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Natural polysaccharides (NPs) possess numerous health-promoting effects,

such as liver protection, kidney protection, lung protection, neuroprotection,

cardioprotection, gastrointestinal protection, anti-oxidation, anti-diabetic, and

anti-aging. Nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant pathway

is an important endogenous antioxidant pathway, which plays crucial roles in

maintaining human health as its protection against oxidative stress. Accumulating

evidence suggested that Nrf2 antioxidant pathway might be one of key regulatory

targets for the health-promoting effects of NPs. However, the information

concerning regulation of NPs on Nrf2 antioxidant pathway is scattered, and

NPs show different regulatory behaviors in their different health-promoting

processes. Therefore, in this article, structural features of NPs having regulation

on Nrf2 antioxidant pathway are overviewed. Moreover, regulatory effects of

NPs on this pathway for health-promoting effects are summarized. Furthermore,

structure-activity relationship of NPs for health-promoting effects by regulating

the pathway is preliminarily discussed. Otherwise, the prospects on future work

for regulation of NPs on this pathway are proposed. This review is beneficial to

well-understanding of underlying mechanisms for health-promoting effects of

NPs from the view angle of Nrf2 antioxidant pathway, and provides a theoretical

basis for the development and utilization of NPs in promoting human health.

KEYWORDS

natural polysaccharides, Nrf2 antioxidant pathway, structural features, regulatory effects,
structure-activity relationship, health-promoting

Introduction

Oxidative stress, an imbalance between production of oxidants and antioxidant defenses,
participates in the occurrences and progressions of many diseases (1). Nuclear factor
erythroid 2-related factor 2 (Nrf2) is one of the most important endogenous anti-oxidative
stress pathways, which has been demonstrated to involve in modulating oxidative stress
for maintaining body health, like cardioprotection (2), neuroprotection (3), anti-aging (4),
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GRAPHICAL ABSTRACT

gastrointestinal protection (5), and kidney protection (6). As
shown in Figure 1 (7, 8), under basal conditions, Nrf2
binds to Kelch-like epichlorohydrin-associated protein-1 (Keap1)

Abbreviations: p-Nrf2, phosphorylated nuclear factor-erythroid factor
2-related factor 2; Cd, cadmium; Cr, chromium; Pb, plumbum; Mn,
manganese; Zn, zinc; Cu, cuprum; HO-1, heme oxygenase-1; NQO1,
NAD(P)H quinone dehydrogenase 1; GCLC, glutamate-cysteine ligase
catalytic subunit; GCLM, glutamate-cysteine ligase modifier subunit;
PGC-1α, peroxisome proliferator-activated receptor-gamma coactivator
1-alpha; SOD, superoxide dismutase; Cu/Zn-SOD, copper, zinc superoxide
dismutase; Mn-SOD, manganese superoxide dismutase; CAT, catalase;
GST, glutathione S-transferase; GSTP1, glutathione S-transferases P1;
GSTT1, glutathione S-transferase theta 1; GSTO1, glutathione S-transferase
omega 1; GSTA3, glutathione S-transferase alpha 3; GPX, glutathione
peroxidase; ADM, adipogenesis differentiation medium; ODM, osteogenesis
differentiation medium; AKR1C2, Aldo-keto reductase family 1 member
C2; APOE, Apolipoprotein E; HBEGF, heparin binding EGF like growth
factor; DSS, dextran sodium sulfate; H2O2, hydrogen peroxide; CCl4,

in the cytoplasm through Cul3 ubiquitin ligase containing
E3 to maintain cell homeostasis. In response to oxidative
stress, Nrf2 is activated upon dissociation from Keap1. Then,

carbon tetrachloride; PMVECs, pulmonary microvascular endothelial
cells; CoCl2, carbonyl chloride; MPTP, 1-methyl-4-phenyl-1,2.3,6-
tetrahydropyridine; γ-GCS, γ-glutamylcysteine synthetase; MNNG,
N-Methyl-N’-nitro-N-nitrosoguanidine; TrxR1, thioredoxin reductase
1; STZ, streptozotocin; NOX2, nicotinamideadenine-dinucleotide
phosphate (NADPH) oxidase 2; NOX4, NADPH oxidase 4; LPS,
lipopolysaccharides; CUMS, chronic unpredictable mild stress; CTX,
cyclophosphamide; Maf, musculoaponeurotic fibrosarcoma oncogene
homolog; γ-GCL, γ-glutamylcysteine ligase; GR, glucocorticoid
receptor; MKP1, mitogen-activated protein kinase phosphatase 1;
AAPH, 2, 2’-azo-bis-(2-methylpropylimid)-dihydrochloride; TXN,
thioredoxin; Slc7a11, solute carrier family 7 member 11; G6pd2,
glucose-6-phosphate dehydrogenase 2; Prdx1, peroxiredoxin 1; ox-LDL,
oxidized low-density lipoprotein; VSMCs, vascular smooth muscle cells;
DCs, dendritic cells.
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FIGURE 1

Molecular mechanism of Nrf2 signaling pathway regulating oxidative stress (7, 8). This figure is adapted from Transcriptional Regulation by Nrf2 by
Claudia Tonelli et al., and NRF2, a Transcription Factor for Stress Response and Beyond by He et al., under CC BY 4.0.

Nrf2 translocates quickly into nucleus and forms a necessary
region for the dimer by binds to small musculoaponeurotic
fibrosarcoma oncogene homolog (sMaf) protein. Subsequently,
this region binds to antioxidant response elements (ARE) and
activates the expressions of target genes, thereby regulates the
transcriptional activities of phase II metabolic enzymes, antioxidant
enzymes or drug transporters, for restoring intracellular redox
homeostasis. Recently, a variety of natural products, such as
polyphenols, flavonoids and polysaccharides, have been considered
as modulators of Nrf2 antioxidant pathway (9, 10).

Polysaccharides, a kind of biological macromolecules, are
widely distributed in natural sources such as plants, algae and
animals (11). Polysaccharides have attracted increasing attention
owing to their diverse health-promoting effects, non-toxicity,
extensive accessibility and renewability (12). Polysaccharides from
natural resources (NPs) have been reported to play key roles
in regulating excessive oxidative stress (13). In the past few
decades, regulations of NPs on Nrf2 antioxidant pathway have
been extensively studied in their health-promoting effects, such as
liver protection (14), antioxidant (15), gastrointestinal protection
(16), anti-diabetic (17), anti-aging (18), cardioprotection (19),
lung protection (20), kidney protection (21), neuroprotection (22),
anti-inflammation (23), immunomodulation (24), anti-depression
(25), anti-cancer (26), improving reproductive function (27),
anti-radiation (28), and anti-atherosclerosis (29). However, the
information concerning regulation of NPs on Nrf2 antioxidant
pathway is scattered, and NPs show different regulatory behaviors
in their different health-promoting processes. Therefore, it is
necessary to draw a summary on the recent developments on
health-promoting effects of NPs from the viewing angle of
regulation on Nrf2 antioxidant pathway.

In this review, structural features of NPs, having regulation
on Nrf2 antioxidant pathway, from herbs, woody plants, algae,

fungi, animals and bacteria, are overviewed. Moreover, regulatory
effects of these NPs on the pathway for health-promoting effects
in vitro and in vivo are systematically summarized. Furthermore,
influences of structural characteristics like molecular weight
(Mw), functional group, monosaccharide composition and side
chains on the regulatory effects of NPs on Nrf2 antioxidant
pathway are preliminarily discussed. Otherwise, the prospects on
future work for regulation of NPs on Nrf2 antioxidant pathway
are proposed.

Structural features of NPs having
regulation on Nrf2 antioxidant
pathway

According to Supplementary Table 1, NPs having regulation
on Nrf2 antioxidant pathway can be isolated by water extraction
(16, 30–33), ultrasonic-assisted extraction (34–36), ethanol
precipitation (37–41) and enzymatic hydrolysis (24, 42–44).
For acquiring homogeneous fractions, NPs can be further
purified by stepwise ethanol precipitation (36, 45–47) and/or
column chromatography (31, 42, 43, 48–53). Structural features
including Mw, monosaccharide composition, glycosidic bond
types, backbone, and side chains of the obtained NPs are shown in
Supplementary Table 1.

Structural features of NPs from herbs

In terms of NPs having regulation on Nrf2 antioxidant
pathway from herbs, Mw values of them have been determined to
range from 2.273 to 2,617 kDa (41, 54–56). The polysaccharides
were composed of fucose (Fuc), ribose (Rib), mannose (Man),
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glucose (Glc), arabinose (Ara), galactose (Gal), rhamnose (Rha),
xylose (Xyl), glucuronic acid (GlcA), galacturonic acid (GalA),
glucosamine (GlcN), and/or galactosamine (GalN) (18, 56–58).
Moreover, Glc, Ara, Gal, and Rha were four monosaccharide types
widely discovered in the polysaccharides (18, 41, 54, 55, 57–62).

Manp, Glcp, Rhap, Araf, Arap, Galp, GalAp, and Ribp sugar
residues have been detected in the NPs from herbs. Manp residues
exhibited as T-Manp-(1→, →3)-Manp-(1→, →4)-Manp-(1→,
→6)-Manp-(1→, →3,6)-Manp-(1→ and →4,6)-Manp-(1→ (16,
47, 63). Glcp residues revealed as T-Glcp-(1→, →3)-Glcp-(1→,
→4)-Glcp-(1→,→6)-Glcp-(1→,→2,4)-Glcp-(1→,→2,6)-Glcp-
(1→, →3,4)-Glcp-(1→, →3,6)-Glcp-(1→ and →4,6)-Glcp-(1→
(16, 47, 57, 63). Rhap residues displayed as T-Rhap-(1→, →2)-
Rhap-(1→, →3)-Rhap-(1→ and →2,4)-Rhap-(1→ (48, 54, 55,
57, 62, 64–66). Araf and Arap residues expressed as T-Araf -(1→,
→2)-Araf -(1→, →4)-Araf -(1→, →5)-Araf -(1→, →3,5)-Araf -
(1→ and T-Arap-(1→ (47, 48, 54, 55, 57, 62–66). Galp residues
showed as T-Galp-(1→, →3)-Galp-(1→, →4)-Galp-(1→, →6)-
Galp-(1→, →2,6)-Galp-(1→ and →3,6)-Galp-(1→ (47, 48, 54,
55, 57, 62, 64–66). GalAp residues manifested as T-GalAp-(1→
and→4)-GalAp-(1→ (48, 54, 55, 62, 66). Ribp residue exhibited
as →4)-Ribp-(1→ (47). Moreover, T-Araf -(1→ (48, 54, 55, 57,
62–65), →5)-Araf -(1→ (48, 54, 55, 62, 64–66), →3)-Galp-(1→
(48, 55, 57, 62, 64–66), →3,6)-Galp-(1→ (48, 54, 55, 62, 64–66)
and →4)-GalAp-(1→ (48, 54, 55, 62, 66) were five frequently
determined residues in the polysaccharides.

Backbone of some polysaccharides with regulation on Nrf2
antioxidant pathway from herbs were composed of T-α-D-Glcp-
(1→ (57), →4)-α/β-D-Glcp-(1→ (20, 63, 67–69), →6)-α-D-
Glcp-(1→ (57),→3,4)-α-D-Glcp-(1→ (57),→3)-β-D-Galp-(1→
(64, 65), T-α-D-Araf -(1→ (57), →4)-β-D-Manp-(1→ (20, 40,
63, 67, 68), →4)-α-GalAp-(1→ (48, 54) and/or →2,4)-α-Rhap-
(1→ (48) units as well as homogalacturonan (HG) (55, 62, 66)
and/or rhamnogalacturonan I (RG-I) (62, 66) structures. While,
side chains of them were made up of →3)-β-D-Glcp-(1→ (20,
63, 67, 68), →3)-β-D-Manp-(1→ (20, 63, 67, 68), →4)-α-D-
Glcp-(1→ (69),→5)-β-D-Araf -(1→ (64, 65),→5)-α-L-Araf -(1→
(62),→2)-β-D-Araf -(1→ (64, 65),→6)-β-D-Galp-(1→ (64, 65),
→3)-β-D-Galp-(1→ (64, 65), →2,4)-α-L-Rhap-(1→ (64, 65), T-
α-L-Araf -(1→ (64, 65) and/or →3)-α-Rhap-(1→ (48) as well as
RG-I (55), type I arabinogalactan (AG-I) (62, 66) and/or type II
arabinogalactan (AG-II) (48, 62, 66) structures, which branched at
O-6 or C-4 position of backbones.

Structural features of NPs from woody
plants

To NPs having regulation on Nrf2 antioxidant pathway from
woody plants, Mw of them were in the range of 4.568–3,440 kDa
(70–74). The polysaccharides consisted of Fuc, Rib, Man, Glc, Ara,
Gal, Rha, Xyl, GlcA, GalA, mannuronic acid (ManA), GlcN, and/or
GalN (30, 75–78). Moreover, Man, Glc, Ara, Gal, and Rha were five
monosaccharide types widely founded in the polysaccharides (45,
46, 76, 79–86).

Araf, Arap, Rhap, Galp, Glcp, Manp, Xylp, GalAp, and GlcAp
sugar residues have been determined in the polysaccharides from

woody plants. Araf residues exhibited as T-Araf -(1→, →2)-
Araf -(1→, →4)-Araf -(1→, →5)-Araf -(1→, →2,5)-Araf -(1→
and →3,5)-Araf -(1→ (30, 46, 73, 74). Arap residues reflected
as T-Arap-(1→,→4)-Arap-(1→,→3,4)-Arap-(1→ and→2,3,4)-
Arap-(1→ (73, 74, 87–90). Rhap residues showed as T-Rhap-(1→,
→2)-Rhap-(1→,→3)-Rhap-(1→ and→2,4)-Rhap-(1→ (30, 45,
87–90). Galp residues exerted as T-Galp-(1→, →2)-Galp-(1→,
→3)-Galp-(1→, →4)-Galp-(1→, →6)-Galp-(1→, →2,6)-Galp-
(1→, →3,4)-Galp-(1→, →3,6)-Galp-(1→ and →4,6)-Galp-(1→
(30, 45, 70, 87, 88, 91–96). Glcp residues revealed as T-Glcp-(1→,
→2)-Glcp-(1→, →4)-Glcp-(1→, →6)-Glcp-(1→, →3,4)-Glcp-
(1→ and→4,6)-Glcp-(1→ (49, 50, 93, 94). Manp residues behaved
as T-Manp-(1→,→2)-Manp-(1→,→4)-Manp-(1→,→6)-Manp-
(1→ and →3,6)-Manp-(1→ (46, 73, 74, 92). Xylp residues
manifested as T-Xylp-(1→, →3)-Xylp-(1→ and →4)-Xylp-(1→
(73, 74, 87, 88). GalAp residues appeared as T-GalAp-(1→,→4)-
GalAp-(1→,→2,4)-GalAp-(1→,→3,4)-GalAp-(1→ and→4,6)-
GalAp-(1→ (77, 78, 91). GlcAp residue expressed as T-GlcAp-(1→
(91). Moreover,→4)-Glcp-(1→ (49, 50, 70, 73, 74, 87, 88, 91–96),
T-Glcp-(1→ (49, 50, 70, 73, 74, 89–96), T-Araf -(1→ (30, 45, 72–74,
91, 93–96) and→3,4)-Galp-(1→ (30, 72, 77, 78, 91–96) were four
residues commonly detected in the polysaccharides.

Backbone of some polysaccharides with regulation on Nrf2
antioxidant pathway from woody plants were comprised of→2)-
α-D-Glcp-(1→ (49, 50), →4)-α-D-Glcp-(1→ (49, 50, 70, 95,
96),→6)-β-D-Glcp-(1→ (89, 90),→3)-α/β-D-Galp-(1→ (72, 77,
78, 95, 96),→4)-β-D-Galp-(1→ (70),→3,4)-α-D-Galp-(1→ (77,
78), →3)-β-D-Arap-(1→ (77, 78), →4)-α-L-Arap-(1→ (89, 90),
→3,4)-α-L-Arap-(1→ (89, 90),→3,6)-Manp-(1→ (73, 74),→3)-
α-L-Rhap-(1→ (89, 90),→2,4)-α-L-Rhap-(1→ (30) and/or→4)-
α-D-GalAp-(1→ (30, 93, 94). While, the side chains of them were
composed of α/β-D-Glcp-(1→ (49, 50, 70, 89, 90, 95, 96), →6)-
α-D-Glcp-(1→ (49, 50), β-D-Galp-(1→ (72),→6)-α-D-Galp-(1→
(77, 78),→3,5,6)-β-D-Galf -(1→ (72), α-D-Manp-(1→ (70),→6)-
β-D-Manp-(1→ (77, 78), α-L-Araf -(1→ (30, 72, 95, 96),→5)-α-
L-Araf -(1→ (30), →3,5)-α-L-Araf -(1→ (30), and/or →4)-α-D-
GalAp-6-OMe-(1→ (77, 78) residues, which branched at O-2, O-3,
O-4, O-5, O-6, or C-4 position of backbones.

Structural features of NPs from algae

Regarding to NPs having regulation on Nrf2 antioxidant
pathway from algae, structural features of them from Laminaria
japonica (97, 98), Enteromorpha prolifera (24, 31), Sargassum
fusiforme (99), Sargassum kjellmanianum (17), and Hizikia
fusiforme (44) have been characterized. Their Mw values ranged
from 4.929 to 250 kDa (24, 97). They were made up of
Fuc, Man, Rha, Ara, Gal, Glc, Xyl, GlcA, GalA, ManA, and
guluronic acid (GulA) (17, 44, 99). Comparatively, Fuc and
Rha were two monosaccharide types widely detected in the
polysaccharides (31, 44, 97, 99). Glycosidic bond types of
above-mentioned polysaccharides have yet been ascertained.
ESI-CID-MS/MS and NMR analysis have indicated that the
sulfated polysaccharide from Enteromorpha prolifera possessed
a backbone consisting of D-GlcUAp-α-(1→4)-3-sulfate-L-Rhap-
β-(1→4)-3-sulfate-L-Rhap and D-GlcUAp-α-(1→4)-3-sulfate-L-
Rhap-β-(1→4)-D-Xylp-β-(1→4)-3-sulfate-L-Rhap (100).

Frontiers in Nutrition 04 frontiersin.org

https://doi.org/10.3389/fnut.2023.1102146
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-10-1102146 February 15, 2023 Time: 9:10 # 5

Luo et al. 10.3389/fnut.2023.1102146

Structural features of NPs from fungi

For NPs having regulation on Nrf2 antioxidant pathway from
fungi, Mw of them were in the range of 1.206–3,011.47 kDa (39,
51, 52, 101, 102). The polysaccharides were composed of Fuc,
Man, Ara, Rha, Gal, Glc, Xyl, Rib, GalA, and GlcA (39, 103, 104).
Moreover, Man, Gal, and Glc were three monosaccharide types
commonly determined in the polysaccharides (32–35, 103–113).

Araf, Arap, Rhap, Galp, Glcp, Manp, Xylp, GalAp, GlcAp, and
Ribp sugar residues have been characterized in the polysaccharides
from fungi. Manp residues expressed as T-Manp-(1→,→2)-Manp-
(1→, →3)-Manp-(1→, →4)-Manp-(1→ and →6)-Manp-(1→
(51, 52, 103). Glcp residues showed as T-Glcp-(1→, →3)-Glcp-
(1→,→4)-Glcp-(1→,→6)-Glcp-(1→,→2,4)-Glcp-(1→,→3,4)-
Glcp-(1→, →3,6)-Glcp-(1→ and →4,6)-Glcp-(1→ (32, 33, 51,
52, 103). Galp residues revealed as T-Galp-(1→,→2)-Galp-(1→,
→3)-Galp-(1→, →4)-Galp-(1→, →6)-Galp-(1→, →2,6)-Galp-
(1→, →3,6)-Galp-(1→ and →4,6)-Galp-(1→ (109, 111–113).
Rhap residues exhibited as →4)-Rhap-(1→ and →6)-Rhap-(1→
(51, 52, 101). Arap, Xylp and GalAp residues displayed as →3)-
Arap-(1→ (111), T-Xylp-(1→ (51, 52) and→4)-GalAp-(1→ (112,
113), successively. Moreover, T-Glcp-(1→ (32, 33, 51, 52, 103, 109,
112, 113),→3)-Glcp-(1→ (51, 52, 103, 110–113),→6)-Glcp-(1→
(101, 103, 110–113) and→6)-Galp-(1→ (32, 33, 39, 101, 103, 109–
111) were four residues commonly detected in the polysaccharides.

Backbone of some polysaccharides with regulation on Nrf2
antioxidant pathway from fungi were made up of →3)-Glcp-
(1→ (51, 52, 111–113), →4)-Glcp-(1→ (32, 33, 39), →6)-β-
D-Glcp-(1→ (111–113), →3,4)-Glcp-(1→ (51, 52), →1,4)-Glcp-
(6→ (39), →3)-α-D-Galp-(1→ (111), →4)-α-Galp-(1→ (112,
113), →6)-Galp-(1→ (32, 33, 39), →2)-α-Manp-(1→ (112, 113)
and/or →4)-α-Manp-(1→ (112, 113). While, side chains of
them were comprised of α/β-Glcp-(1→ (32, 33, 39, 112, 113),
→3)-β-Glcp-(1→ (111–113), →6)-β-Glcp-(1→ (112, 113), T-
α-D-Galp-(1→ (111),→4)-α-Galp-(1→ (112, 113), →3)-α-D-
Manp-(1→ (111), →6)-β-D-Manp-(1→ (32, 33), →1)-Rhaf -
(2→ (39), →3)-α-L-Arap-(1→ (111) and/or →4)-α-GalAp-
(1→ (112, 113) units, which branched at O-3 and/or O-
6 positions.

Structural features of NPs from animals
and bacteria

In terms of NPs having regulation on Nrf2 antioxidant
pathway from animals, structural features of polysaccharides from
Holothuria leucospilota (114), Acaudina leucoprocta (115), and
Ostrea talienwhanensis Crosse (42, 43) have been determined.
Polysaccharide with a Mw of 52.80 kDa from Holothuria
leucospilota was composed of GalN, Fuc, GlcA, Gal, Glc, and
Xyl in a mass ratio of 39.08: 35.72: 10.72: 8.43: 4.23: 1.83 (114).
Polysaccharide with a Mw of 202 kDa from Acaudina leucoprocta
consisted of Man, GlcN, Rha, GlcA, GalN, Gal, and Fuc in a
mass ratio of 2.04: 1.30: 3.57: 5.70: 18.73: 15.12: 65.81 (115).
Polysaccharide with a Mw of 58 kDa from O. talienwhanensis
Crosse was solely made up of Glc, which contained T-Glcp-(1→,
→3)-Glcp-(1→, →4)-Glcp-(1→, →6)-Glcp-(1→, →2,4)-Glcp-
(1→ and→4,6)-Glcp-(1→ residues (42, 43).

Regarding to NPs having regulation on Nrf2 antioxidant
pathway from bacteria, structural features of high (37, 38) and
low (53) Fuc polysaccharides from Bacillus megaterium have been
characterized. The former was composed of Fuc, Glc, Man, Gal
and GlcNAc in a relative percentage of 41.9: 26.6: 15.8: 12.2: 3.5,
which possessed a backbone consisted of→4,6)-α-D-Manp-(1→,
→2,4)-α-D-Manp-(1→, →4)-β-D-Glcp-(1→, →2,4)-β-D-Glcp-
(1→ and→4)-β-D-GlcNAc with a branch composed of→2,4)-β-
D-Galp-(1→,→4)-β-D-Galp-(1→ and→3)-α-L-Fuc4SO3p-(1→
(37, 38). The latter was composed of Gal, Ara, Man, Glc, Fuc
and GlcNAc in a relative percentage of 37.6: 20.2: 19.3: 14.0:
4.9: 4.0, which had a backbone consisted of →4,6)-α-D-Manp-
(1→, →4)-α-D-Manp-(1→, →4,6)-β-D-Glcp-(1→ and →2,4)-
β-D-Glcp-(1→ with a branch composed of →1)-β-D-GlcNAcp,
→1)-α-L-Fuc4SO3p, →4)-β-D-Galp(1→, →4,6)-β-D-Galp-(1→,
→2,4)-β-D-Galp-(1→,→3,4)-β-L-Arap-(1→ and→3)-β-L-Arap-
(1→ (53).

General information on structural
features of NPs having regulation on Nrf2
antioxidant pathway

With above-mentioned summarizations, it could be concluded
that the Mw of NPs having regulation on Nrf2 antioxidant
pathway were in the range of 1.206–3,440 kDa. The NPs were
mostly composed of Fuc, Rha, Ara, Gal, Glc and/or Man,
and frequently consisted of T-Araf -(1→, →5)-Araf -(1→, →3)-
Galp-(1→,→6)-Galp-(1→,→3,4)-Galp-(1→,→3,6)-Galp-(1→,
T-Glcp-(1→, →3)-Glcp-(1→, →4)-Glcp-(1→, →6)-Glcp-(1→
and→4)-GalAp-(1→ residues. Moreover,→4)-Glcp-(1→,→6)-
Glcp-(1→,→3)-Galp-(1→ and→4)-D-Manp-(1→ residues were
commonly detected in their backbones, while α-L-Araf -(1→,→5)-
α-L-Araf -(1→ and →6)-β-D-Galp-(1→ residues were usually
found in side chains of NPs from herbs and woody plants.
Some possible repeating structural units of NPs having regulation
on Nrf2 antioxidant pathway, such as pectin, arabinogalactan,
2-O-acetylglucomannan, glucan and glucogalactan, have been
speculated. A predicted structure of the repeating units for
pectin purified from Codonopsis tangshen roots comprised HG
as the backbone and RG-I structure as the side chains (55). An
arabinogalactan structure from Lycium ruthenicum fruits possessed
a backbone of→3)-β-Galp-(1→ residues, with branches of→5)-
β-D-Araf -(1→,→2)-β-D-Araf -(1→,→6)-β-D-Galp-(1→,→3)-
β-D-Galp-(1→, →2,4)-α-L-Rhap-(1→ and T-α-L-Araf -(1→ at
O-6 position (64). A 2-O-acetylglucomannan from Dendrobium
officinale stem had a backbone of→4)-β-D-Manp-(1→ and→4)-
β-D-Glcp-(1→ residues, with branches at O-6 consisting of→3)-
β-D-Glcp-(1→ and →3)-β-D-Manp-(1→, and substituted with
acetyl groups at O-2 (63). A glucan units from Apios americana
tubers was characterized to possess a main chain of→4)-α-D-Glcp-
(1→ residues with a branched →4)-α-D-Glcp-(1→ chain (69).
A glucogalactan from Anoectochilus zhejiangensis was determined
to have a backbone consisted of →4)-β-D-Galp-(1→, →4,6)-α-
D-Glcp-(1→ and→4)-α/β-D-Glcp-(1→, which branched with a
single α-D-Glcp-(1→ at O-6 position (70).

However, the obtained purified NPs usually exhibited different
structural features, owing to different methods and protocols
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TABLE 1 Regulation of NPs from herbs on Nrf2 antioxidant pathway for health-promoting effects.

Polysaccharide
source

Experimental model Health-promoting
effects

Regulation on Nrf2 antioxidant pathway Determination
method

References

Lycium barbarum Hyperoxia-induced mice Lung protection Activities and protein expressions of Nrf2 and HO-1 in lung tissues ↑; protein expression of Keap1 in lung
tissues ↓; protein expressions of Nrf2 in PMVECs isolated from lung ↑

Assay kits and WB (158)

Ethanol-induced L02 cells Liver protection Protein expression of nuclear Nrf2 ↑; protein expression of cytosol Nrf2 ↓ WB (117)

Protein expression of HO-1, NQO1 and GCLC along with nuclear Nrf2 ↑; protein expression of cytosol
Nrf2 ↓

WB (118)

H2O2-induced chondrocytes Anti-aging mRNA and protein expressions of Nrf2, HO-1 and NQO1 ↑ WB and RT-PCR (138)

H2O2-induced ARPE-19 cells Protein expressions of HO-1 and nuclear Nrf2 ↑ WB (139)

High-fat diet-induced mice Anti-diabetic Protein expressions of p-Nrf2/Nrf2, HO-1, SOD2 and CAT in liver tissues ↑ WB (135)

Palmitate-induced HepG2 cells Protein expressions of p-Nrf2/Nrf2, HO-1, SOD2 and CAT ↑; nuclear translocation of p-Nrf2 ↑ WB and IF

Light exposure-induced mice Anti-oxidation mRNA expressions of Nrf2 and TrxR1 in retinas ↑ RT-PCR (163)

ID-8 cells bearing-mice Anti-cancer mRNA and protein expressions of Keap1, Nrf2 and HO-1 in liver and kidney tissues ↑ WB and RT-PCR (168)

UVB-induced HSF cells Anti-radiation Protein expressions of Nrf2 and p-Nrf2 ↑ WB (28)

UVB-induced HaCaT cells Anti-radiation Protein expression of SOD and nuclear Nrf2 ↑; mRNA expressions of AKR1C2, APOE, GCLC, GCLM,
HBEGF, HO-1 and NQO1 ↑

WB and RT-qPCR (142)

Cerulein-induced mice Anti-inflammation Nuclear Nrf2 protein expression and HO-1 activity in pancreas ↑ Assay kit and WB (23)

Mycoplasma-infected splenic
lymphocytes

Immunomodulation mRNA and protein expressions of Nrf2, HO-1 and NQO1 ↑ WB and RT-PCR (143)

Ischemia-reperfusion-induced
rats

Neuroprotection Protein expressions of HO-1 and nuclear Nrf2 in retina ↑ WB and IF (171)

H2O2-induced PC12 cells Neuroprotection Protein expressions of Nrf2 and HO-1 ↑; mRNA expression of HO-1 ↑ WB, RT-qPCR and ChIP (121)

CoCl2-induced rats mRNA expressions of Nrf2 and HO-1 in brain tissues ↑ RT-qPCR

LPS-induced rats Kidney protection mRNA and protein expressions of Nrf2, HO-1 and NQO1 in kidney tissues ↑; mRNA and protein
expressions of Keap1 in kidney tissues ↓

WB and RT-qPCR (154)

mRNA and protein expressions of Nrf2 in kidney tissues ↑; mRNA and protein expressions of Keap1 in
kidney tissues ↓; mRNA expressions of HO-1 and NQO1 in kidney tissues ↑

WB, RT-qPCR and IHC (155)

Lead-induced mice Kidney protection Protein expression of Keap1 in kidney tissues ↓; protein expressions of Nrf2, HO-1 and NQO1 in kidney
tissues ↑

WB (156)

CTX-induced rats Improving reproductive
function

Protein expressions of Nrf2, HO-1 and NQO1 in ovarian tissues ↑ WB (169)

Ischemia/reperfusion-induced
rats

Cardioprotection Protein expressions of nuclear and cytosol Nrf2 in myocardial tissues ↑; protein expressions of HO-1 and
NQO1 in myocardial tissues ↑

WB (124)

Hypoxia/reoxygenation-induced
H9c2 cells

Protein expressions of nuclear and cytosol Nrf2 ↑; protein expressions of HO-1 and NQO1 ↑ WB and IF

(Continued)
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TABLE 1 (Continued)

Polysaccharide
source

Experimental model Health-promoting
effects

Regulation on Nrf2 antioxidant pathway Determination
method

References

Ischemia/reperfusion-induced
H9c2 cells

Cardioprotection Protein expression of nuclear Nrf2 ↑; protein expression of cytosol Nrf2 ↓ WB (19)

Dendrobium officinale DSS-induced mice Liver protection mRNA expressions of Nrf2, HO-1 and NQO1 in liver tissues ↑; protein expressions of Keap1, Nrf2 and
HO-1 in liver tissues ↑

WB and RT-PCR (67)

Lung protection Protein expression of nuclear Nrf2 in lung tissues ↑; protein expression of cytosol Nrf2 in lung tissues ↑;
protein expressions of HO-1 and NQO1 in lung tissues ↑

WB (20)

LPS-induced BEAS-2B cells Nuclear/cytosol Nrf2 ↑; protein expressions of HO-1 and NQO1 ↑ WB and IF

Acetaminophen-induced mice Liver protection Protein expression of nuclear Nrf2 in liver tissues ↑; Protein expression of cytosol Keap1 in liver tissues ↓;
mRNA expressions of HO-1, NQO1, GCLC and GCLM in liver tissues ↑

WB and RT-PCR (147)

LPS-induced RAW264.7 cells Anti-inflammation mRNA expressions of Nrf2, HO-1 and NQO1 ↑; protein expressions of Keap1, Nrf2 and HO-1 ↑ WB and RT-PCR (67)

Ovariectomy or D-Gal-induced
mice

Anti-aging Protein expressions of hippocampal Nrf2 and HO-1 ↑ IF (68)

D-Gal-induced mice mRNA expressions of Nrf2, HO-1 and NQO1 in liver tissues ↑ RT-qPCR (18)

ADM, ODM, ADM + H2O2 or
ODM + H2O2-induced BMSCs
cells

Anti-aging mRNA and protein expressions of Nrf2 ↑; mRNA expressions of HO-1 and NQO1 ↑ WB and RT-qPCR (140)

Cisplatin-induced mice Improving reproductive
function

mRNA expressions of Nrf2, HO-1 and NQO1 in testis ↑; Protein expressions of HO-1 and NQO1 in testis
↑

WB and RT-PCR (170)

MNNG-induced rats Gastrointestinal protection Protein expressions of Nrf2, nuclear Nrf2, HO-1 and NQO1 in stomach tissues ↑; mRNA expressions of
Nrf2, HO-1 and NQO1 in stomach tissues ↑

WB, RT-PCR and IHC (161)

Astragalus membranaceus Tilmicosin-induced rats Liver protection mRNA expressions of Nrf2 and HO-1 in liver tissues ↑ RT-qPCR (149)

CCl4-induced rats mRNA expressions of Nrf2, SOD1 and GPX1 in liver tissues ↑ RT-qPCR (150)

AD model APP/PS1 mice Anti-aging mRNA and protein expressions of Keap1 in brain tissues ↓; mRNA expression of Nrf2 in brain tissues ↑;
protein expression of nuclear Nrf2 in brain tissues ↑; protein expression of cytosol Nrf2 in brain tissues ↓

WB, RT-PCR and IF (167)

Oxalate-induced HK-2 cells Kidney protection Protein expressions of Nrf2, SOD1 and CAT ↑; protein expression of Keap1 ↓ WB (60)

Adjuvant arthritis rats Cardioprotection mRNA expressions of Keap1, MAF and Nrf2 in heart tissues ↓; protein expressions of HO-1 and γ-GCS in
heart tissues ↓

RT-qPCR (159)

RSL3-induced Caco-2 cells Gastrointestinal protection Protein expressions of Nrf2 and HO-1 ↓ WB (127)

DSS-induced mice Protein expressions of Nrf2 and HO-1 ↓

Echinacea purpurea Ethanol-induced mice Liver protection Protein expressions of Nrf2, HO-1 and NQO1 in liver tissues ↑ WB (36)

CCl4-induced mice Protein expressions of Nrf2 and HO-1 in liver tissues ↑; protein expressions of Keap1 in liver tissues ↓ WB (116)

Dandelion root Acetaminophen-induced mice Liver protection Protein expressions of Nrf2, HO-1 and NQO1 in liver tissues ↑; protein expressions of Keap1 in liver
tissues ↓

ELISA (57)

(Continued)
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TABLE 1 (Continued)

Polysaccharide
source

Experimental model Health-promoting
effects

Regulation on Nrf2 antioxidant pathway Determination
method

References

Sagittaria sagittifolia Isoniazid + rifampicin-induced
mice

Liver protection Protein and mRNA expressions of Nrf2, HO-1 and GCLC in liver tissues ↑; protein and mRNA
expressions of Keap1 in liver tissues ↓

WB, RT-PCR and IHC (151)

Isoniazid + rifampicin-induced
HepG2 cells

Liver protection Protein and mRNA expressions of Nrf2 ↑; protein and mRNA expressions of Keap1 ↓ WB and RT-PCR (119)

Methionine and choline deficient
diet-induced mice

Liver protection Protein expressions of Nrf2 in liver tissues ↑ WB and IHC (152)

Mixture of Cd + Cr + Pb + Mn +
Zn + Cu-induced mice

Liver protection Protein expressions of Nrf2 and NQO1 in liver tissues ↑; protein expression of HO-1 in liver tissues ↓ WB, RT-qPCR and IHC (14)

Mixture of Cd + Cr + Pb + Mn +
Zn + Cu-induced L02 cells

Protein expressions of Nrf2, HO-1 and NQO1 ↓; mRNA expressions of Nrf2 and HO-1 ↓

Salvia miltiorrhiza LPS-induced mice Liver protection Protein expressions of Nrf2 and HO-1 in liver tissues ↑ WB (153)

Florfenicol-induced chicks Kidney protection mRNA and protein expressions of Nrf2 and HO-1 in kidney tissues ↑; mRNA expression of NQO1 in
kidney tissues ↑

WB and RT-qPCR (21)

Panax notoginseng Ethanol-induced mice Liver protection mRNA expressions of Nrf2, NQO1 and Cu/Zn-SOD in liver tissues ↑; mRNA and protein expressions of
CAT in liver tissues ↓; protein expression of Nrf2 in liver tissues ↑

WB and RT-PCR (54)

Triticum aestivum sprout Ethanol-induced mice Liver protection mRNA expressions of p67phox, p47phox and p22phox in liver tissues ↓; mRNA expressions of Nrf2 and
HO-1 in liver tissues ↑

RT-PCR (148)

Dicliptera chinensis High-fat diet-induced mice Liver protection Protein expression of Nrf2 in liver tissues ↑ WB (41)

Angelica sinensis 5-Fu-induced mice Liver protection Protein expressions of Nrf2 and HO-1 along with nuclear Nrf2 in liver tissues ↑; protein expressions of
Keap1 and cytosol Nrf2 in liver tissues ↓

WB, IHC and IF (120)

5-Fu-induced MIHA cells Protein expressions of Nrf2 and HO-1 along with nuclear Nrf2 ↑; protein expressions of Keap1 and cytosol
Nrf2 ↓

WB and IF

Athyrium multidentatum D-Gal-induced mice Anti-aging mRNA and protein expressions of Nrf2 and HO-1 in liver tissues ↑ WB and RT-PCR (84)

H2O2-induced HUVECs Anti-oxidation mRNA expressions of Nrf2 and HO-1 ↑ RT-qPCR (85)

Portulaca oleracea L. H2O2-induced MC3T3-E1 cells Anti-aging Protein expressions of Keap1, Nrf2, HO-1 and NQO1 ↑ WB (141)

Codonopsis lanceolata High fat/high sucrose
diet-induced mice

Anti-diabetic Protein expressions of nuclear and cytosol Nrf2 in liver tissues ↑; protein expressions of nuclear and
cytosol Keap1 in liver tissues ↓; mRNA expressions of Nrf2, HO-1 and NQO1 in liver tissues ↑

WB and RT-PCR (58)

Pumpkin High-fat diet + STZ-induced
mice

Anti-diabetic Protein expressions of HO-1 and nuclear Nrf2 in liver tissues ↑ WB (56)

Abelmoschus esculentus High-fat diet + STZ-induced
mice

Anti-diabetic Protein expressions of Nrf2, HO-1 and SOD2 kidney tissues ↑ WB (165)

Protein expressions of HO-1, SOD2 and Nrf2 liver tissues ↑; protein expressions of NOX2 in liver tissues ↓ WB and IHC (166)

Cassia seeds High glucose-induced HRECs Anti-diabetic Protein expressions of Nrf2 and HO-1 ↑; mRNA expression of HO-1 ↑ WB and RT-qPCR (146)

(Continued)
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TABLE 1 (Continued)

Polysaccharide
source

Experimental model Health-promoting
effects

Regulation on Nrf2 antioxidant pathway Determination
method

References

Polygonatum sibiricum High glucose-induced ARPE-19
cells

Anti-diabetic Protein expressions of HO-1 and nuclear Nrf2 ↑ WB (136)

High-glucose- and
high-insulin-induced 3T3-L1
adipocytes

Anti-diabetic Protein expressions of Nrf2 and HO-1 ↑ (137)

MPTP-induced mice Neuroprotection Protein expressions of Nrf2 and NQO1 ↑ WB (22)

MPP+-induced N2a cells Protein expressions of Nrf2, HO-1, NQO1, GCLC and GCLM ↑

Codonopsis pilosula Ethanol-induced mice Anti-oxidation mRNA expressions of Keap1 and Nrf2 in liver tissues ↑ RT-PCR (164)

H2O2-induced RAW264.7 cells Anti-oxidation Protein expressions of Keap1 ↓; protein expressions of Nrf2, HO-1, NQO1, GCLM and GCLC ↑ WB (131)

H2O2-induced IPEC-J2 cells Gastrointestinal protection mRNA expressions of GPX, SOD1, CAT, Nrf2, NQO1 and HO-1 ↑ RT-qPCR (55)

mRNA expressions of GPXs, SOD1 and CAT ↑ (66)

Taraxacum mongolicum Jian carp Anti-oxidation mRNA expression of Keap1 in spleen ↓; mRNA expressions of Nrf2, HO-1, Cu/Zn-SOD, GPX, CAT and
Mn-SOD in spleen ↑

RT-qPCR (15)

Taraxacum officinale LPS-induced RAW264.7 cells Anti-oxidation Protein expressions of Nrf2 and HO-1 ↑ WB (132)

Alfalfa H2O2-induced MEFs cells Anti-oxidation Protein expressions of nuclear and cytosol Nrf2 ↑ WB and IF (133)

Hosta ventricosa Tert-butyl
hydroperoxide-induced HepG2
cells

Anti-oxidation mRNA expressions of Keap1, Nrf2, HO-1, NQO1 and GST ↑; protein expressions of HO-1, NQO1 and
nuclear Nrf2 ↑; protein expression of cytosol Nrf2 ↓

WB and RT-qPCR (130)

Cistanche deserticola H2O2-induced HEMs Anti-oxidation Protein expressions of nuclear and cytosol Nrf2 along with nuclear/cytosol Nrf2 ↑; protein expression of
HO-1 ↑

WB and IF (134)

Fermented wheat bran Zebrafish Anti-oxidation mRNA expressions of CAT, GPX-3, GST, Nrf2 and p38 in intestines ↑ RT-qPCR (162)

Thymus quinquecostatus AAPH-induced zebrafish Anti-oxidation mRNA expression of Keap1 in larvae ↓; mRNA expressions of Nrf2, SOD, CAT and HO-1 in larvae ↑ RT-qPCR (47)

Wheat germ Oleic acid-induced HepG2 cells Anti-oxidation Protein expression of Nrf2, HO-1 and nuclear Nrf2 ↑ ELISA and WB (129)

Apios americana LPS-induced RAW264.7 cells Anti-inflammation Protein expressions of Keap1 and Nrf2 ↑ WB (69)

Polygonatum cyrtonema LPS and CUMS-induced mice Anti-depression Protein expressions of Nrf2 and HO-1 in hippocampal tissues ↑ WB and IF (25)

Aloe vera UVB-induced PC12 cells Neuroprotection mRNA and protein expressions of Keap1, Nrf2, GCLC and GSTP1 ↑ WB and RT-PCR (122)

DSS-induced mice Gastrointestinal protection Protein expressions of Nrf2, HO-1 and NQO1 in colon tissues ↑ WB (40)

Lycium ruthenicum OGD/R-induced primary cortical
neurons

Neuroprotection Protein expressions of HO-1 and nuclear Nrf2 ↑ WB (65)

Perilla frutescens H2O2-induced HT22 cells Neuroprotection Protein expressions of HO-1, NQO1 and nuclear Nrf2 ↑; protein expression of cytosol Nrf2 ↓ WB (123)

Potentilla anserina Cadmium-induced HEK293 cells Kidney protection Protein expressions of Nrf2 and PGC-1α ↓ WB (59)

Cadmium-induced mice Protein expressions of Nrf2 and PGC-1α in kidney tissues ↓

(Continued)
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used in above isolation and purification processes. Acidic
polysaccharides (CPP-1 and CPSP-1; CTP-1 and CTSP-1) purified
respectively from roots (55) and stems (66) of Codonopsis pilosula
and Codonopsis tangshen had different Mw, monosaccharide
composition, glycosidic bond types, backbone and side chains. Two
purified fractions (TTP-1 and TVP) acquired from tubers (71)
and vines (86) of Tetrastigma hemsleyanum revealed differences
in Mw and monosaccharide composition. A low-fucose-content
polysaccharide (LFC) (53) and a high-fucose-content one (HFC)
(37, 38) were purified from the glucose mineral salts medium
(GMSM) and one in GMSM-supplemented jute culture of Bacillus
megaterium, and they displayed different Mw, monosaccharide
composition, glycosidic bond types, backbone and side chains.
Two polysaccharides (PNP80b-2 and PNP40c-1) were purified
from water extracts of Pinus koraiensis pine nut by ethanol
(80 and 40%, respectively) precipitation and same column
chromatography procedures, and they were different in Mw,
monosaccharide composition and glycosidic bond types (87–
90). Two purified fractions (EPP80 and EPPS-3) from Echinacea
purpurea were obtained by ultrasonic extraction and stepwise
ethanol precipitation (36), and water extraction and column
chromatography (116), respectively. EPP80 and EPPS-3 exhibited
different Mw and monosaccharide composition. Two fractions
(DRP1 and DRP2) from Dandelion root polysaccharides were
obtained by column chromatography with water and 0.1 M
NaCl elution, respectively, and they showed differences in Mw,
monosaccharide composition, glycosidic bond types and backbone
(57). Five purified fractions (PS-1, PS-2, PS-3, PS-4, and PS-5)
were gained from Athyrium multidentatum subsequently eluted
with 0, 0.1, 0.2, 0.3, and 0.4 M NaCl solutions, and they possessed
different Mw and monosaccharide composition ratios (85). Two
purified polysaccharides (CPP0.05 and CPP0.1) were obtained by
eluting with 0.05 M and 0.1 M NaCl from Cyclocarya paliurus,
and they behaved differences in Mw, monosaccharide composition,
glycosidic bond types, backbone and side chains (72, 95, 96).

Regulation of NPs on Nrf2
antioxidant pathway for
health-promoting effects

Regulation of NPs from herbs

Cell experiments have demonstrated that NPs from herbs
could regulate Nrf2 antioxidant pathway for liver protection
(14, 117–120), kidney protection (59, 60), lung protection (20),
neuroprotection (22, 65, 121–123), cardioprotection (19, 124, 125),
gastrointestinal protection (48, 55, 61, 62, 66, 126–128), anti-
oxidation (85, 129–134), anti-diabetic (135–137), anti-aging (138–
141), anti-inflammation (67, 69), anti-radiation (28, 142), and
immunomodulation (143), as illustrated in Table 1.

Natural polysaccharides from herbs exerted liver protection
against ethanol- (117, 118) or mixture of Cd + Cr + Pb +
Mn + Zn + Cu-induced (14) L02 cells, isoniazid + rifampicin-
induced HepG2 cells (119) and 5-fluorocrail (5-Fu)-induced
MIHA cells (120), partly through modulating protein and mRNA
expressions of Nrf2, HO-1, and NQO1, increasing protein
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expressions of GCLC and nuclear Nrf2, and decreasing protein
and/or mRNA expressions of Keap1 and cytosol Nrf2. Those
from Astragalus membranaceus (60) and Potentilla anserine (59)
exhibited kidney protection on oxalate-induced HK-2 cells and
cadmium-induced HEK293 cells, respectively, whose actions were
related to regulation of Nrf2 protein expression, reduction of
Keap1 and PGC-1α protein expressions and increment of SOD1
and CAT protein expressions. Polysaccharide from Dendrobium
officinale showed lung protection in LPS-induced BEAS-2B cells
involved with increases of HO-1 and NQO1 protein expressions
as well as nuclear/cytosol Nrf2 ratio (20). NPs from herbs
displayed neuroprotection against MPP+-induced N2a cells (22),
H2O2- (121), UVB- (122), and OGD/R-induced (144) PC12
cells, OGD/R-induced primary cortical neurons (65), and H2O2-
induced microglia BV2 cells (145) or HT22 cells (123), which were
correlated with promotions of mRNA and protein expressions of
Keap1, Nrf2, HO-1, NQO1, GCLC, GCLM, and GSTP1 along with
nuclear Nrf2, and reduction of cytosol Nrf2 protein expression.
Moreover, Salvia miltiorrhiza polysaccharides protected PC12
cells from OGD/R-induced ferroptosis and lipid peroxidation by
activating Nrf2/HO-1 pathway (144). Polygonatum cyrtonema Hua
polysaccharides alleviated ferroptosis in H2O2-induced microglia
BV2 cells by activating Nrf2/HO-1 signaling pathway (145). NPs
from herbs revealed cardioprotection on hypoxia/reoxygenation-
(124), ischemia/reperfusion- (19) or H2O2-induced (125) H9c2
cells by modulating protein and mRNA expressions of Nrf2, HO-
1, and NQO1 as well as nuclear and cytosol Nrf2. Those of herbs
appeared gastrointestinal protection against RSL3-induced Caco-2
cells (127), H2O2- (126) or radiation-induced (128) IEC-6 cells and
H2O2-induced IPEC-J2 cells (48, 55, 62, 66) or IPEC-1 cells (61),
partly through modulating protein and mRNA expressions of Nrf2
and HO-1, elevating protein and mRNA expressions of NQO1,
SOD, SOD1, CAT, GPX, nuclear, and cytosol Nrf2 along with
cytosol HO-1, and decreasing Keap1 protein expression. Moreover,
Astragalus polysaccharide exhibited inhibitory effect on ferroptosis
in RSL3-induced Caco-2 cells and this effect was associated with
the Nrf2/HO-1 pathway (127). NPs from herbs possessed anti-
oxidation on H2O2-induced HUVECs (85), H2O2- (131) or LPS-
induced (132) RAW264.7 cells, H2O2-induced MEFs cells (133),
tert-butyl hydroperoxide- (130) or oleic acid-induced (129) HepG2
cells and H2O2-induced HEMs (134) via enhancing protein and
mRNA expressions of Nrf2, HO-1, NQO1, GCLM, GCLC, and GST
along with nuclear/cytosol Nrf2, and regulating protein and mRNA
expressions of Keap1. Those from herbs exhibited anti-diabetic
effect on palmitate-induced HepG2 cells (135), high glucose-
induced ARPE-19 cells (136) or HRECs (146), and high-glucose-
and high-insulin-induced 3T3-L1 adipocytes (137) by augmenting
protein or mRNA expressions of p-Nrf2/Nrf2, Nrf2, HO-1, SOD2,
CAT, and nuclear Nrf2 as well as nuclear translocation of p-Nrf2.
NPs from herbs showed anti-aging activity against H2O2-induced
chondrocytes (138), H2O2-induced ARPE-19 cells (139), ADM,
ODM, ADM + H2O2, or ODM + H2O2-induced BMSCs cells (140),
H2O2-induced MC3T3-E1 cells (141) through rising mRNA and/or
protein expressions of Keap1, Nrf2, HO-1, and NQO1 as well
as nuclear Nrf2. Polysaccharides from Dendrobium officinale (67)
and Apios americana (69) produced anti-inflammation on LPS-
induced RAW264.7 cells partly by adding protein and/or mRNA
expressions of Keap1, Nrf2, HO-1 and NQO1. Polysaccharides

from Lycium barbarum produced anti-radiation action on UVB-
induced HSF and HaCaT cells via enlarging protein and/or
mRNA expressions of Nrf2, p-Nrf2, HO-1, NQO1, GCLC, GCLM,
SOD, AKR1C2, APOE, and HBEGF along with nuclear Nrf2
(28, 142). Meanwhile, Lycium barbarum polysaccharide caused
immunomodulation in mycoplasma-infected splenic lymphocytes
through increments of mRNA and protein expressions of Nrf2,
HO-1, and NQO1 (143).

Animals experiments have demonstrated that NPs from herbs
could regulate Nrf2 antioxidant pathway for liver protection (14,
36, 41, 54, 57, 67, 116, 120, 147–153), kidney protection (21, 59,
154–157), lung protection (20, 158), neuroprotection (22, 121),
cardioprotection (124, 159), gastrointestinal protection (16, 40, 48,
127, 128, 160, 161), anti-oxidation (15, 47, 162–164), anti-diabetic
(56, 58, 135, 146, 165, 166), anti-aging (18, 68, 84, 167), anti-
inflammation (23), anti-depression (25), anti-cancer (168), and
improving reproductive function (169, 170), as implied in Table 1.

Natural polysaccharides from herbs exerted liver protection
against DSS- (67), acetaminophen- (57, 147), tilmicosin- (149),
CCl4- (116, 150), ethanol- (36, 54, 148), isoniazid + rifampicin-
(151), methionine and choline deficient diet- (152), mixture of
Cd + Cr + Pb + Mn + Zn + Cu- (14), LPS- (153), high-fat diet-
(41), and 5-Fu-induced (120) mice or rats, through increasing
mRNA and protein expressions of Nrf2, nuclear Nrf2, NQO1,
GCLC, GCLM, Cu/Zn-SOD, SOD1, and GPX1 in liver tissues,
modulating protein and/or mRNA expressions of Keap1 and HO-
1, and decreasing protein and/or mRNA expressions of cytosol
Keap1, CAT, cytosol Nrf2, p67phox, p47phox, and p22phox in
liver tissues. NPs from herbs exhibited kidney protection on
LPS- (154, 155), lead- (156), florfenicol- (21), cadmium- (59),
and STZ-induced (157) mice, rats or chicks via elevating mRNA
and protein expressions of HO-1 and NQO1, regulating Nrf2
expression, and down-regulating mRNA and protein expressions
of Keap1 and PGC-1α in kidney tissues. Those from herbs
showed lung protection hyperoxia- (158) and DSS-induced (20)
mice by enhancing activities and/or protein expressions of Nrf2,
cytosol Nrf2, nuclear Nrf2, HO-1, and NQO1 in lung tissues
as well as protein expressions of Nrf2 in PMVECs isolated
from lung, and reducing protein expression of Keap1 in lung
tissues. NPs from herbs reflected neuroprotection against ischemia-
reperfusion- (171), CoCl2- (121), and MPTP-induced (22) mice
or rats, which is related to increments of protein and/or mRNA
expressions of nuclear Nrf2, Nrf2, HO-1 and NQO1 in retina
or brain tissues. Those from herbs displayed cardioprotection
on ischemia/reperfusion-induced (124) and adjuvant arthritis rats
(159), involving with aggrandizement of protein expressions of
nuclear and cytosol Nrf2, HO-1 and NQO1 in myocardial tissues,
and declination of mRNA and/or protein expressions of Keap1,
MAF, Nrf2, HO-1, and γ-GCS in heart tissues. NPs from herbs
appeared gastrointestinal protection against MNNG- (161), DSS-
(16, 40, 127), radiation- (128), and CTX-induced (160) mice or
rats as well as aged mice (48), via up-regulating protein and/or
mRNA expressions of nuclear and cytosol Nrf2, cytosol HO-1,
NQO1, SOD, SOD1, SOD2, CAT, GPX, and GPX1, modulating
protein and/or mRNA expressions of Nrf2 and HO-1, and down-
regulating Keap1 protein expression in stomach, colon or jejunum
tissues. Meanwhile, Astragalus polysaccharide inhibited ferroptosis
of colonic tissue through Nrf2/HO-1 pathway in DSS-induced mice
(127). NPs from herbs generated anti-oxidation effects on light
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exposure-induced mice (163), ethanol-induced mice (164), AAPH-
induced zebrafish (47) as well as Jian carp (15) and zebrafish (162)
through adding mRNA expressions of Nrf2, HO-1, Cu/Zn-SOD,
GPX, GPX-3, CAT, SOD, Mn-SOD, GST, TrxR1, and p38, and
modulating Keap1 mRNA expression in retinas, spleen or liver
tissues. NPs from herbs produced anti-diabetic activity against
high-fat diet- (135), high fat/high sucrose diet- (58) and high-
fat diet + STZ-induced (56, 165, 166) mice via increasing protein
and/or mRNA expressions of p-Nrf2/Nrf2, nuclear and cytosol
Nrf2, Nrf2, HO-1, NQO1, SOD2, and CAT in liver or kidney
tissues, and decreasing protein expressions of nuclear and cytosol
Keap1 and NOX2 in liver tissues. Those from herbs caused
anti-aging effects on ovariectomy or D-Gal-induced mice (18,
68, 84) and AD model APP/PS1 mice (167), through elevating
mRNA and protein expressions of nuclear Nrf2, Nrf2, HO-1 and
NQO1 in hippocampal, brain, and liver tissues, and reducing
mRNA and/or protein expressions of Keap1 and cytosol Nrf2
in brain tissues. Lycium barbarum polysaccharide revealed anti-
inflammation against cerulein-induced mice by adding nuclear
Nrf2 protein expression and HO-1 activity in pancreas (23).
Meanwhile, this polysaccharide implied anti-cancer action against
ID-8 cells bearing-mice through up-regulation of mRNA and
protein expressions of Keap1, Nrf2 and HO-1 in liver and kidney
tissues (168). Polygonatum cyrtonema polysaccharide had anti-
depression activity on LPS and CUMS-induced mice via increasing
protein expressions of Nrf2 and HO-1 in hippocampal tissues
(25). NPs from herbs possessed improving reproductive function
against CTX-induced rats (169) and cisplatin-induced mice (170)
by elevating protein and/or mRNA expressions of Nrf2, HO-1 and
NQO1 in ovarian or testis tissues.

Regulation of NPs from woody plants

Cell experiments have indicated that NPs from woody plants
could regulate Nrf2 antioxidant pathway for liver protection (30,
45, 46, 50, 70, 92, 172), kidney protection (173), gastrointestinal
protection (86), neuroprotection (75), cardioprotection (78), anti-
aging (74), anti-diabetic (174), anti-oxidation (72, 96, 175), and
anti-inflammation (71), as showed in Table 2.

Natural polysaccharides from woody plants exhibited liver
protection against H2O2-induced primary hepatocytes from hybrid
grouper (30), H2O2-induced AML12 cells (50), CCl4- (70) and
palmitic acid-induced (45, 46) HepG2 cells, cyclosporin A-induced
LX-2 cells (92), and hepatocytes isolated from high-fat diet-
induced hybrid grouper (172), involving with increments of
mRNA and protein expressions of p-Nrf2, nuclear Nrf2, Nrf2,
HO-1, NQO1, γ-GCL, GCLC, Mn-SOD, GPX, and CAT as well
as nuclear translocation of Nrf2, and reduction of GR mRNA
expression. Schisandra chinensis polysaccharide generated kidney
protection on 293T cells through increasing protein expressions
of nuclear Nrf2, Nrf2, NQO1, and HO-1 along with NQO1-
antioxidant response element-luciferase activity, and decreasing
protein expressions of cytosol Keap1 and Nrf2 (173). NPs
from Tetrastigma hemsleyanum showed gastrointestinal protection
against ethyl carbamate-induced Caco-2 cells, by elevating protein
expressions of Keap1 and Nrf2 (86). Polysaccharide from Annona
muricata (75) caused neuroprotection on H2O2-induced HT22

cells via adding protein expressions of HO-1, NQO1 and
nuclear Nrf2, and reducing cytosol Nrf2 protein expression.
Fructus Aurantii polysaccharide produced cardioprotection against
hypoxia/reoxygenation-induced H9c2 cells through lowering
protein expressions of HO-1 and Nrf2 (78). Taxus chinensis var.
mairei polysaccharide exerted anti-aging action on D-Gal-induced
BV2 cells by promoting protein expressions of Nrf2 and SOD
(74). Polysaccharide Opuntia milpa alta (174) revealed anti-diabetic
activities against alloxan-induced INS-1 cells, which was related
to enhancements of protein expressions of Nrf2 and γ-GCSc.
NPs from woody plants displayed anti-oxidation effects on H2O2-
induced DCs (72, 96) and 293T cells (175), partly by rising protein
and/or mRNA expressions of Nrf2, CAT, GPX1, SOD, HO-1,
and NQO1, and reducing Keap1 protein expression. Tetrastigma
hemsleyanum polysaccharide reflected anti-inflammation on LPS-
induced RAW264.7 cell via through improving protein expressions
of Keap1 and Nrf2 (71).

Animal experiments have indicated that NPs from woody
plants could regulate Nrf2 antioxidant pathway for liver protection
(30, 50, 79, 80, 82, 83, 87, 88, 90, 91, 94, 172, 176),
cardioprotection (77), anti-aging (74, 76), anti-oxidation (177–
179), and immunomodulation (180, 181), as reflected in Table 2.

NPs from woody plants had liver protection against H2O2-
induced hybrid grouper (30), acetaminophen-induced mice (50,
82, 87), high-fat diet-induced mice (79, 94, 176), CCl4-induced
mice (80, 90), ethanol-induced mice (87, 88), and concanavalin
A-induced mice (83), involving with increment of protein and/or
mRNA expressions of nuclear Nrf2, Nrf2, HO-1, NQO1, GCLC,
CAT, GSTα, GPX, GR, and MKP1 along with nuclear translocation
of Nrf2, and reduction of protein and/or mRNA expressions
of Keap1 and cytosol Nrf2 in liver tissues. Fructus Aurantii
polysaccharide exerted cardioprotection against isoproterenol-
induced rats via enhancing protein expressions of HO-1, NQO1,
GCLM, γ-GCS, nuclear Nrf2, and cytosol Nrf2 in cardiac muscle
tissues (77). Polysaccharides from Aronia melanocarpa (76) and
Taxus chinensis var. mairei (74) revealed anti-aging activity
on D-Gal-induced mice by up-regulating protein expressions
of nuclear Nrf2, Nrf2, HO-1, and SOD in brain tissues. NPs
from woody plants generated anti-oxidation effect against LPS-
induced broilers (178) or Nile tilapia (179) and CTX-induced
mice (177), which was related to enhancement of mRNA and
protein expressions of Nrf2, NQO1, HO-1, GPX, CAT, SOD1,
and SOD in liver tissues, intestines or larvae, and reduction
of mRNA and protein expressions of Keap1 in liver tissues or
larvae. Polysaccharides from Pyracantha fortuneana (180) and
selenium-enriched green tea (181) reflected immunomodulation
on mice through adding mRNA and protein expressions of
Nrf2 in splenocytes.

Regulation of NPs from algae

The regulations of NPs on Nrf2 antioxidant pathway from algae
in cell and animal experiments are revealed in Table 3.

Cell experiments have showed that NPs from algae could
regulate Nrf2 antioxidant pathway for liver protection (182),
lung protection (183), anti-diabetic (17), anti-oxidation (44, 184),
and anti-cancer (26). Brown seaweed polysaccharide produced
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TABLE 2 Regulation of NPs from woody plants on Nrf2 antioxidant pathway for health-promoting effects.

Polysaccharide
source

Experimental
model

Health-promoting
effects

Regulation on Nrf2 antioxidant
pathway

Determination
method

References

Chestnut shell H2O2-induced primary
hepatocytes from hybrid
grouper

Liver protection mRNA expressions of GPX, Mn-SOD and Nrf2 ↑;
mRNA expression of GR ↓

RT-PCR (30)

H2O2-induced hybrid
grouper

mRNA expressions of CAT, GPX and GR in liver
tissues ↑

Smilax china L. Acetaminophen-induced
mice

Liver protection Protein expressions of Nrf2, HO-1, NQO1 and
GCLC along with nuclear translocation of Nrf2 in
liver tissues ↑

WB and EMSA (50)

H2O2-induced AML12
cells

Protein expression of Nrf2 and nuclear
translocation of Nrf2 ↑; mRNA and protein
expressions of HO-1, NQO1 and GCLC ↑

WB and RT-PCR

Anoectochilus
zhejiangensis

CCl4-induced HepG2
cells

Liver protection Protein expressions of Nrf2, HO-1 and NQO1 ↑ WB (70)

Malpighia emarginata High-fat diet-induced
mice

Liver protection Protein expressions of Nrf2, HO-1 and NQO1 in
liver tissues ↑

WB (79)

Wild jujube CCl4-induced mice Liver protection Protein expressions of HO-1, GSTα and NQO1
along with nuclear Nrf2 in liver tissues ↑

WB (80)

Anoectochilus
roxburghii

High-fat diet-induced
mice

Liver protection Protein expressions of Nrf2, HO-1 and NQO1 in
liver tissues ↑

WB (176)

Pine nut CCl4-induced mice Liver protection mRNA expression of Nrf2 in liver tissues ↑; protein
and mRNA expression of Keap1 in liver tissues ↓;
protein and mRNA expressions of HO-1, NQO1
and GCLC in liver tissues ↑; protein expressions of
MKP1 and nuclear Nrf2 in liver tissues ↑; protein
expression of cytosol Nrf2 in liver tissues ↓

WB and RT-PCR (90)

mRNA expressions of Nrf2 and HO-1 in liver
tissues ↑

RT-PCR (87)

Ethanol-induced mice

Acetaminophen-induced
mice

Ethanol-induced mice Protein expressions of Nrf2 and HO-1 in liver
tissues ↑

WB (88)

Sonneratia apetala Acetaminophen-induced
mice

Liver protection Protein expression of nuclear Nrf2 in liver tissues
↑; Protein expressions of cytosol Keap1 and Nrf2 in
liver tissues ↓; protein and mRNA expressions of
HO-1, NQO1, GCLC and GCLM in liver tissues ↑

WB and RT-PCR (91)

Schisandra chinensis Acetaminophen-induced
mice

Liver protection Protein expressions of Nrf2 and HO-1 in liver
tissues ↑

WB (82)

Cyclosporin A-induced
LX-2 cells

Protein expression of nuclear Nrf2 ↑ (92)

Concanavalin A-induced
mice

Protein expressions of Nrf2 and HO-1 in liver
tissues ↑; protein expression of Keap1 in liver
tissues ↓

(83)

293T cells Kidney protection Protein expressions of Nrf2, NQO1 and HO-1, and
NQO1-antioxidant response element-luciferase
activity ↑; protein expressions of cytosol Keap1 and
Nrf2 ↓; protein expression of nuclear Nrf2 ↑

WB and IF (173)

Morinda citrifolia L. High-fat diet-induced
mice

Liver protection Nrf2 level in liver tissues ↑ ELISA (94)

Pomelo fruitlet Hepatocytes isolated
from High-fat
diet-induced hybrid
grouper

Liver protection mRNA expressions of Nrf2, Mn-SOD, CAT and
GPX ↑

RT-PCR (172)

Mulberry fruit Palmitic acid-induced
HepG2 cells

Liver protection mRNA expressions of HO-1, NQO1 and γ-GCL ↑;
protein expressions of p-Nrf2 and nuclear Nrf2 ↑

WB and RT-PCR (45)

(Continued)
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TABLE 2 (Continued)

Polysaccharide
source

Experimental
model

Health-promoting
effects

Regulation on Nrf2 antioxidant
pathway

Determination
method

References

Black mulberry Palmitate-induced
HepG2 cells

Liver protection mRNA expressions of HO-1, NQO1, γ-GCL, GPX
and CAT ↑; protein expressions of NQO1, p-Nrf2
and nuclear Nrf2 ↑

WB and RT-PCR (46)

Aronia melanocarpa D-Gal-induced mice Anti-aging Protein expressions of nuclear Nrf2 and HO-1 in
brain tissues ↑

WB (76)

Taxus chinensis var.
mairei

D-Gal-induced mice Anti-aging Protein expressions of Nrf2 and SOD in brain
tissues ↑

WB (74)

D-Gal-induced BV2 cells Protein expressions of Nrf2 and SOD ↑

Opuntia milpa alta Alloxan-induced INS-1
cells

Anti-diabetic Protein expressions of Nrf2 and γ-GCSc ↑ WB (174)

Cyclocarya paliurus H2O2-induced DCs Anti-oxidation mRNA expressions of CAT, GPX1, SOD, HO-1 and
NQO1 ↑; protein expression of Nrf2 ↑; protein
expression of Keap1 ↓

WB and RT-qPCR (72)

Protein expression of Nrf2 ↑; protein expression of
Keap1 ↓

WB (96)

Artemisia ordosica LPS-induced broilers Anti-oxidation mRNA and protein expressions of Nrf2, GPX, CAT
and SOD in liver tissues ↑; mRNA and protein
expressions of Keap1 in liver tissues ↓

WB and RT-PCR (178)

Pistachio hull LPS-induced Nile tilapia Anti-oxidation mRNA expressions of Nrf2, SOD and CAT in liver
tissues ↑

RT-PCR (179)

Chimonanthus nitens
Oliv

CTX-induced mice Anti-oxidation mRNA expressions of Nrf2, SOD1, CAT, GPX,
NQO1 and HO-1 in liver tissues ↑; mRNA and
protein expressions of Keap1 in liver tissues ↓;
protein expressions of Nrf2, NQO1 and HO-1 in
liver tissues ↑

WB and RT-qPCR (177)

Rice bran 293T cells Anti-oxidation Protein expressions of Nrf2, NQO1 and HO-1 ↑ WB (175)

Tetrastigma
hemsleyanum

LPS-induced RAW264.7
cells

Anti-inflammation Protein expressions of Keap1 and Nrf2 ↑ WB (71)

Ethyl carbamate-induced
Caco-2 cells

Gastrointestinal protection Protein expressions of Keap1 and Nrf2 ↑ WB (86)

Pyracantha fortuneana Mice Immunomodulation mRNA and protein expressions of Nrf2 in
splenocytes ↑

WB and RT-PCR (180)

Selenium-enriched
green tea

Mice Immunomodulation mRNA and protein expressions of Nrf2 in
splenocytes ↑

WB and RT-PCR (181)

Annona muricata H2O2-induced HT22
cells

Neuroprotection Protein expressions of HO-1, NQO1 and nuclear
Nrf2 ↑; protein expression of cytosol Nrf2 ↓

WB (75)

Fructus Aurantii Isoproterenol-induced
rats

Cardioprotection Protein expressions of HO-1, NQO1, GCLM and
γ-GCS in cardiac muscle tissues ↑; Protein
expressions of nuclear and cytosol Nrf2 in cardiac
muscle tissues ↑

WB (77)

Hypoxia/reoxygenation-
induced H9c2
cells

Protein expressions of HO-1 and Nrf2 ↓ (78)

liver protection on acetaminophen-induced HL-7702 cells through
increasing protein expressions of Nrf2 and nuclear Nrf2 (182).
Laminaria digitate polysaccharide generated lung protection
against H2O2-induced MRC-5 cells by up-regulating protein
and/or mRNA expressions of nuclear Nrf2, Nrf2, HO-1, NQO1
and GCLC as well as nuclear translocation of Nrf2, and
down-regulating Keap1 mRNA (183). Sargassum kjellmanianum
polysaccharide exhibited anti-diabetic effect on H2O2-induced
HUVECs via elevating protein expressions of Nrf2 and nuclear
Nrf2, and declining cytosol Nrf2 protein expression (17).

Polysaccharides from Padina boryana (184) and Hizikia fusiforme
(44) showed anti-oxidation action against H2O2-induced Vero cells
via adding protein expressions of cytosol Nrf2, Nrf2, CAT, and
SOD, and reducing protein expression of cytosol Keap1. Fucus
vesiculosus polysaccharide revealed anti-cancer activity on Ca9-22
and CAL27 cells through lowering mRNA expressions of Nrf2,
TXN and HO-1 (26).

Animal experiments have showed that NPs from algae could
regulate Nrf2 antioxidant pathway for liver protection (31, 97,
185), lung protection (186), kidney protection (97), gastrointestinal
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TABLE 3 Regulation of NPs from algae on Nrf2 antioxidant pathway for health-promoting effects.

Polysaccharide
source

Experimental
model

Health-promoting
effects

Regulation on Nrf2 antioxidant
pathway

Determination
method

References

Ecklonia cave LPS-induced mice Lung protection Protein expressions of Nrf2 and HO-1 in lung
tissues ↑

WB (186)

Laminaria digitata H2O2-induced MRC-5
cells

Lung protection mRNA expressions of Nrf2, HO-1, NQO1 and
GCLC ↑; mRNA expression of Keap1 ↓; protein
expression of nuclear Nrf2 ↑; Nuclear translocation
of Nrf2 ↑

WB, RT-qPCR and IF (183)

Laminaria japonica CTX-induced mice Liver protection Protein expressions of Nrf2, HO-1, GCLM and
NQO1 in liver or kidney tissues ↑

WB (97)

Kidney protection

Rotenone-induced rats Anti-aging Protein expressions of Nrf2 and PGC-1α in ventral
midbrain ↑

WB (98)

Enteromorpha prolifera CCl4-induced mice Liver protection Protein expressions of p-Nrf2 and HO-1 along with
p-Nrf2/Nrf2 in liver tissues ↑; mRNA expression of
NQO1 in liver tissues ↑

WB and RT-qPCR (31)

Heat stress-induced
Gallus gallus domesticus

Anti-oxidation mRNA expressions of SOD2, GSTO1 and HO-1 in
spleen ↑; protein expression of total Nrf2 in spleen
↑

WB and RT-qPCR (190)

Aflatoxin B1-induced
broilers

Immunomodulation mRNA expressions of SOD1, SOD2, GPX1, GPX3,
CAT1, GSTT1, GSTO1, GSTA3, Nrf2 and HO-1 in
bursa of fabricius ↑; protein expressions of Nrf2
and HO-1 in bursa of fabricius ↑

WB and RT-qPCR (24)

Heat stress-induced
broilers

Gastrointestinal protection mRNA expressions of Nrf2, HO-1, GPX1 and
GSTT1 in duodenum ↑

RT-qPCR (187)

Sargassum fusiforme High-fat diet-induced
mice

Liver protection Protein expressions of nuclear and cytosol Nrf2 in
liver tissues ↑; protein expression of Keap1 in liver
tissues ↓; mRNA expressions of Nrf2, NQO1,
HO-1, CAT, SOD2, Slc7a11, G6pd2, Prdx1, GPX2
and GPX4 in liver tissues ↑

WB and RT-qPCR (185)

Heat stress-induced
Drosophila melanogaster

Anti-aging mRNA expressions of CncC, HO and GCLC ↑;
mRNA expression of Keap1 ↓

RT-qPCR (99)

D-Gal-induced mice Protein expressions of Nrf2 and NQO1 in liver
tissues ↑; mRNA and protein expressions of Keap1
in liver tissues ↑; mRNA expressions of
Cu/Zn-SOD and GPX1 in liver tissues ↑

WB and RT-PCR (211)

Aged mice Gastrointestinal protection Protein expression of Nrf2 in intestinal tissues ↑;
mRNA expressions of Nrf2, NQO1, HO-1, CAT
and SOD2 in intestinal tissues ↑

WB and RT-PCR (188)

Brown seaweed Acetaminophen-induced
HL-7702 cells

Liver protection Protein expressions of Nrf2 and nuclear Nrf2 ↑ WB and IF (182)

Sargassum
kjellmanianum

H2O2-induced HUVECs Anti-diabetic Protein expressions of Nrf2 and nuclear Nrf2 ↑;
protein expression of cytosol Nrf2 ↓

WB and IF (17)

Antarctic ice
microalgae

D-Gal-induced mice Anti-oxidation mRNA and protein expressions of Cu/Zn-SOD,
Mn-SOD and CAT in liver and spleen tissues ↑;
mRNA expressions of Nrf2, HO-1, γ-GCS and
NQO1 in liver and spleen tissues ↑; protein
expressions of Nrf2, HO-1 and NQO1 in liver and
spleen tissues ↑

WB and RT-PCR (191)

Padina boryana H2O2-induced Vero cells Anti-oxidation Protein expressions of CAT and SOD ↑; protein
expression of cytosol Nrf2 ↑; protein expression of
cytosol Keap1 ↓

WB (184)

Hizikia fusiforme H2O2-treated Vero cells Anti-oxidation Protein expressions of Nrf2, CAT and SOD ↑ WB (44)

Fucus vesiculosus Ca9-22 and CAL27 cells Anti-cancer mRNA expressions of Nrf2, TXN and HO-1 ↓ RT-qPCR (26)

Coccomyxa
Gloeobotrydiformis

LPS-induced RAW264.7
cells

Anti-inflammation Protein expressions of HO-1 and nuclear Nrf2 ↑;
protein expression of cytosol Nrf2 ↓

WB (212)

Padina tetrastromatica Isoproterenol-induced
rats

Cardioprotection mRNA expressions of Nrf2 in heart tissues ↑;
protein expression of cytosol Nrf2 in heart tissues
↓; protein expression of nuclear Nrf2 in heart
tissues ↑

RT-PCR and IF (189)
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TABLE 4 Regulation of NPs from fungi on Nrf2 antioxidant pathway for health-promoting effects.

Polysaccharide
source

Experimental
model

Health-promoting
effects

Regulation on Nrf2 antioxidant
pathway

Determination
method

References

Trametes orientalis PM2.5-induced mice Lung protection Protein expressions of Nrf2 and HO-1 in lung
tissues ↑

WB (35)

Sarcodon aspratus H2O2-induced A549
cells

Lung protection Protein expression of p-Nrf2 and HO-1 ↑; protein
expression of Nrf2 ↓

WB (105)

Water immersion and
restraint stress-induced
rats

Gastrointestinal protection Protein expression of Keap1 in gastric tissues ↓;
Protein expressions of Nrf2, HO-1, NQO1 and
NOX4 in gastric tissues ↑

WB and IHC (106)

Morchella esculenta H2O2-induced A549
cells

Lung protection Protein expression of p-Nrf2 and HO-1 ↑; protein
expression of Nrf2 ↓

WB (33)

Grifola frondosa
fruiting body

LPS/D-GalN-induced
mice

Liver protection Protein expressions of Nrf2, HO-1 and NQO1 in
liver tissues ↑; protein expression of Keap1 in liver
tissues ↓; mRNA expression of Nrf2 in liver tissues
↑

WB and RT-qPCR (52)

Pleurotus geesteranus
fruiting body

Ethanol-induced mice Liver protection Protein expressions of Nrf2 and HO-1 in liver
tissues ↑

WB and IF (103)

Ganoderma lucidum High-fat diet-induced
diabetic mice

Liver protection Protein expressions of Nrf2 and HO-1 in liver
tissues ↑

WB and IHC (200)

H2O2-induced HSFs Anti-oxidation mRNA expression of Keap1 ↓; mRNA expressions
of Nrf2, Gstm1, Gstt1, GCLC, GCLM, HO-1 and
NQO1 ↑

RT-qPCR (194)

Doxorubicin-induced
H9c2 cells

Cardioprotection Protein expressions of Nrf2 and HO-1 ↑ WB (193)

Termitomyces
albuminosus mycelium

CCl4-induced mice Liver protection mRNA expressions of Nrf2 and HO-1 in liver
tissues ↑

RT-qPCR (107)

Inonotus obliquus Toxoplasma
gondii-induced mice

Liver protection Protein expressions of HO-1 and nuclear Nrf2 in
liver tissues ↑

WB (104)

Improving reproductive
function

Protein expressions of HO-1, NQO1 and nuclear
Nrf2 in testicular tissues ↑

(27)

AD model APP/PS1 mice Anti-aging Protein expression of Keap1 in brain tissues ↓;
protein expressions of Nrf2, SOD-1, HO-1 and
GCLC in brain tissues ↑

WB (196)

L-Glu-induced HT22
cells

Anti-aging Protein expression of Keap1 ↓; protein expressions
of Nrf2, SOD-1, HO-1 and GCLC ↑

Antrodia camphorata LPS/D-GalN-induced
mice

Liver protection Protein expressions of Keap1, Nrf2 and γ-GCS in
liver tissues ↑

WB (192)

LPS-induced Kupffer
cells

Protein expressions of Keap1, Nrf2 and γ-GCS ↑ WB and IF

Cordyceps militaris Pb2+-induced mice Kidney protection Protein expressions of Keap1, Nrf2, HO-1 and
NQO1 in kidney tissues ↑

WB (39)

Amanita caesarea L-Glu induced HT22
cells

Anti-aging Protein expressions of cytosol Nrf2 ↓; protein
expressions of nuclear Nrf2 ↑

WB (108)

AD model APP/PS1 mice Protein expressions of Nrf2 and HO-1 in
hippocampus ↑; protein expressions of Keap1 ↓

(109)

Hericium erinaceus
mycelium

AD model APP/PS1 mice Anti-aging Protein expressions of Nrf2 and HO-1
hippocampus ↑; protein expressions of Keap1 in
hippocampus ↓

WB (110)

Tremella fuciformis UVA-induced HDF cells Anti-aging Protein expressions of NQO1 and nuclear Nrf2 ↑;
protein expression Keap1 and cytosol Nrf2 ↓;
mRNA expressions of Nrf2, HO-1 and NQO1 ↑;
mRNA expression of Keap1 ↓

ELISA and RT-qPCR (197)

Suillellus luridus STZ-induced mice Anti-diabetic mRNA and protein expressions of Nrf2 and HO-1
in liver tissues ↑

WB and RT-PCR (111)

Paecilomyces hepialid
mycelium

db/db mice Anti-diabetic Protein expressions of Nrf2, HO-1 and CAT in
kidney tissues ↑

WB (101)

(Continued)
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TABLE 4 (Continued)

Polysaccharide
source

Experimental
model

Health-promoting
effects

Regulation on Nrf2 antioxidant
pathway

Determination
method

References

Lentinus edodes
mycelium

High glucose-induced
MIN6 cells

Anti-diabetic Protein expression of nuclear Nrf2 ↑ WB (198)

High glucose-induced
INS-1 cells

(102)

Saccharomyces
cerevisiae

LPS-induced RAW264.7
cells

Anti-oxidation HO activity ↑; protein expressions of Nrf2 and
HO-1 ↑

Assay kits, WB and IF (195)

Lachnum sp. HepG2 cells Anti-cancer Protein expression of Nrf2 ↓; protein expression of
Keap1, HO-1, NQO1, GST1, SOD2, GPX and
GCLM ↑

WB and IF (199)

Antrodia cinnamomea CTX-induced mice Immunomodulation Protein expression of Keap1 in spleen and thymus
↓; protein expression of Nrf2, HO-1, SOD2 and
CAT in spleen and thymus ↑

WB (202)

Sarcodon imbricatus CTX-induced mice Immunomodulation Protein expressions of Nrf2, HO-1, SOD1, SOD2,
CAT and NQO1 in spleen ↑

WB (203)

Poria cocos ox-LDL-induced VSMCs Anti-atherosclerosis Protein expressions of HO-1 and nuclear Nrf2 ↑;
protein expressions of cytosol Nrf2 ↓

WB (29)

5-Fu-treated CT26
tumor-bearing mice

Gastrointestinal protection Protein expressions of Nrf2 in colon tissues ↑ IHC (201)

Ganoderma atrum LPS-induced
Caco-2/RAW264.7
co-culture inflammation

Gastrointestinal protection Protein expressions of Keap1 and Nrf2 ↑ WB (113)

protection (187, 188), cardioprotection (189), anti-aging (98, 99),
anti-oxidation (190, 191), and immunomodulation (24). NPs
from algae possessed liver protection against CTX- (97), CCl4-
(31), and high-fat diet-induced (185) mice, through increasing
protein and/or expressions of p-Nrf2, nuclear Nrf2, cytosol Nrf2,
p-Nrf2/Nrf2, HO-1, GCLM, NQO1, CAT, SOD2, Slc7a11, G6pd2,
Prdx1, GPX2, and GPX4, and decreasing Keap1 protein expression
in liver tissues. Ecklonia cave polysaccharide had lung protection
on LPS-induced mice by enhancing protein expressions of Nrf2
and HO-1 in lung tissues (186). Laminaria japonica polysaccharide
exhibited kidney protection against CTX-induced mice via up-
regulating protein expressions of Nrf2, HO-1, GCLM, and NQO1
in kidney tissues (97). Meanwhile, this polysaccharide showed
anti-aging effect on rotenone-induced rats through rising protein
expressions of Nrf2 and PGC-1α in ventral midbrain (98). NPs
from algae exerted gastrointestinal protection on heat stress-
induced broilers (187) and aged mice (188) by elevating protein
and/or mRNA expressions of Nrf2, NQO1, HO-1, CAT, SOD2,
GPX1, and GSTT1 in intestinal tissues or duodenum. Padina
tetrastromatica polysaccharide generated cardioprotection against
isoproterenol-induced rats via enhancing protein and/or mRNA
expressions of Nrf2 and nuclear Nrf2, and declining cytosol
Nrf2 protein expression in heart tissues (189). Those from algae
revealed anti-oxidation activity on heat stress-induced Gallus
gallus domesticus (190) and D-gal-induced mice (191), through
aggrandizing mRNA and protein expressions of Nrf2, HO-1, γ-
GCS, NQO1, Cu/Zn-SOD, Mn-SOD, SOD2, GSTO1, and CAT
in liver and spleen tissues. Enteromorpha prolifera polysaccharide
reflected immunomodulation against aflatoxin B1-induced broilers
by augmenting mRNA and/or protein expressions of SOD1, SOD2,
GPX1, GPX3, CAT1, GSTT1, GSTO1, GSTA3, Nrf2, and HO-1 in
bursa of fabricius (24).

Regulation of NPs from fungi

The regulations of NPs on Nrf2 antioxidant pathway from
fungi in cell experiments and animal experiments are illustrated in
Table 4.

Cell experiments have showed that NPs from fungi could
regulate Nrf2 antioxidant pathway for liver protection (192),
lung protection (33, 105), cardioprotection (193), gastrointestinal
protection (113), anti-oxidation (194, 195), anti-aging (108,
196, 197), anti-diabetic (102, 198), anti-cancer (199), and anti-
atherosclerosis (29). Antrodia camphorate polysaccharide exhibited
liver protection on LPS-induced Kupffer cells by increasing protein
expressions of Keap1, Nrf2, and γ-GCS (192). Polysaccharides
from Sarcodon aspratus (105) and Morchella esculenta (33) exerted
lung protection against H2O2-induced A549 cells via adding
protein expressions of p-Nrf2 and HO-1, and reducing Nrf2
protein expression. Ganoderma lucidum polysaccharide showed
cardioprotection on doxorubicin-induced H9c2 cells through
rising protein expressions of Nrf2 and HO-1 (193). Ganoderma
atrum polysaccharide reflected gastrointestinal protection in LPS-
induced Caco-2/RAW264.7 co-culture inflammation model by
up-regulating protein expressions of Keap1 and Nrf2 (113). NPs
from fungi had anti-oxidation activity on H2O2-induced HSFs
(194) and LPS-induced RAW264.7 cells (195) through augmenting
protein and/or mRNA expressions of Nrf2, Gstm1, Gstt1, GCLC,
GCLM, HO-1, and NQO1, and reducing Keap1 mRNA expression.
Those from fungi displayed anti-aging effect against L-Glu-induced
HT22 cells (108, 196) and UVA-induced HDF cells (197) via
aggrandizing protein and/or mRNA expressions of nuclear Nrf2,
Nrf2, SOD1, HO-1, NQO1, and GCLC, and lowering protein
and/or mRNA expressions of Keap1 and cytosol Nrf2. Lentinus
edodes mycelium polysaccharide had anti-diabetic action against
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high glucose-induced MIN6 or INS-1 cells, which was related
to increment of nuclear Nrf2 protein expression (102, 198).
Lachnum sp. polysaccharide possessed anti-cancer activity on
HepG2 cells involved with reduction of Nrf2 protein expression,
and enhancement of protein expression of Keap1, HO-1, NQO1,
GST1, SOD2, GPX, and GCLM (199). Poria cocos polysaccharide
caused anti-atherosclerosis effect on ox-LDL-induced VSMCs by
rising protein expressions of HO-1 and nuclear Nrf2, and declining
cytosol Nrf2 protein expression (29).

Animal experiments have demonstrated that NPs from fungi
could regulate Nrf2 antioxidant pathway for liver protection
(52, 103, 104, 107, 192, 200), lung protection (35), kidney
protection (39), gastrointestinal protection (106, 201), anti-aging
(109, 110, 196), anti-diabetic (101, 111), improving reproductive
function (27), and immunomodulation (202, 203). NPs from fungi
exhibited liver protection against LPS/D-GalN- (52, 192), ethanol-
(103), high-fat diet- (200), CCl4- (107), and Toxoplasma gondii-
induced (104) mice, through increment of protein and/or mRNA
expressions of nuclear Nrf2, Nrf2, HO-1, NQO1, and γ-GCS, and
modulation of Keap1 protein expression in liver tissues. Trametes
orientalis polysaccharide exerted lung protection on PM2.5-induced
mice by increasing protein expressions of Nrf2 and HO-1 in lung
tissues (35). Cordyceps militaris polysaccharide showed kidney
protection against Pb2+-induced mice via enhancing protein
expressions of Keap1, Nrf2, HO-1, and NQO1 in kidney tissues
(39). NPs from fungi possessed gastrointestinal protection on
water immersion and restraint stress-induced rats (106) and 5-
Fu-treated CT26 tumor-bearing mice (201), through elevating
protein expressions of Nrf2, HO-1, NQO1, and NOX4, and
reducing Keap1 protein expression in gastric or colon tissues.
Polysaccharides from Inonotus obliquus (196), Amanita caesarea
(109) and Hericium erinaceus mycelium (110) revealed anti-
aging activity on AD model APP/PS1 mice via elevating protein
expressions of Nrf2, SOD-1, HO-1, and GCLC, and reducing
Keap1 protein expression in brain tissues or hippocampus. NPs
from fungi appeared anti-diabetic function against STZ-induced
(111) and db/db mice (101) by promoting mRNA and protein
expressions of Nrf2, HO-1 and CAT in liver or kidney tissues.
Inonotus obliquus polysaccharide improved reproductive function
of Toxoplasma gondii-induced mice through up-regulating protein
expressions of HO-1, NQO1 and nuclear Nrf2 in testicular
tissues (27). Polysaccharides from Antrodia cinnamomea (202) and
Sarcodon imbricatus (203) displayed immunomodulation against
CTX-induced mice by increasing protein expressions of Nrf2, HO-
1, SOD1, SOD2, CAT, and NQO1, and decreasing Keap1 protein
expression in spleen or thymus.

Regulation of NPs from animals and
bacteria

Polysaccharides from animals (Ostrea plicatula Gmelin,
Holothuria leucospilota, Acaudina leucoprocta, Sepia esculenta ink,
and Ostrea rivularis) as well as chitosan could regulate Nrf2
antioxidant pathway for liver protection (114, 204), anti-oxidation
(115), improving reproductive function (43, 205, 206), and
gastrointestinal protection (207), as summarized in Table 5. Cell
experiment indicated that Acaudina leucoprocta polysaccharide

exerted anti-oxidation effect on H2O2-induced RAW264.7 cells by
increasing mRNA and/or protein expressions of Nrf2, SOD1, and
GPX1, and decreasing Keap1 protein expression (115). In animal
experiments, polysaccharides from Ostrea plicatula Gmelin (204)
and Holothuria leucospilota (114) exhibited liver protection against
CTX-induced mice and type 2 diabetic rats respectively, involving
with increment of protein and/or mRNA expressions of Nrf2,
HO-1, and NQO1 in liver tissues. NPs from animals improved
reproductive function against CTX-induced mice (43, 205, 206)
through elevating protein and/or mRNA expressions of Nrf2, HO-
1, and NQO1, and modulating Keap1 protein expression in ovarian
or testis. Chitosan displayed gastrointestinal protection on piglets
by adding protein and/or mRNA expressions of GPX1, GPX2,
SOD1, SOD2, CAT, Nrf2, NQO1, and HO-1, and declining Keap1
protein expression in ileum (207).

Polysaccharides from Bacillus megaterium could regulate Nrf2
antioxidant pathway for lung protection (38) and anti-cancer (53),
as listed in Table 5. Cell experiments have demonstrated that this
polysaccharide exerted lung protection on H2O2-induced WI38
cells by enhancing protein expressions of cytosol Keap1 and cytosol
Nrf2, and suppressing protein expressions of nuclear Keap1 and
Nrf2 as well as nuclear translocation of Nrf2 (38). Meanwhile, the
polysaccharide exhibited anti-cancer effect on A549 cells through
increasing protein expressions of cytosol Keap1 and Nrf2, and
decreasing protein expressions of nuclear Keap1 and Nrf2 (53).

With above analyses, regulations of NPs on Nrf2 antioxidant
pathway in health-promoting effects in vitro and in vivo can be
summarized in Figures 2, 3, respectively.

Structure-activity relationship of
NPs for health-promoting effects by
regulating Nrf2 antioxidant pathway

Structure-activity relationship of NPs for health-promoting
effects by regulating Nrf2 antioxidant pathway is unclear.
However, the influences of Mw, functional group, monosaccharide
composition and side chains on the efficacies of NPs in regulating
Nrf2 antioxidant pathway could be preliminarily discussed.

Influence of Mw

There might be two different standpoints concerning the
influence of Mw on the regulation of NPs to Nrf2 antioxidant
pathway. One standpoint is that polysaccharide with higher Mw
generated stronger regulation on Nrf2 antioxidant pathway in vitro
and in vivo. Polysaccharide (AZP-1a) with higher Mw (34.1 kDa)
from Anoectochilus zhejiangensis exhibited better protection on
CCl4-treated HepG2 cells than that (AZP-1d) with lower Mw (4.568
kDa). And, the former enhanced more protein expressions of Nrf2,
HO-1 and NQO1 in HepG2 cells (70). Jing et al. (85) have obtained
five fractions (PS-1, 14.561 kDa; PS-2, 19.783 kDa; PS-3, 4.973 kDa;
PS-4, 15.928 kDa; PS-5, 7.046 kDa) from Athyrium Multidentatum
and evaluated theirs cytoprotective activities against H2O2-induced
HUVECs. Results indicated that the two higher Mw fractions (PS-2
and PS-4) possessed relatively higher cytoprotections and caused
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TABLE 5 Regulation of NPs from animals and bacteria on Nrf2 antioxidant pathway for health-promoting effects.

Polysaccharide
source

Experimental
model

Health-promoting
effects

Regulation on Nrf2 antioxidant
pathway

Determination
method

References

Ostrea plicatula
Gmelin

CTX-induced mice Liver protection Protein expressions of Nrf2, HO-1 and NQO1 in
liver tissues ↑

WB (204)

Holothuria leucospilota Type 2 diabetic rats Liver protection Protein and mRNA expressions of Nrf2 and HO-1
in liver tissues ↑

RT-qPCR and IHC (114)

Acaudina leucoprocta H2O2-induced
RAW264.7 cells

Anti-oxidation mRNA expressions of SOD1 and GPX1 ↑; protein
expression of Keap1 ↓; protein expression of Nrf2 ↑

WB and RT-PCR (115)

Sepia esculenta ink CTX-induced mice Improving reproductive
function

Protein expressions of Nrf2, HO-1 and NQO1 in
ovarian ↑; protein expression of Keap1 in ovarian ↓

WB (205)

Protein expressions of Keap1, Nrf2, HO-1 and
NQO1 in testicular tissues ↑

WB (206)

Ostrea rivularis CTX-induced mice Improving reproductive
function

mRNA expressions of Nrf2, HO-1 and NQO1 in
testis ↑; protein expressions of Keap1, Nrf2 and
HO-1 in testis ↑

WB and RT-PCR (43)

Chitosan piglets Gastrointestinal protection Protein expression of Keap1 in ileum ↓; protein
expression of Nrf2 in ileum ↑; mRNA expressions
of GPX1, GPX2, SOD1, SOD2, CAT, Nrf2, NQO1
and HO-1 in ileum ↑

WB and RT-PCR (207)

Bacillus megaterium H2O2-induced WI38
cells

Lung protection Cytosol: protein expressions of Keap1 and Nrf2 ↑;
Nuclear: protein expressions of Keap1 and Nrf2 ↓;
Nuclear translocation of Nrf2 ↓

WB and IF (38)

A549 cells Anti-cancer Protein expressions of cytosol Keap1 and Nrf2 ↓;
protein expressions of nuclear Keap1 and Nrf2 ↑

WB and IF (53)

FIGURE 2

Regulations of NPs on Nrf2 antioxidant pathway in health-promoting effects in vitro.

more mRNA expressions of Nrf2 and HO-1 than other three
lower Mw fractions. Polysaccharide (PNP40c-1) with higher Mw

(206 kDa) from pine nut exerted stronger hepatoprotection against

CCl4-induced liver damage in mice and up-regulated more mRNA
expressions of Nrf2 and HO-1 in the liver than that (PNP80b-2)
with lower Mw (23.0 kDa) (87, 90). Two purified polysaccharides
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FIGURE 3

Regulations of NPs on Nrf2 antioxidant pathway in health-promoting effects in vivo.

(RGP-1-A and RGP-2-A) were obtained from Rehmannia glutinosa
after decolorization using AB-8 macroporous resin and H2O2
respectively, and their Mw values were 18.964 and 3.305 kDa. RGP-
1-A showed significantly higher antioxidant capacity on H2O2-
induced IPEC-1 cells and caused more up-regulation on mRNA
expressions of Nrf2, HO-1 and NQO1 and less Keap1 mRNA
expression (208).

Another standpoint is that polysaccharide with lower Mw
caused stronger regulation on Nrf2 antioxidant pathway in vitro
and in vivo. Polysaccharide (TOP-2) with smaller Mw (<1 kDa)
from Taraxacum officinale elevated more protein expressions of
Nrf2 and HO-1 than that (TOP-1) with larger Mw (1–9.3 kDa)
in LPS-induced RAW264.7 cells, although TOP-2 and TOP-1 had
no significance in protecting RAW264.7 cells (132). Polysaccharide
(DRP1) with lower Mw (5.695 kDa) from Dandelion root reflected
better hepatoprotection on CCl4-induced liver injury in mice than
that (DRP2) with higher Mw (8.882 kDa). Meanwhile, DRP1
increased relatively more mRNA expressions of Nrf2 and NQO1
while decreased more mRNA expression of Keap1 in the liver than
DRP2 (57). Polysaccharide (FWBP, 21.19 kDa) from fermented
wheat bran has been shown to be more effectiveness in positively
regulating gut antioxidant-associated gene expression and gut
microbiota in zebrafish than that (WBP, 52.03 kDa) from wheat
bran. At the same time, FWBP produced more mRNA expressions
of CAT, GST, and Nrf2 along with less GPX-3 mRNA expression
than than WBP in zebrafish (162). Two different polysaccharides
(CPSP-1, 13.1 kDa; CTSP-1, 23.0 kDa) have been obtained from
stems of Codonopsis pilosula and Codonopsis tangshen, respectively
(66). CPSP-1 showed higher protective effect on H2O2-induced

IPEC-J2 cells and had a better promotion on GPXs and SOD1
expressions than CTSP-1. Meanwhile, a polysaccharide (CPP-1)
with Mw of 21.0 kDa from Codonopsis pilosula roots showed
stronger protection on H2O2-induced IPEC-J2 cells and regulation
on Nrf2 antioxidant pathway than that (CTP-1) with Mw of 29.5
kDa from Codonopsis tangshen roots (55).

However, polysaccharide with moderate Mw might be more
beneficial to regulate Nrf2 antioxidant pathway. For example, Han
et al. (60) have investigated the repair effects of three Astragalus
polysaccharides (APS0, APS1, and APS2) with different Mw (11.03,
4.72, and 2.61 KDa) against oxalate-induced HK-2 cells. The
findings displayed that APS1 with the moderate Mw provided the
strongest repair effect and increased the most protein expressions
of Keap1, Nrf2, SOD1, and CAT.

Influence of functional group

Selenization, sulfuration, and acetylation modifications
could improve the regulation of NPs on Nrf2 antioxidant
pathway, owing to new functional groups have been brought
in. Selenizing Codonopsis pilosula polysaccharides (sCPPS5)
caused significantly stronger protective effect on H2O2-induced
RAW264.7 cells and more increases in protein expressions of
Nrf2, HO-1, NQO1, GCLM, and GCLC and declination in Keap1
protein expression than unmodified polysaccharide (CPPS) (131).
Selenizing Astragalus polysaccharides (sAPS) exhibited markedly
higher protection against CCl4-induced liver injury in rats and
up-regulated more mRNA expression levels of GPX1, SOD1 and
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Nrf2 in the liver than the native one (APS) (150). On the other
hand, sulfated Cyclocarya paliurus polysaccharide (S-CPP0.05)
showed stronger antioxidant activity to H2O2-induced DCs
and generated more increment in Nrf2 protein expression and
reduction in Keap1 protein expression in DCs, as compared
with the native one (CPP0.05) (96). At the dosages of 100 and
200 mg/kg, sulfated Codonopsis polysaccharide (SCP) produced
better hepatoprotective effect on liver in ethanol-induced mice
and more decreases in mRNA expressions of Nrf2 and Keap1
than the native one (CP) in the liver (164). Otherwise, acetylated
Cyclocarya paliurus polysaccharide (Ac-CPP0.1) generated higher
cytoprotection on H2O2-induced DCs and improved more mRNA
expressions of SOD1, GPX1, CAT, HO-1, and NQO1 than the
native one (CPP0.1) (72). Acetylated Stropharia rugoso-annulata
polysaccharides (ASRP) exhibited better action in alleviating
non-alcoholic fatty liver in HFD-induced mice and caused more
HO-1 protein expression and less Keap1 protein expression in liver
tissues (209).

Influence of monosaccharide
composition

Natural polysaccharides with higher GalA or GlcA may
cause better regulation effect on Nrf2 antioxidant pathway. Two
polysaccharides (CPSP-1 and CTSP-1) gained from stems of
Codonopsis pilosula and Codonopsis tangshen were determined
to contain GalA of 70.1 and 61.3%, respectively. The former
was proven to have better protective action on H2O2-induced
IPEC-J2 cells and regulation effect on Nrf2 antioxidant pathway
(66). Five fractions (PS-1, PS-2, PS-3, PS-4, and PS-4) from
Athyrium multidentatum were characterized to contain GlcA
content with an order as PS-1 < PS-5 < PS-4 < PS-2 < PS-
3 (85). PS-1 showed the lowest cytoprotection on H2O2-induced
HUVECs cells and regulation on mRNA expressions of Nrf2
and HO-1. Two purified polysaccharides (RGP-1-A and RGP-2-
A) obtained from Rehmannia glutinosa were determined to have
GalA contents of 19.02 and 1.1%. RGP-1-A showed significantly
better cytoprotection on H2O2-induced IPEC-1 cells and caused
observably more increments in mRNA expressions of Nrf2, HO-1
and NQO1 and reduction in Keap1 mRNA expression (208).

On the other hand, higher contents of Ara, Gal, and Rha
may have greater regulation effect on Nrf2 antioxidant pathway.
The polysaccharides (CPP-1 and CTP-1) from roots of Codonopsis
pilosula and Codonopsis tangshen contained Ara+Gal+Rha contents
of 41.1 and 39%, respectively. CPP-1 revealed relatively protection
on H2O2-induced IPEC-J2 cells and greater regulation on
Nrf2 antioxidant pathway (55). Meanwhile, the above-mentioned
PS-1 with smallest Ara+Gal+Rha contents showed the lowest
cytoprotection on H2O2-induced HUVECs cells and regulation on
mRNA expressions of Nrf2 and HO-1, as compared with PS-2,
PS-3, PS-4, and PS-5 (85).

Influence of side chains

Shorter AG side chains of NPs can be more effective in
promoting Nrf2 antioxidant pathway. A polysaccharide (CPSP-
1) with AG-II chains acquired from Codonopsis pilosula stems

showed stronger protective effect on H2O2-induced IPEC-J2 cells
and promotion on Nrf2 antioxidant pathway than that (CTSP-
1) with AG-I and AG-II chains from Codonopsis tangshen stems
(66). Moreover, CPP-1 with shorter AG-I chains from Codonopsis
pilosula roots revealed better protection on H2O2-induced IPEC-J2
cells and regulation on Nrf2 antioxidant pathway than CTP-1 with
longer AG-I chains from Codonopsis tangshen roots (55).

Conclusions and prospects

This review summarizes that NPs from natural sources can
regulate Nrf2 antioxidant pathway to exert a wide spectrum
of health-promoting effects in vitro and in vivo, such as liver
protection, kidney protection, lung protection, neuroprotection,
cardioprotection, gastrointestinal protection, anti-oxidation,
anti-diabetic, anti-aging, anti-inflammation, anti-radiation, anti-
depression, anti-cancer, anti-atherosclerosis, immunomodulation,
and improving reproductive function. Moreover, some factors
like Keap1, Nrf2, HO-1, NQO1, GCLC, GCLM, γ-GCL, γ-GCS,
γ-GCSc, Mn-SOD, SODs, GPXs, CAT, GST, Gstm1, Gstt1,
and PGC-1α in Nrf2 antioxidant pathway are modulated in
the frequently seen in vitro health-promoting effects (liver
protection, kidney protection, lung protection, cardioprotection,
gastrointestinal protection, anti-oxidation, anti-diabetic and anti-
aging) of NPs (Figure 2). Meanwhile, Keap1, Nrf2, HO-1, NQO1,
GCLC, GCLM, γ-GCS, Cu/Zn-SOD, Mn-SOD, SODs, GPXs, GR,
CAT, GSTs, NOX2, NOX4, TrxR1, Slc7a11, G6pd2, Prdx1, PGC-1α,
MKP1, and p22/47/67phox are regulated in these in vivo health-
promoting effects (Figure 3). On the other hand, NPs having
regulation on Nrf2 antioxidant pathway can be widely acquired
by water extraction and column chromatography methods. Mw of
obtained NPs ranges from 1.206 to 3440 kDa, and Fuc, Rha, Ara,
Gal, Glc, and/or Man are widely discovered in them. A variety of
structures, like pectin, arabinogalactan, 2-O-acetylglucomannan,
glucan, and glucogalactan, have been determined in NPs which
having regulation on Nrf2 antioxidant pathway. NPs are frequently
composed of T-Araf -(1→, →5)-Araf -(1→, →3)-Galp-(1→,
→6)-Galp-(1→, →3,4)-Galp-(1→, →3,6)-Galp-(1→, T-Glcp-
(1→, →3)-Glcp-(1→, →4)-Glcp-(1→, →6)-Glcp-(1→ and
→4)-GalAp-(1→ residues. And→4)-Glcp-(1→,→6)-Glcp-(1→,
→3)-Galp-(1→ and →4)-D-Manp-(1→ residues are commonly
distributed in their backbones. Noteworthily, structural features of
NPs are different owing to different methods and protocols used
in extraction and purification processes, thereby structural features
included Mw, functional group, monosaccharide composition and
side chains have influences on the efficacies of NPs in regulating
Nrf2 antioxidant pathway.

Although many studies have disclosed the regulation of NPs
on Nrf2 antioxidant pathway, there are still some problems should
be explored in future: (i) compared with NPs from herbs and
woody plants, less researches have been conducted to the regulative
effects of NPs from algae, fungi, animals, and bacteria on Nrf2
antioxidant pathway; (ii) existing evidences are inadequate to
establish structure-activity relationship for regulation of NPs on
Nrf2 antioxidant pathway in their health-promoting effects; (iii)
clinical research on the regulation of NPs on Nrf2 antioxidant
pathway is scarce, and regulation of NPs on Nrf2 antioxidant
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pathway is rarely reported in some health-promoting effects; (iv)
Nrf2 antioxidant pathway is activated by NPs in most cases, whilst
it is inhibited by NPs in several health-promoting effects like
anti-cancer. However, there is few information concerning the
classification of NPs as activators and inhibitors; (v) as shown in
Tables 1–5, regulation of NPs on Nrf2 antioxidant pathway has
been determined by WB, RT-PCR, RT-qPCR, IHC, IF, ChIP, EMSA,
and ELISA as well as assay kits. However, Nrf2 antioxidant pathway
is a complex network and it has some relations with other pathways.
Thus, proteomics, transcriptomics and other methods can be used
to explore the regulation of NPs on Nrf2 antioxidant pathway; (vi)
there are many genes like PI3K, JNK, ERK, and AKT can regulate
Nrf2 antioxidant pathway (10), the effects of NPs on these genes
should also be explored; (vii) which procedure is more suitable for
preparing NPs with regulation on Nrf2 antioxidant pathway, and
which structure has the stronger regulation, cannot be concluded.
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