angiotensin–aldosterone
system (RAAS), with ACE-2 as a principal factor (45, 46).
Upregulation of ACE-2 expression in cardiomyocytes increases
susceptibility to COVID-19 in patients with T2D by facilitating
SARS-CoV2 cellular entry (45, 46). Abnormal adiposity is a necessary
feature of ABCD and includes unusual quantity (eutopic [including
visceral fat] and ectopic [e.g., intrahepatic and peri/epicardial fat]),
distribution (primary related to visceral and ectopic fat), and function
(i.e., adipocyte secretome; adipokine secretion). Abnormal adiposity
not only leads to inflammation, insulin resistance, DBCD, and
CMBCD, but also contributes to increased RAAS activation (47).
These mechanisms involve cytokine activation of multiple elements
of the RAAS cascade, such as angiotensinogen and ACE, resulting in
inflammatory adipokine release from fatty tissue (48). This imbalance
of RAAS function can increase susceptibility to COVID-19 in patients
with T2D (49).

The immunopathogenesis of COVID-19 also involves an
excessive inflammatory response that can intensify into a cytokine
storm in extreme cases (50, 51). Numerous inflammatory pathways
are activated in this process, including facilitation of immune cell
(e.g., monocytes, macrophages, neutrophils, natural killer cells, and
T cells) as well as stimulation and secretion of proinflammatory
cytokines (e.g., interferons, interleukins, tumor necrosis factors, and
chemokines [e.g., C-base sequence chemokine ligands]) (51). In
turn, a proinflammatory response recruits and activates more innate
and adaptive immune cells that overstimulate the immune system,
leading to massive inflammation (51). This detrimental inflammatory
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process can incite and exacerbate acute respiratory distress syndrome
(ARDS), the leading cause of COVID-19 related mortality.

Edge 2: COVID-19 and malnutrition

Epidemiology

Malnutrition is the necessary and central driver of MBCD, which
in turn is one of the secondary/metabolic drivers in CMBCD. The
American Society for Parenteral and Enteral Nutrition (ASPEN)
defines malnutrition as insufficient energy intake leading to loss
of weight, muscle, and subcutaneous fat; regional or widespread
fluid accumulation; and decreased strength (52). Malnutrition
is typically interpreted along these somewhat narrow lines that
relate to undernutrition, particularly in COVID-19 discussions, but
technically the broader definition includes any abnormal interaction
between dietary factors and metabolism. For instance, abnormal
adiposity is a form of malnutrition (i.e., imbalance of too much
dietary energy for an individual’s metabolic needs—overnutrition)
and is briefly considered above in the discussions on inflammation,
insulin resistance, and T2D with COVID-19. However, for the
purposes of presenting the syndromic triad of COVID-19, T2D,
and malnutrition, the term “malnutrition” will be based on the
ASPEN definition (53). In the MBCD model, stage 1 arises through
complex interactions of primary drivers (genetics, environment, and
behavior/lifestyle) and defines a state of nutritional risk; MBCD
stage 2 arises from progression of nutritional risks to create a
phenotype characterized by abnormal metrics of nutritional status,
but not yet satisfying current diagnostic criteria for malnutrition
(i.e., in terms of undernutrition) (54–57) or other abnormal
nutritional states, and defines a state of “pre-malnutrition;” MBCD
stage 3 meets established definitions for the disease state referred
to as malnutrition (54–57); and stage 4 is malnutrition-related
complications (generally in terms of organ dysfunction, behaviors,
and other pathophysiological abnormalities).

Population-level malnutrition is associated with increased rates
of fatal COVID-19 in areas where undernutrition is commonplace
(58). Moreover, nutritional status is adversely affected by acute and
chronic infections, which serve as negative prognosticators, especially
in institutional settings (59–61). Patients with COVID-19 are
especially vulnerable to the metabolic derangements associated with
malnutrition, particularly in light of the significant inflammatory
response that accompanies both conditions (62–64). A high
prevalence of malnutrition in a general cohort of patients with
COVID-19 has been reported in prospective studies (65). For
example, among elderly patients with COVID-19, the prevalence
of malnutrition reaches 52.7% (66). Poor nutritional status is
associated with in-hospital death among 295 patients with COVID-
19, including 66 with severe illness and 41 with critical illness
(67). In this study, the mortality rate is 8.47% for the total
study population and 37.88% for the critically ill subgroup (67).
Furthermore, despite significantly different nutritional parameters
and inflammatory markers across all subgroups, patients with higher
Controlling Nutritional Status (CONUT) scores and lower Geriatric
Nutrition Risk and Prognostic Nutritional Indices (GNRI and PNI)
have a higher risk of in-hospital mortality (67).

Coronavirus disease 2019 symptoms (e.g., anorexia, nausea,
vomiting, dysphagia, bloating, abdominal pain, and diarrhea) can

disrupt eating and diminish adequate food consumption. In various
studies, approximately 50% of patients with COVID-19 report
olfactory and gustatory dysfunction, which may contribute to loss of
appetite and a subsequent reduction of nutrient intake (65, 68–70).
Although malnutrition associated with COVID-19 can be overlooked
during the management of critical medical issues, nutrition support
for patients with COVID-19 is an essential component of care,
though timing and other specifics require further empirical study.

Mechanisms

The intersection of nutritional and cardiometabolic risk in
patients with COVID-19 occurs at the level of inflammation and
insulin resistance (2, 6, 7). The CMBCD model represents a range
of patients who may be more susceptible to infections, including
COVID-19, and could benefit from nutritional interventions to
mitigate DBCD, MBCD, and CMBCD progression (53, 71–73).

Various micronutrients are known to affect host immunity and
the natural history of COVID-19. Some vitamins (e.g., A and D)
are direct regulators of immune-cell gene expression, while others
(e.g., C and E) promote a pro-oxidant milieu to improve immunity
(74). Trace elements, such as zinc, copper, and iron, can modulate
susceptibility to respiratory infections (74). Also, phytonutrients (e.g.,
berberine, curcumin, epigallocatechin gallate, genistein, resveratrol,
and sulforaphane) can activate nuclear factor (erythroid-derived 2)–
like 2 antioxidant transcription factor, thought to be an important
mechanism in COVID-19 pathogenesis (75). Dietary fiber, a critically
important component of healthy diets, is fermented into short-chain
fatty acids in the intestine and can also mount significant anti-
inflammatory effects (76). The net message is that all populations
require a healthy eating pattern to control weight and ABCD, prevent
DBCD/MBCD/CMBCD progression, and optimize immunity before,
during, and after COVID-19 (2, 6, 7, 77).

The co-existence of undernutrition with micronutrient
deficiencies is associated with COVID-19 and its sequelae. The
effects are compounded by a disrupted sense of smell and taste,
food insecurity, and social distancing that disrupts normal lifestyle
behavior and leads to unhealthy eating patterns, physical inactivity,
and routine change that can affect micronutrient intake (78–81).
In some patients, COVID-19 also involves the gastrointestinal tract
causing nausea, vomiting, and diarrhea, which further contributes
to MBCD staged progression (82). In general, patients with cough,
pneumonia, respiratory failure, and immune-neuroendocrine axis
activation via a stress response to acute or chronic illness have an
impaired ability to maintain adequate nourishment (83). Put another
way, MBCD and other CMBCD drivers (especially ABCD and
DBCD) can sufficiently alter the immune response so that prevention
and treatment are compromised, and the progression of COVID-19
results in more severe disease.

Patients hospitalized with COVID-19 are at higher nutrition risk
(84). Nutritional status becomes worse in patients with COVID-19
who are admitted to the ICU or require artificial ventilation (84).
Immobility in the hospital bed is also associated with sarcopenia,
which may affect whole-body functioning in patients with COVID-
19 (85). In the short-term, these body composition changes can
impact susceptibility and immunological responses to SARS-CoV-
2, subsequent inflammatory response, and resulting metabolic and
respiratory distress. In the long-term, these body composition
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changes can modulate the time required for recovery, risk of ICU-
acquired weakness and long-term disabilities, and mortality risk
(84). Importantly, malnutrition has been shown to persist 30 days
post-COVID-19 discharge (86). As such, patients with COVID-19,
especially those with diabetes, may require tailored medical nutrition
therapy to improve short- and long-term COVID-19 outcomes (71,
72, 87, 88).

Edge 3: Malnutrition and type 2
diabetes

Epidemiology

Although abnormal adiposity (overnutrition) is one of the most
common comorbidities of T2D, undernutrition is also commonplace,
with a frequency of one in seven patients with a high BMI, based
on an outpatient diabetes cohort (89). A 21.2% malnutrition rate
has been observed among elderly patients with diabetes, regardless
of BMI (90). Additionally, many other studies have been conducted
to determine the frequency of coexisting T2D and malnutrition.
Among hospitalized patients in Spain, the risk of malnutrition (52)
is higher with T2D (90). The risk of malnutrition and the actual
malnutrition rate were 31 and 13%, respectively, among patients
with diabetes assessed in a Turkish outpatient clinic; whereas, a
similar assessment among hospitalized patients revealed even higher
numbers: 39% risk vs. 25% prevalence (91, 92). Taken together, these
associations suggest that when T2D is complicated by malnutrition
(i.e., when diet is insufficient to meet age-related requirements),
clinical challenges worsen and warrant a diligent approach to
nutrition support and prudent supplementation with micro- and
macronutrients (93, 94).

Patients with T2D can also exhibit sarcopenia (95, 96), a
degenerative condition characterized by decreased skeletal muscle
mass and weakness, typically observed in elderly populations and
commonly associated with neurodegeneration, inflammation, and/or
malnutrition (97–102). The association between T2D and sarcopenia
had been shown in community-dwelling elderly adults (OR = 1.40,
95% CI: 1.18–1.66) (103). Older adults with either diagnosed or
undiagnosed T2D showed excessive loss of skeletal muscle mass
compared with those without T2D (103). While those without
T2D lose an average of 198 ± 10 g of their total lean mass
per year, patients with T2D lose about 222 ± 29 g/year and
patients with undiagnosed T2D lose around 340 ± 37 g/year (104).
Generalized loss of muscle mass is observed after age 40 and
estimated to be 8% per decade up to age 70 years, and 15–25%
every decade afterward (105). Additionally, in patients with T2D,
plus or minus sarcopenia, omega-3 fatty acid intake is reduced
(2.6 vs. 3.0 g/day, respectively) (106). Sarcopenia also compromises
glycemic control and contributes to lower energy expenditure
and generalized weakness as patients age, amplifying nutritional
imperatives (101).

While sarcopenia is commonly conceptualized as weight loss
and weakness related to diminished muscle mass, obesity may also
accompany the disorder (107, 108). Thus, patients with T2D may
present with both a low BMI, characteristic of sarcopenia, and
high body fat content, characteristic of adiposity, leading to the
descriptive terminology—“sarcopenic obesity.” Diagnostic criteria

often combine single or multiple assessments of sarcopenia with
the quantification of systemic and central adiposity. Depending
on definition and population, the prevalence of sarcopenic obesity
ranges from 0 to 20% (with average prevalence rates between
5 and 10%) in numerous international studies of older adults
(108, 109). Prevalence calculations are lower (3–8%) if the
height-adjusted appendicular lean mass (ALM) index is used
to define sarcopenia (110) rather than weight- or BMI-adjusted
ALM indices (6–10%) (111). Moreover, prevalence rates of
sarcopenic obesity are significantly higher (16–25%) among people
80 years of age and older or when lower quintiles of muscle
mass or higher quintiles of body fat are factored into the
assessments (112).

Among both inpatients and outpatients with diabetes,
malnutrition is associated with a dysregulated immune system,
higher risk for acute and chronic diseases, and protracted illness
(113, 114). Such patients, particularly those with low lean body mass
and high adiposity, consistently experience poorer outcomes in many
different diseases (115). Manifestations of compromised immunity
in patients with COVID-19 include lymphopenia upon admission
and thrombocytopenia with leukopenia as infections worsen (116).
Likewise, elevated levels of C-reactive protein and proinflammatory
cytokines have been associated with increasing severity of illness and
attendant nutritional risk (116, 117).

Mechanisms

In general, patients with T2D and sarcopenia exhibit specific
underlying pathophysiological mechanisms that have implications
for nutritional care and lifestyle modifications. Among them are
the consequences of aging, including altered physical activity
and dietary patterns, as well as hormonal deficiencies, low-grade
systemic inflammation, loss of protein homeostasis in muscle,
mitochondrial dysfunction, and reduced quantity and function of
small mononuclear satellite cells that abut muscle fibers (118–
121). Hormonal deficiencies related to sarcopenia include growth
hormone, testosterone, thyroid hormone, and insulin-like growth
factor, all of which contribute to loss of muscle mass and
subsequent physical weakness starting in midlife (122, 123). As
anabolic hormonal signals decrease, catabolic signals increase via
pro-inflammatory cytokines (tumor necrosis factor alpha [TNF-
α] and possibly interleukin-6 [IL-6]), homocysteine and high-
sensitive C-reactive protein levels rise, and muscle wasting accelerates
(96, 122). Muscle loss, in turn, exacerbates insulin resistance,
hyperglycemia and DBCD progression (102).

Changes in muscle metabolism and the diminished capability
to synthesize sufficient protein to maintain muscle mass contribute
to wasting syndromes (124). Over prolonged time, oxidized
proteins accumulate in skeletal muscle, and accrued lipofuscin and
cross-linked protein deposits are retained (119). Non-contractile
dysfunctional protein replaces normal tissue and leads to the loss
of muscle function and the diminished strength that characterize
sarcopenia (125). Moreover, motor nerve cells that carry impulses
from brain to muscle diminish with age, and movement is
compromised by insufficient neurotransmission. Supportive satellite
cells, normally responsive to injury or activity, fail to undergo
functional differentiation and fusion with myocytes, leading to
loss of contractile function (119, 122). These pathophysiological
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mechanisms can affect diaphragmatic muscles (126), which has
significant implications for patients suffering from the syndromic
triad of COVID-19, T2D, and malnutrition.

Nutritional therapy in patients with
acute COVID-19, T2D, and
malnutrition

Although no unified therapeutic regimen exists for the
comprehensive management of patients with the syndromic
triad, physical activity and therapeutic nutrition represent two
approaches that have proven merit across the triad spectrum.
Persistent daily activity and dedicated exercise programs can
improve glycemic regulation and decrease muscle degradation,
while diets rich in protein or amino acids are helpful for patients
with T2D and malnutrition (127). Diets that accentuate protein and
antioxidants may combat sarcopenia by increasing muscle mass
and strength via improved protein homeostasis and autophagy (the
orderly degradation and recycling of cellular components) as well
as reduced oxidative stress (120). Likewise, branched-chain amino
acids, polyunsaturated fatty acids, selenium, vitamin D, and zinc
can reduce oxidative stress, support mitochondrial homeostasis, and
mitigate low-grade inflammation, thus suggesting their potential
roles in the treatment of sarcopenia (128). To the contrary, however,
a Mendelian randomization analysis shows little effect from these
nutrients with the exception of a genetically high concentration of
serum iron, which increased sarcopenia risk (129).

At the onset of the pandemic, limited therapeutic options existed
to combat the specific problems eventually seen with COVID-
19, especially infection complicated by T2D and malnutrition.
Consequently, several expert groups in clinical nutrition adapted
standard critical care guidelines centered on nutrition for COVID-
19 (130). A comparison of approaches by ASPEN and the
European Society for Parenteral and Enteral Nutrition (ESPEN)
is given in Table 1 (131, 132). A brief summary of nutritional
recommendations for patients with COVID-19 and critical illness
includes: a blood glucose target of 6–8 mmol/L (106–145 mg/dL),
nutrition assessments with malnutrition considerations, high-protein
enteral and parenteral formulas, and up to a 50:50 ratio of fat-to-
carbohydrate in patients receiving ventilatory support (132).

Individualized medical nutrition therapy can include diabetes-
specific nutritional formulas (DSNFs) that are commercial products
designed to improve glycemic status. The DSNFs are supported
by extensive clinical research using oral enteral access routes for
better glycemic control in the ICU setting (131–133). Additionally,
specific benefits for DSNFs are observed in a randomized clinical
trial where 73% of patients are ventilated and 51% of these have
diabetes upon admission. Those who receive DSNF vs. a standard
enteral formula require significantly less insulin to maintain lower
glycemic variability through 48 h of care (134). Likewise, a study
of patients with critical illness and hyperglycemia on mechanical
ventilation reports lower insulin requirements and diminished
glycemic variability using a DSNF compared to a high-protein
control formula (135). Patients using a DSNF also experience a
lower incidence of ventilator complications (135). Interpretation and
application of these findings are important for patients with COVID-
19 and T2D, as hyperglycemia and glycemic variability are each
associated with worse clinical outcomes (136, 137).

Chronic/post-COVID-19

Recovery from COVID-19 also presents unique nutritional
challenges related to both hospital/ICU duration and disease severity.
Despite usual recommendations for increased protein intake for
patients with critical illness (>1.3–1.5 g/kg/day) (132, 138), muscle
loss and potential sarcopenia are still anticipated due, in part, to
inactivity coupled with an inflamed hypermetabolic state (139).
One Brazilian study reports a 30% decrease in rectus femoris
cross-sectional area in patients with COVID-19 after just 10 days
in the ICU (140). These patients may also experience post-ICU
syndrome and/or dysphagia, which may adversely affect nutritional
status (141–143). Special consideration for lingering COVID-19
symptoms is often necessary as 57% of COVID-19 survivors report
ongoing problems through 6 months of recovery (144). In such
circumstances, individualized rehabilitation efforts and conscientious
diets are required to address malnutrition, sarcopenia, and/or
dysphagia (145).

For patients with DBCD, particularly stage 3 T2D or stage 4 T2D
with complications during prolonged recovery and rehabilitation,
DSNF supplementation may be advisable as well. Research pre-
dating the COVID-19 pandemic demonstrate that lower A1C values
and increased body weight along with improvements in nutritional
status and quality of life at 6 and 12 weeks are attainable with 2
servings/day of a high-protein DSNF in compromised older subjects
(n = 402) with T2D and malnutrition (146). However, in a small
study of enterally fed patients with T2D and unintentional weight
loss, subsequent increases in weight are primarily attributed to body
fat (147). Therefore, to improve body composition, rehabilitation
efforts that include physical therapy or progressive resistance training
should be part of multimodality care to increase muscle protein
synthesis and enhance functional, metabolic, and psychological status
(148, 149).

A significant knowledge gap surrounding specific micronutrient
or anti-inflammatory supplementation still exists for patients

TABLE 1 Professional medical society approaches to nutrition in patients
with COVID-19*.

Topic ESPEN ASPEN/SCCM

Use of PPE  

Malnutrition screening  

Malnutrition assessment   

Nutrition intervention (in patients with
malnutrition + COVID-19)

 

Feeding route   

Indications/contraindications for EN   

Feeding initiation   

Feeding progression   

Formula selection  

Mention of specialty formulas  

Tolerance monitoring   

Post-mechanical ventilation
considerations

 

ICU-acquired weakness  

*ASPEN, American Society of Parenteral and Enteral Nutrition; COVID-19, coronavirus
disease 2019; EN, enteral nutrition; ESPEN, European Society of Parenteral and Enteral
Nutrition; ICU, intensive care unit; PPE, personal protective equipment; SCCM, society of
critical care medicine.
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with COVID-19 (7). Until more specific clinical evidence is
available, expert opinions should prevail for implementing standard
supplementation practices in patients with critical illness associated
with COVID-19 (131). Emerging evidence suggests using vitamins,
minerals, or other supportive micronutrients and standard nutrition
formulas as tolerated by select patient groups.

For example, clinical practice guidelines propose administration
of vitamins A, B complex, D, C, as well as selenium, zinc, and
iron (132). Due to their anti-inflammatory qualities, omega-3 fatty
acids are also studied in patients with critical illness and included in
evidence-based guidelines (132, 150). In one study of critical illness
and COVID-19, improved respiratory and renal function, along with
higher 1-month survival, is noted in patients who received omega-
3 fatty acid (400 mg EPA and 200 mg DHA) supplementation for
2 weeks, compared to patients receiving a standard enteral formula
(151). Moreover, vitamin D and zinc gained attention for prophylaxis
at the start of the pandemic (152).

In a cohort where over 50% of the sample have T2D, hospitalized
patients with mild-to-moderate COVID-19 experience a faster
recovery time for cough (∼3 days) and altered taste (∼5 days)
when supplemented daily with 5,000 IU compared to 1,000 IU of
vitamin D (153). Another study notes attenuated muscle catabolism
with post-COVID-19 vitamin D supplementation of 200 IU/day for
6 weeks (154). However, the muscle retention is not reflected by
improvements in physical function, which questions the adequacy of
vitamin D metabolism to active 1,25-dihydroxyvitamin D in patients
with critical illness and COVID-19, which could limit therapeutic
potential (154, 155).

Other immunonutrients, including the amino acids glycine,
arginine, and glutamine, may mitigate inflammation, protect lung
and intestinal integrity during acute illness, and support muscle
renewal during recovery (156). Unfortunately, the volatile status
of the pandemic continues to limit clinical trials on COVID-
19-specific nutrition recommendations, and some reports indicate
suboptimal institutional adherence to existing guidelines (157–159).
The completion of well-designed clinical trials and then creation
and adoption of subsequent evidence-based guidelines is critically
important for lowering mortality and shortening hospital stays (158).

Hypotheses and structure for early
preventive care: The critical role of
lifestyle medicine

Patient surveys conducted during the initial 2020 quarantines
and social-distancing mandates disclose disruptive changes in
lifestyle and personal routines with the COVID-19 pandemic
(81). In particular, routine change negatively affects diabetes
self-management, delays required healthcare, and accentuates
individual pandemic-associated stress (81, 160–162). The effects
of widespread systemic disruptions, such as lulls in screening
practices and routine medical oversight, are now more clear
and prompting greater attention by healthcare professionals (163–
167). Reports and qualitative assessments pointing to patient-
perceived practice gaps in usual diabetes support are collectively
underscoring the need for countermeasures to reverse these
disruptions and restore healthy lifestyles (168). This is particularly
true in contemporary multimorbidity care models that seek

to manage multiple chronic disease states (e.g., chronic/post-
COVID-19 + T2D + malnutrition) concurrently (168, 169). In
effect, the COVID-19 pandemic draws much needed attention to
comprehensive chronic disease management, creating opportunities
to advance diabetes and nutrition care.

Encouragement for lifestyle modification has the potential to
minimize infection risk during the COVID-19 era. For example, one
prospective cohort study observes higher risk (3.5%) for COVID-
19 infection and severe COVID-19 illness in participants in the
lowest vs. highest quartile of diet quality (170). Specifically, crude
incidence rates are 3.5% higher for COVID-19 infection in the
lowest diet quality quartile compared to the highest (170). Using
very low-calorie diets, which often utilize meal replacement products,
and incorporating DNSFs as part of lifestyle change, support
weight loss and adequate glycemic control (171, 172). Awareness
of the connection between COVID-19 risk and cardiometabolic
impairment presents a unique opportunity to emphasize preventive
and complementary initiatives to promote better health, reduce
CMBCD risk, and mitigate DBCD progression with comprehensive
interventions that incorporate lifestyle modifications.

Although access to health resources is challenged during the
pandemic, telehealth offers a solution with a 154% increase in
usage at the beginning of the pandemic (173). Telehealth may be
especially applicable to diabetes with one study reporting that 95%
of diabetes-related visits are virtual during the first year of the
pandemic (174), and its use in the diabetes space is associated with
improved patient outcomes (175–180). As an example, a recent meta-
analysis reports increased time in range by 70.74 min and a slight
decrease in A1C (−0.17%) among people using continuous glucose
monitors (CGMs) compared to usual care (175). This effect could
stem from healthful behavior modification associated with CGM
use (technological nudges and motivation) (176). The integration of
telehealth stands to diminish pre-pandemic barriers to healthcare, but
it is important to consider stakeholder acceptance and inclusion of
vulnerable populations (181).

The creation of a new construct—the syndromic triad of COVID-
19, T2D, and malnutrition—not only allows the derivation of
hypotheses relating early detection and management of malnutrition
with mitigation of ABCD, DBCD, MBCD, and even CMBCD
progression, but also prompts clinical decision-making now
centered on early implementation of healthy lifestyle change. The
pragmatic value of this new triad framework is supported by
the coalescing of multiple clinical imperatives (i.e., COVID-19,
dysglycemia, and nutrition) into a focused comprehensive approach.
Core recommendations, which will require clinical validation,
include:

1. Conduct aggressive case-finding protocols for malnutrition
in all patients with COVID-19 at any DBCD stage;

2. Implement current standards of care to optimize nutrition
in all patients with COVID-19 at any DBCD stage who have
malnutrition or are at-risk for malnutrition;

3. Clarify and manage specific DBCD stages in all patients with
COVID-19 at any MBCD stage; and

4. Assign a higher risk classification to patients newly
diagnosed with COVID-19 when any DBCD or MBCD stage
is also present.
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Conclusion and future directions

There is an inherent association of COVID-19, T2D, and
malnutrition supported by theoretical modeling, epidemiological
data, and mechanistic relationships. Metabolic changes incurred
by COVID-associated systemic inflammation increase the risk of
dysglycemia, muscle protein catabolism, and nutritional deficiencies.
Moreover, both T2D and malnutrition are risk factors of severe
COVID-19. Awareness of these associations should encourage
early diagnosis, prevention, and management of dysglycemia
and malnutrition especially in vulnerable populations. Nutritional
and lifestyle interventions aiming at optimizing glycemic control
and improving nutritional status, as well as muscle health,
could potentially decrease risk of COVID-19 complications. An
individualized T2D-specific lifestyle and nutritional approach, and a
close monitoring and management of glycemic status by experienced
healthcare professionals, are essential to improve clinical outcomes
for people with COVID-19.
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