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Objectives: The purpose of this study was to evaluate the independent and combined 
effects of camelina sativa oil and high-intensity interval training (HIIT) on liver 
function, and metabolic outcomes in streptozotocin-induced diabetic rats.

Methods: Forty male Wistar rats were randomly assigned to five equal groups (8 
per group): Normal control (NC), diabetic control (DC), diabetic + camelina sativa oil 
(300 mg/kg by oral gavage per day; D + CSO), diabetic + HIIT (running on a treadmill 
5 days/week for 8 weeks; D + HIIT), diabetic + camelina sativa oil + HIIT (D + CSO +  HIIT).

Results: In all three intervention groups (D + CSO, D + HIIT, and D + CSO + HIIT) 
compared to the DC, hepatic TNF-α, MDA, and histopathology markers, decreased 
and hepatic PGC-1α, and PPAR-γ increased (p < 0.05). However, the effect of D + CSO 
was greater than D + HIIT alone. Hepatic TG decreased significantly in D + HIIT and 
D + CSO + HIIT compared to other groups (p  < 0.001). Fasting plasma glucose in all 
three intervention groups (D + CSO, D + HIIT, and D + CSO + HIIT) and HOMA-IR in 
D + CSO and D + CSO + HIIT were decreased compared to DC (p < 0.001). Only hepatic 
TAC and fasting plasma insulin remained unaffected in the three diabetic groups 
(p < 0.001). Overall, D + CSO + HIIT had the largest effect on all outcomes.

Conclusions: At the doses and treatment duration used in the current study, 
combination of CSO and HIIT was beneficial for reducing liver function and metabolic 
outcomes other than CSO and HIIT alone.
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Introduction

Type 2 diabetes mellitus (T2DM) is a long-term endocrine disease characterized by hyperglycemia 
and is associated with inflammation, oxidative stress; insulin resistance (IR), and hepatic steatosis (1, 2). 
There is emerging evidence that chronic hyperglycemia via dysregulated production of tumor necrosis 
factor-alpha (TNF-α), interleukin 6 (IL-6), and C-reactive protein (CRP), along with excess free radical 
production and oxidative stress, plays a critical role in the development of IR and T2DM (3). Furthermore, 
diabetic patients have an increased risk of liver disease and liver failure, which is one of the most common 
causes of death in diabetic patients (4). Impaired liver function is caused by IR, oxidative stress, and 
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inflammation in the tissue organ, and in patients with T2DM, is partly due 
to elevated blood glucose levels (5, 6). In addition, previous research has 
indicated a strong association between liver fat accumulation and T2DM, 
indicating an increased risk for nonalcoholic fatty liver disease (7). 
Therefore, the prevention of inflammation and oxidative stress leading to 
liver fat accumulation are therapeutic targets in patients with 
T2DM. Numerous studies have confirmed that consumption of omega-3 
fatty acids improves both macro and micro-vascular complications of 
T2DM by modifying the gut microbiota (6, 8) and controlling IR (9–12), 
oxidative stress (13), inflammation (14, 15), lipid metabolism (16, 17), and 
hepatic fat deposition (18). Recently, due to current concerns about heavy 
metal-contaminated fish oil supplements and their adverse effects, switching 
omega-3 fatty acids sources from animal to plant sources has been 
considered (19). Camelina sativa, known as false flax, is one of the richest 
food sources of omega-3 fatty acids, with polyunsaturated fatty acid (PUFA) 
values of more than 50%, alpha-linolenic acid (ALA) 40%–45%, as well as 
high content of phytosterols (331–442 mg/100 g), carotenoids (103–198 mg/
of carotene/kg), and tocopherols (55.8–76.1 mg/100 g) (20). According to 
the evidence provided by the FDA and the study conducted by Mousazadeh 
et al. (21), side effects have not been reported, but due to the high dose of 
omega-3 (more than 3 g/day), it may have gastrointestinal effects, so caution 
should be used in the prescription of high doses of camelina oil (22). Allong 
with nutrient intake (5), exercise training is an effective intervention for the 
treatment and prevention of metabolic disorders such as T2DM (23, 24). 
The effects of exercise training are associated with increased expression or 
activity of proteins involved in insulin signaling, subsequently modulating 
glycogen synthase activity, glucose transporter expression in the muscle, and 
improving IR, inflammation, and oxidative stress in T2DM patients (25). In 
a study, the benefits of strength exercise have been shown in reducing 
hepatic triglyceride content among T2DM rats (26). Traditionally, 
moderate-intensity continuous training has been considered an effective 
method of training for improving health outcomes in T2DM patients; 
however, high-intensity interval training (HIIT) is a well-accepted 
alternative strategy that may serve as a way for some individuals to save 
time (27).

Peroxisome proliferator-activated receptor gamma (PPAR-γ) controls 
fatty acid, glucose, and inflammatory processes (28, 29). PPAR-γ agonists 
directly activate liver glucose-sensing genes, improving glucose 
homeostasis and insulin sensitivity in T2DM patients (30). Omega-3 fatty 
acids and exercise upregulate PPAR-γ coactivator 1α (PGC-1α), which 
regulates mitochondrial biogenesis and activates PPAR-γ (31, 32). HIIT is 
an effective approach for reducing lipogenesis (33) and improving 
inflammation (34), IR, postprandial glycemia (35) fat loss (36), visceral fat 
and liver fat (37) which are all important treatment targets for patients with 
T2DM. To the best of our knowledge, there is no study investigating the 
simultaneous effects of CSO intake and HIIT on liver function, the status 
of inflammation, oxidative stress, and lipogenesis. The current intervention 
study aimed to examine to determine the independent and combined 
effects of camelina sativa oil and HIIT on liver function, and metabolic 
outcomes in male T2DM rats. We hypothesized that the combination of 
both would provide superior benefits for reducing inflammation, oxidative 
stress and lipogenesis, as well as liver triglycerides.

Materials and methods

Ethics statement

All animal experiments were carried out in accordance with the 
National Institutes of Health’s ethical standards for the care and use of 

laboratory animals (NIH; Publication No. 85-23, revised 1985), which 
were examined and confirmed by the Veterinary Ethics Committee of 
Tabriz University of Medical Sciences (Approval No.: IR.TBZMED.
AEC.1401.040).

Experimental design

Forty (3-month-old) adult male Wistar rats (225–300 g), were 
obtained from the Central Animal House, Tehran University of 
Medical Sciences, and adapted to the experimental conditions in 
standard polypropylene cages (4 rats/cage) under controlled 
humidity (50 ± 5%) and temperature (20 ± 2°C) with a 12 h light/dark 
cycle for 2 weeks. T2DM was induced through a combination of a 
high-fat diet (HFD) and a single dose of Streptozotocin (STZ; 35 mg/
kg, intraperitoneal (ip) 0.1 M citrate buffer, pH 4.5) after rats have 
fasted for 5 h. Rats were fed with a high-fat diet (45% fat, 34% 
carbohydrate, and 21% protein) prepared from animal tail oil (450 g 
per 100 g standard pellet) and cholesterol gel for an initial period of 
2 weeks and then injected intraperitoneally with a single dose of 
streptozotocin (STZ, 35 mg/kg of body weight), which was freshly 
prepared by dissolving in 0.1 M citrate buffer (pH 4.5). A week after 
induction of T2DM, the rats with blood glucose levels of 250 mg/dL 
or greater were considered diabetic (38). Blood glucose levels were 
measured by a glucometer from the tail vein of animals after a 12 h 
fast following the 2-week high-fat diet. Animals had access to ad 
libitum water and standard chow (54% carbohydrate, 26% protein, 
13% fat, 5% fiber, and 3% vitamins, and minerals). Rats were 
randomly allocated into five groups (8 per group, calculated using 
G*Power) including 1-Normal control (NC) was given normal saline 
by oral gavage; 2-Diabetic control (DC) was given normal saline by 
oral gavage; 3-Diabetic + camelina sativa oil (300 mg/kg) by oral 
gavage (D + CSO), 4-Diabetic + HIIT (D + HIIT) were given normal 
saline by oral gavage, and 5-Diabetic + camelina sativa oil (300 mg/
kg) by oral gavage + HIIT (D + CSO + HIIT) (Figure 1).

Camelina oil supplementation

We used a gas chromatograph to analyze the fatty acid composition 
of CSO (Bistun Shafa Co, Kermanshah, Iran). The study’s CSO analysis 
showed that the highest fatty acids were linolenic acid (29.70%), linoleic 
acid (21.03%), and oleic acid (16.41%; Table 1; 39). According to the 
evidence provided by the FDA, CSO has been deemed to be generally 
safe, and is registered as food oil in many European nations. Rats in the 
CSO conditions were fed by oral gavage based on weight at a dose of 
300 mg/kg per day for 8 weeks. Rats in the non-CSO groups were given 
saline, % 0.9 NaCl, via oral gavage (1 mL per day). Oral gavages were 
performed before exercise in the HIIT conditions (40).

Exercise training protocol

Before the interventions, all rats were familiarized with treadmill 
running for 1 week (10 min per day) at a speed of 8–10 m per min with 
a 0% incline. Afterward, HIIT was performed 5 days per week for 
8 weeks on a treadmill at 6 p.m. (lights off). The HIIT program involved 
8 sets of 3 min of high-intensity running at 85%–90% of one’s maximum 
speed, followed by 2 min of active rest at 30%–40% of one’s maximum 
speed. The HIIT protocol comprised 5-min warm-up and cool-down 
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intervals that were low-intensity (30%–40% of maximum speed) before 
and after each session. To determine the maximal speed at the time of 
maximum oxygen consumption (VO2 max), rats ran 5 m on a treadmill 
at a speed of 6 m/min with a zero-degree gradient for 5 min (warm-up), 
and then the treadmill speed increased to 3 m/min every 3 min until the 
animals reached the point of extinction and could no longer continue. 
The incapacity of the rats to continue the workout program with 
increasing speed and collision three times in 1 min to the end of the 
treadmill was the criterion for reaching VO2 max, hence VO2 max was 
assessed using speed. Every 2 weeks, the animals were assessed, and the 
training intensity was determined based on the new test values.

Experimental procedures

After fasting for 12–14 h, and 48 h after the previous training session, 
all rats were sedated with a painless intraperitoneal injection of ketamine 
(90 mg/kg) and zailazin (10 mg/kg). Blood was collected from the tail 
vein; plasma was separated via centrifuging at 3,500 rpm for 5 min. After 
blood sampling, the animals were sacrificed and the livers were removed. 
The liver tissue samples and serum samples were flash-frozen and stored 
at −70°C, and the remaining livers were used for histopathological study 
and were homogenized in appropriate buffers for analysis of biochemical 
parameters like inflammatory and oxidative stress indices of the liver. 
Based on the aim of present study, markers of liver function, 
inflammation and oxidative stress were the main outcomes and glycemia 
markers and hepatic histopathology were secondary outcomes.

FIGURE 1

Experimental design. HIIT, High-intensity interval training.

TABLE 1 Composition of fatty acids present in camelina sativa oil.

Fat % Fatty 
acid

Name Camelina oil 
(%)

SFA 13.82 C12:0 Lauric acid 0.00

C14:0 Myristic acid 0.09

C16:0 Palmitic acid 6.45

C18:0 Stearic acid 2.56

C20:0 Arashidic acid 1.89

C21:0 Heneicosanoic 

acid

1.66

C22:0 Behenic acid 1.00

C24:0 Lignoseric acid 0.17

MUFA 34.36 C16:0 Palmitoleic acid 0.17

C18:0 Oleic acid 16.41

C20:0 Elcosenoic acid 14.09

C22:0 Erucic acid 3.21

C24:0 Nervonic acid 0.47

PUFA 51.83 C18:0 Linoleic acid 21.03

C18:0 Linolenic acid 29.70

C20:0 Elcosadienoic acid 0.68

C20:0 Elcosatrienoic acid 0.41

SFA, Saturated fatty acids; MUFA, Monounsaturated fatty; PUFA, Polyunsaturated fatty acids.
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Measurement of hepatic TNF-α

TNF-α levels were measured using an ELISA kit (catalog no. 
DY510-05, R&D System) after liver tissue aliquots were homogenized 
in accordance with the manufacturer’s instructions. All TNF-α analysis 
were carried out in duplicate serial dilutions.

Measurement of hepatic MDA and TAC

The presence of malondialdehyde (MDA), a sign of lipid peroxidation, 
was measured. In a nutshell, livers were treated as previously reported after 
being homogenized in a solution of 1.15% KCl (26). By comparing the 
OD550 of the reference solutions of 1,1,3,3-tetramethoxypropan 99% 
malondialdehyde bis (dymethyl acetal) 99% (Sigma), the sample 
absorbance was determined by spectrophotometry, and MDA values were 
derived (41). A decrease in the production of thiobarbituric acid reactive 
compounds served as the basis for measuring the hepatic total antioxidant 
capacity (TAC) (42). A commercially available colorimetric kit 
(Bioquochem FRAP Assay Kit, KF-01-003, R&D System) was used to 
measure the hepatic TAC levels in accordance with the manufacturer’s 
recommendations. Results were adjusted for protein levels (43).

Measurement of hepatic TG

Hepatic triglyceride (TG) concentrations were measured using 
commercially available colorimetric kits (Triglyceride G-Test kit, Wako 
Pure Chemical Industries) according to manufacturer instructions.

Hepatic PGC-1α and PPAR-γ

Western Blotting methods were used to messure protein levels of 
hepatic PGC-1α and PPAR-γ. Protein lysates were isolated from 500 mg 
of liver tissue in lysis buffer (500 μL Tris, PH = 8, 150 mM sodium chloride, 
1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS, and 0.1 mM EDTA) 
supplemented with a complete protease inhibitor cocktail and centrifuged 
at 12,000g for 10 min at 4°C. The Bradford method was used to determine 
the protein concentration in the supernatant (44). Proteins were separated 
using SDS-polyacrylamide gel electrophoresis with 8%–12% denatured 
ready gel (Bio-Rad, Hercules, CA, United States) and transferred to a 
PVDF membrane (Roche, West Sussex, United Kingdom). To prevent 
nonspecific bindings, the membrane was blocked for 1 h in 5% BSA in 
tris-buffered saline and 0.1% Tween 20 (TBST). Blots were then incubated 
overnight at 4° C with the following primary antibodies: β-actin 
(sc-47,778, 1: 300), PPAR-γ (ab20935), and PGC-1α (ab54481), all 
purchased from Cell Signaling Technology. The membrane was then 
washed three times and incubated for 1 h at room temperature in 5% milk 
in TBST with the appropriate secondary antibody (m-IgG BP-HRP: 
sc-516,102, and mouse anti-rabbit IgG-HRP: sc-2,357) (44). Protein bands 
were visualized using an enhanced chemiluminescence (ECL) reagent and 
quantified using densitometry analysis with Image J software.

Liver histopathological study

After being cleaned with normal saline, liver tissues were fixed in 
10% buffered formalin for 48 h. For the purpose of the histological 

evaluation, samples were embedded in paraffin, divided into 5-lm 
pieces, stained with hematoxylin and eosin (H and E), and examined 
under a light microscope. Scores were made in 10 fields of each H and 
E-stained slide, which were then examined under a light microscope 
to determine the liver’s histological, hydropic degeneration, 
microvesicular and macrovesicular vacuoles, sinusoidal congestion, 
and cell necrosis findings (40). Scores for the histopathological results 
were none (−), mild (+), moderate (++), and severe damage (+++) 
(45, 46).

Measurement of fasting blood glucose, 
insulin, HOMA-IR

Fasting blood glucose was measured by using commercially 
available colorimetric diagnostic kits (Pars Azmoon kit, Iran) according 
to the instructions. The level of insulin was determined using the rat 
Insulin ELISA Kit (ALPCO, Catalog no: 80-INSRTH-E01). HOMA-IR 
was employed to assess the IR via the following formula (47):

 
HOMA IR

fasting insulin mU L

fasting blood glucose mg dL
− =

( )
× ( )

/

/









 / 405

Statistical analysis

The Shapiro–Wilk test was used to assess the distribution’s 
normality. The variances were then shown to be homogenous by a Leven 
test. The mean differences between the groups were examined using a 
one-way analysis of variance (ANOVA). Using Tukey’s Test, differences 
between two groups were measured. Means and SEM were used to 
express the data. Statistical significance was defined as a value of p < 0.05. 
Pearson correlation coefficients were used to ascertain the relationship 
between the variables. The statistical software SPSS was used for all 
calculations (Version 20.00).

Results

Hepatic TNF-α

Hepatic TNF-α was significantly (p < 0.001, Figure 2A) increased in 
the DC group compared to NC. In contrast, TNF-α decreased in all 
three intervention groups as compared to DC, an effect that was greater 
in D + CSO and D + CSO + HIIT as compared to D + HIIT alone.

Hepatic MDA and TAC

Hepatic MDA increased in the DC group compared to NC 
(p < 0.001, Figure 2B). Hepatic MDA decreased in all three intervention 
groups compared to DC (p < 0.001). These decreases were greater with 
D + CSO and D + CSO + HIIT compared to D + HIIT. In addition, 
D + CSO + HIIT significantly decreased hepatic MDA compared to 
D + CSO alone. Hepatic TAC decreased in the DC group compared to 
NC; however, it did not change significantly (p > 0.05, Figure 2C) with 
the three interventions.
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Hepatic TG

Hepatic TG increased in the DC group compared to NC (p < 0.001, 
Figure 2D), and decreased significantly in D + HIIT and D + CSO + HIIT 
compared to DC. In addition, Hepatic TG decreased in D + CSO + HIIT 
compared to D + CSO alone. Changes in D + CSO alone were not 
statistically significant as compared with DC (p > 0.05).

Hepatic PGC-1α and PPAR-γ

Hepatic PGC-1α and PPAR-γ decreased in the DC group compared 
to NC. In contrast, both PGC-1α and PPAR-γ increased in all three 
intervention groups as compared to DC. For PGC-1α, D + CSO + HIIT 
significantly increased hepatic PGC-1α as compared to D + HIIT alone 
(p  < 0.001) and D + CSO alone (p  < 0.001). In addition, D + CSO 
significantly increased hepatic PGC-1α as compared to D + HIIT alone 
(p < 0.001). For PPAR-γ, D + CSO + HIIT and D + CSO alone significantly 
increased hepatic PPAR-γ as compared to D + HIIT alone (p < 0.001 and 

p < 0.05, respectively). But there was not a significant difference between 
D + CSO + HIIT and D + CSO alone (p > 0.05; Figure 3).

Hepatic histopathology

Hepatic histopathology markers including hydropic degeneration, 
micro-vesicular vacuoles, macro-vesicular vacuoles, and sinusoidal 
congestion were increased in the DC group compared to NC, whereas 
these markers were decreased in all three intervention groups compared 
to DC (Table 2). These decreases were more significant in D + CSO + 
HIIT as compared with D + CSO and D+ HIIT alone (Figure 4).

Glycaemia markers

Fasting plasma glucose and HOMA-IR were significantly (p < 0.001, 
Figure 5A; p < 0.001, Figure 5C) increased in diabetic rats compared to 
NC. In contrast, fasting plasma glucose in all three interventions (D + 
CSO, D + HIIT, and D + CSO + HIIT) and HOMA-IR in D + CSO  and 

A B

C D

FIGURE 2

The effect of D, D + CSO, D + HIIT, and D + CSO + HIIT on hepatic (A) TNF-α, (B) MDA, (C) TAC, and (D) TG. One-way ANOVA followed by Tukey post-test was 
used. Data are represented as means ± SEM and significant differences between groups are indicated by *p < 0.05. NC, Normal control; DC, Diabetic control; 
D + CSO, Diabetic + camelina sativa oil; D + HIIT, Diabetic + HIIT; D + CSO + HIIT, Diabetic + camelina sativa oil + HIIT.
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TABLE 2 The effect of camelina sativa oil and HIIT on changes in liver histopathology of male type 2 diabetic rats.

Groups Hydropic 
degeneration

Microvesicular 
vacuoles

Macrovesicular 
vacuoles

Sinusoidal 
congestion

Cell necrosis

NC 0 0 0 0 0

DC 3+ 3+ 3+ 2+ 3+

D + HIIT 2+ 2+ 3+ 3+ 2+

D + CSO 2+ 2+ 2+ 2+ 1+

D + CSO + HIIT 0 1+ 1+ 1+ 0

NC, normal control; DC, diabetic control; D + CSO, diabetic + camelina sativa oil; D + HIIT, Diabetic + HIIT; D + CSO + HIIT, Diabetic + camelina sativa oil + HIIT.

D + CSO + HIIT were decreased compared to DC. In addition, D + 
CSO+ HIIT significantly (p  < 0.001) decreased fasting glucose and 
HOMA-IR compared to D + HIIT alone (p  < 0.001). Also, D+CSO 
significantly decreased fasting plasma glucose and HOMA-IR compared 
to D+HIIT (p < 0.001). However, fasting plasma insulin changes were 
not significantly (p > 0.05, Figure 5B) different between groups.

Discussion

There has been some previous research examining the independent 
effects of CSO and HIIT on glycemic control (5, 48, 49); however, there 
is no previously published study on the combined effects of CSO and 
HIIT, in particular in a T2DM model or in patients with 
T2DM. Therefore, in the present study, the combined effects of CSO and 

HIIT on glycemic indices, inflammatory and oxidative stress markers in 
hepatic cells, hepatic triglyceride content, and liver histopathological 
findings were investigated in male T2DM rats.  According to our 
findings, there were improving synergistic effects of CSO and HIIT for 
8 weeks on glucose, HOMA-IR, hepatic MDA, TNF-α, TG, PPAR-γ, 
PGC-1α and histopathology markers; however, insulin and TAC did not 
change significantly in three intervention groups.

Our results suggest that CSO, as a rich source of omega-3 fatty 
acids exerted positive effects on glycemic and insulin resistance 
markers, in agreement with previous research in patients with 
NAFLD (5, 6) and impaired glucose metabolism (48). The proposed 
anti-hyperglycemic mechanisms of action by which CSO may 
influence insulin resistance are mostly related to its omega-3 fatty 
acids contents. Omega-3 fatty acids are thought to improve insulin 
resistance by modulating mitochondrial bioenergetics and 

FIGURE 3

Western bloting analysis of protein expression of β-actin, PGC-1α, and PPARy. The effect of D, D + CSO, D + HIIT, and D + CSO + HIIT on PGC-1α, and PPARy. 
NC, Normal control; DC, Diabetic control; D + CSO, Diabetic + camelina sativa oil; D + HIIT, Diabetic + HIIT; D + CSO + HIIT, Diabetic + camelina sativa oil + HIIT.
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endoplasmic reticulum stress, and through upregulation of PPAR-γ, 
one of the main regulators of glucose homeostasis (50, 51). Moreover, 
HIIT improves insulin resistance by increasing mitochondrial 
biogenesis, GLUT-4 translocation, and PGC-1α (52). Therefore, the 
synergistic effects of CSO and HIIT on glycemic parameters might 
be related to their shared effects on mitochondrial bioenergetics, 
PPAR-γ activity, and GLUT-4 translocation. Our findings showed 
that CSO increased PPAR-γ protein expression. In line with our 
findings, Taranu et  al. and Tejera et  al., using in-vivo models, 
reported that ω-3 PUFA rich CSO increased PPAR-γ expression (53, 
54). Moreover, ω-3 PUFAs have been recognized as the natural 
agonists of PPAR-γ (55). The current study, for the first time, 
evaluated the effects of CSO plus HIIT on PPAR-γ protein expression 
in an animal model. However, our study did not show a beneficial 
effect for HIIT on PPAR-γ. Similar result were obtained from another 
in-vivo investigation (56). However, another long-term study 
(12 weeks) in rats reported that HIIT led to a significant increase in 
PPAR-γ expression following a high-fat diet (57). Therefore, 
additional studies with longer durations may show a synergistic 
effect for CSO and HIIT on PPAR-γ expression. This synergistic 
effect for CSO and HIIT on PGC-1α protein expression was shown 
for the first time in our study. Additional studies are needed to 
elucidate other anti-hyperglycemic machanisms of action of HIIT 
plus CSO, including their possible synergistic effects on GLUT4 
translocation and mitochondrial bioenergetics.

Only a few previous studies have investigated the anti-oxidant and 
anti-inflammatory properties of CSO. In agreement with the current 
study results, Kavyani et al. showed that co-supplementation of CSO and 
prebiotics for 12 weeks led to significant decreases in MDA and hs-CRP, 
and increases in TAC among patients with NAFLD (6). Musazadeh et al. 
reported similar results with CSO plus a calorie-restricted diet for 
12 weeks in patients with NAFLD (5). An in-vivo study showed that CSO 
supplementation led to significant increases in the activity of anti-
oxidant enzymes along with significant decreases in MDA levels (58). 
Regarding TAC, our study results conflict with this previous evidence, 
and the differences between the current TAC results and previous results 
may be  related to the duration of supplementation (12 weeks vs. 
8 weeks).  Kavyani et al. demonstrated anti-inflammatory properties of 

omega-3 fatty acids (15). It is well established that oxidative stress plays 
a key role in the pathophysiology of insulin resistance and T2DM (59, 
60), and there is an increasing body of evidence from animal studies 
confirming oxidative stress-induced insulin resistance and the 
improvement in insulin signal transduction and glucose homeostasis 
through use of antioxidants (61–63).

Omega-3 fatty acids can modulate immune system function (64) 
and the production of pro-inflammatory cytokines (65). Moreover, 
omega-3 fatty acids are natural PPAR-γ agonists and can inhibit Nuclear 
Factor-Kappa-B (NF-ĸB) activity, the main modulator of inflammatory 
cascades (66). The anti-oxidant effects of omega-3 fatty acids are mainly 
related to changes in cellular membrane structures leading to decreases 
in lipid peroxidation (13). Moreover, other compounds in CSO such as 
phytosterols, carotenoids, and tocopherols contribute to its anti-oxidant 
effects (5, 20).

It’s been hypothesized that activities that increase oxygen 
consumption can increase free radicals and oxidative stress (67). Acutely, 
HIIT induces oxidative stress and lipid peroxidation by increasing 
NADPH oxidase, xanthine oxidase, phospholipase A2 activity, 
mitochondrial cytochrome c, and catecholamine oxidation (68, 69). 
However, with chronic exercise training, there are adaptive mechanisms 
that contribute to the reduction of oxidative stress, including the 
upregulation of redox signaling cascades and endogenous antioxidant 
enzymes, muscle hypertrophy, glucose uptake by skeletal muscle, and 
mitochondrial biogenesis (70). However, co-supplementation with an 
antioxidant-rich source such as CSO is necessary to accelerate the 
balance of oxidative stress induced by HIIT.

Beneficial synergistic effects for D + CSO + HIIT on hepatic TG, 
hepatic histopathology, and expression of PGC-1α were demonstrated in 
the current study. Previous studies have suggested that HIIT performed for 
12 weeks significantly reduces intrahepatic lipid levels (71, 72). However, 
Winn et al. showed that the reduction of intrahepatic lipid levels did not 
significantly differ between different exercise intensities after 4 weeks (73). 
Similarly to our study, Kamal et al. investigated the effects of an 8-week 
HIIT program and found that HIIT was effective in decreasing intrahepatic 
lipid levels. However, most study participants received metformin, which 
can also have beneficial effects on hepatic fat levels (74). Also in agreement 
with the current results, hepatic histopathology examination in an in-vivo 
study revealed that 8 weeks of HIIT improved liver function (75). The 
current results showed that HIIT for 8 weeks can be beneficial in improving 
hepatic triglyceride levels.

In terms of hepatoprotective effects of CSO, Musazadeh et al. in a 
clinical trial study on NAFLD patients showed that CSO supplementation 
led to a significant decrease in alanine aminotransferase, an enzyme 
indicating a poor liver function in high levels. However, other liver 
enzymes did not significantly differ between CSO and placebo groups (21). 
A previous narrative review reported that improvement in hepatic steatosis 
and liver function following HIIT was associated with improved liver 
mitochondrial function, increased hepatic PPAR-α, and PPAR-γ content, 
improved insulin sensitivity, and suppression of hepatic de novo lipogenesis 
(76). The cellular mechanisms responsible for the positive effects of CSO 
on liver function have not been fully elucidated. However, anti-
inflammatory, antioxidant, and anti-hyperlipidemia effects, and regulation 
of glucose homeostasis have been suggested. Also, the effects  of omega-3 
fatty acids on liver function have been investigated in previous studies (77, 
78). Other plant-based omega-3 fatty acid sources such as flax seed (79), 
walnut (80), or chia (81) exerted hepatoprotective effects.

The current study is the first to investigate the synergistic effects of 
CSO and HIIT on glycemic, inflammatory, oxidative stress, and total 

FIGURE 4

The effect of DC, D + CSO, D + HIIT, and D + CSO + HIIT on hepatic 
histopathology, 400 ×  magnification, DC, Diabetic control; D + CSO, 
Diabetic + camelina sativa oil; D + HIIT, Diabetic + HIIT; D + CSO + HIIT, 
Diabetic + camelina sativa oil + HIIT.
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antioxidant capacity biomarkers and liver function in an animal model 
of T2DM.

Some limitations should be considered when interpreting results. 
First, the overall treatment duration was short as compared to some 
similar studies. However, our results were in agreement with most studies 
of longer durations. Second, other biomarkers of inflammation, oxidative 
stress, and liver function were not included. For example, various 
interleukins, hs-CRP, antioxidant enzymes, aspartate aminotransferase 
(AST), and alanine transaminase (ALT) were not studied. Results may 
have differed if we had used other or additional biomarkers, in particular, 
antioxidant capacity should be further elucidated. Of course, a rat model 
of T2DM does not necessarily generalize to human participants with 
T2DM. Therefore, further studies in both animal and human models 
should be conducted to clarify all aspects of the effects of CSO and HIIT 
in type 2 diabetes. However, the strengths of our study should also 
be mentioned. Our study was the first to evaluate the synergistic effects of 
CSO plus HIIT on liver function, and metabolic outcomes, as well as 
glycemic markers in an animal model of T2DM. In addition, Western-
blotting as an accurate method was performed to reach a more accurate 
conclusion of the antihyperglycemic mechanisms of CSO plus 
HIIT. Whereas, most similar studies assessed gene expression with real-
time PCR methods. The current study also investigated various 
biomarkers to obtain a more comprehensive picture of the beneficial 
effects of CSO plus HIIT on T2DM to pave the way for future clinical trials.

Conclusion

The current study indicated that CSO and HIIT, independently and 
combined, exerted beneficial effects on fasting blood glucose, 
HOMA-IR, hepatic TNF-α, MDA, TG, PPAR-γ, PGC-1α, and 
histopathology markers. Only hepatic TAC and fasting plasma insulin 
remained unaffected in all the three interventions groups. However, 
combination of CSO and HIIT had the largest effect on liver function 
and metabolic outcomes other than CSO and HIIT alone.
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FIGURE 5

The effect of D, D + CSO, D + HIIT, and D + CSO + HIIT on glycemia markers including (A) glucose, (B) insulin, and (C) HOMA-IR. One-way ANOVA followed by 
Tukey post-test was used. Data are represented as means ± SEM and significant differences between groups are indicated by *p < 0.05. NC, Normal control; 
DC, Diabetic control; D + CSO, Diabetic + camelina sativa oil; D + HIIT, Diabetic + HIIT; D + c + HIIT, Diabetic + camelina sativa oil + HIIT.
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