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Background: The study aimed to determine whether a causal e�ect exists

between body mass index (BMI) or plasma lipid levels and proliferative diabetic

retinopathy (PDR) risk in humans.

Methods: Weutilized univariable (UVMR) andmultivariable two-sampleMendelian

randomization (MVMR) analyses to confirm the e�ects of BMI and plasma lipid

levels on the risk of PDR. Genetic variants associated with BMI and three plasma

lipids were obtained from GWAS summary datasets generated by many di�erent

consortia and were deposited in the MR-Base database. The GWAS summary data

for PDR from the FinnGen biobank included 2,12,889 participants of European

ancestry (8,681 cases and 2,04,208 controls). Inverse variance weighted (IVW) was

applied as the main MR analysis. Sensitivity analysis was used to evaluate the

robustness of our findings.

Results: In the UVMR analysis, the causal associations of genetically predicted BMI

with PDR presented a positive association (OR= 1.120, 95% CI= 1.076–1.167, P <

0.001), and the lower HDL-C level was associated with a higher risk of PDR (OR =

0.898, 95% CI = 0.811–0.995, P = 0.040). No evidence of an association between

LDL-C or TG levels (P > 0.05) and PDR risk was found. In the MVMR analysis

controlling for the HDL-C level, there was strong evidence for a direct causal e�ect

of BMI on the risk of PDR (OR= 1.106, 95%CI= 1.049, 1.166, P < 0.001, IVW). After

adjusting for BMI, there was no evidence for a direct causal e�ect of the HDL-C

level on the risk of PDR (OR = 0.911, 95% CI = 0.823, 1.008, P = 0.072). Sensitivity

analyses confirmed that the results were reliable and stable.

Conclusion: Robust evidencewas demonstrated for an independent, causal e�ect

of BMI in increasing the risk of PDR. Further studies are required to understand the

potential biological mechanisms underlying this causal relationship.

KEYWORDS

proliferative diabetic retinopathy (PDR), body mass index (BMI), dyslipidemia, Mendelian
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Introduction

Diabetes mellitus (DM) is a serious and increasing global health burden. From the 2019

Global Burden of Disease (GBD) study, we found that the all-age prevalence number of

DM increased significantly from 1990 to 2019 (1.60 × 108 vs. 4.60 × 108). The increased

prevalence of DM worldwide has led diabetic retinopathy (DR) to be a leading cause of
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vision loss in many countries (1). Among the global 33.6 million

adults aged 50 years and older who were blind in 2020, the

number of cases of blindness caused by DR was 0.9 million (95%

CI 0.6–1.2) (2). DR is a chronic progressive disease caused by

damage to the microvasculature of the retina. Proliferative diabetic

retinopathy (PDR) is the later stage of DR and is characterized

by neovascularization of the retina, which can lead to irreversible

vision loss, and its damage cannot be completely cured.

Hyperglycemia is the strongest modifiable risk factor, and

people with optimal glycemic control also develop DR. Thus,

exploring the role of other modifiable risk factors has become

increasingly important in the development and progression

of DR, and obesity is one such important factor (3). Some

studies (4–7) have shown that dyslipidemia is a risk factor

for the development of DR. The Fenofibrate Intervention and

Event Lowering in Diabetes (FIELD) study and the Action

to Control Cardiovascular Risk in Diabetes (ACCORD) study

showed a beneficial effect of fenofibrate on the progression of

DR although the mechanism of this effect does not seem to

be related to the level of plasma lipids (8, 9). However, the

relationship between BMI, plasma lipid level, and PDR may

be subject to confounding by unknown factors. Therefore, it

is difficult to clarify causal risk factors. Given the lack of

evidence, more studies are still needed to clarify the relationship

between them.

In general, the gold standard to determine causality is

the randomized control trial (RCT); however, RCTs are time-

consuming and require a large amount of manpower and

resources; moreover, sometimes it is almost impossible to conduct

an RCT due to ethical issues (10). Mendelian randomization

FIGURE 1

Schematic representation of Mendelian randomization (MR) analysis. BMI, body mass index; HDL-C, high-density lipoprotein cholesterol; LDL-C,

low-density lipoprotein cholesterol; TG, triglyceride; PDR, proliferative diabetic retinopathy.

(MR) is an alternative approach to make inferences about the

causal effect between exposures and outcomes by using genetic

variants as instrumental variables (IVs) (11). The single nucleotide

polymorphisms (SNPs) used as IVs in the MR analysis must

meet the following three basic assumptions: (1) the IVs must be

associated with the exposure; (2) the IVs must only affect the

outcome via the exposure; and (3) there is no factor that can cause

both the IVs and the outcome.

To the best of our knowledge, no MR study has investigated

the causal relationship between BMI, plasma lipid level, and

PDR. The study comprehensively explored whether genetically

predicted BMI and plasma lipid levels are risk factors for

PDR outcomes to further examine these associations using

the MVMR method to rule out pleiotropy. This study

aimed to help clarify the risk factors underlying the PDR

and assist in the development of future prevention and

intervention strategies.

Materials and methods

Study design

To investigate the causal relationship between BMI, plasma

lipid levels, and risk of PDR, we applied the two-sample MR,

an approach to determine causal effects using GWAS summary

statistics for exposure and outcome from separate GWASs. TheMR

study design is illustrated in Figure 1.

The data and information we used in this article were all

searched and downloaded from the public database. No ethical

review was required for this study.
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Genetic instruments

Two-sample MR analyses were performed using GWAS

summary data. BMI and three plasma lipids—high-density

lipoprotein cholesterol (HDL-C), low-density lipoprotein

cholesterol (LDL-C), and triglyceride (TG)—were included in

this study as the exposure variables. Publicly accessible data for

genetic variants associated with BMI and three plasma lipids

were obtained from GWAS summary datasets generated by many

different consortia and were deposited in the MR-Base database

(https://gwas.mrcieu.ac.uk/). The FinnGen Biobank for PDR is

available at https://r5.finngen.fi/.

The datasets included 99,998 European participants and

the number of included SNPs was 7,191,606 for BMI, 77,409

participants and 7,892,377 SNPs for HDL-C, 70,814 participants

and 7,892,997 SNPs for LDL-C, and 78,700 participants and

7,892,037 SNPs for TG. The GWAS summary data for PDR from

the FinnGen biobank included 2,12,889 participants of European

ancestry (8,681 cases and 204,208 controls). The number of SNPs

included in the study was 16,380,460 (Supplementary Table 1).

All SNPs with p-values ≤ 5.0 × 10−8 were extracted, and then

we used linkage disequilibrium (LD) to minimize the impact. We

set the threshold of statistical significance as “distance> 10,000 kb,

r2 < 0.001” to identify the SNPs associated with exposure. These

SNPs were used as instrumental variables (IVs) in the MR analysis.

Mendelian randomization

We performed UVMR analyses for BMI and plasma lipid levels

on PDR risk separately to estimate the total causal effects of BMI

on PDR and plasma lipid levels on PDR. To assess the causal effect

of BMI on PDR, the inverse variance-weighted (IVW) method

was used as the main MR analysis, and other methods, such as

MR–Egger, weighted median, simple mode, and weighted mode,

were also used as complementary analyses. A P-value of <0.05 was

considered to be statistically significant.

To explore whether PDR had any causal effect on the BMI, we

also performed a reverse MR analysis using the SNPs associated

with PDR as IVs (i.e., PDR as exposure and the identified causal

BMI as outcome).

To investigate the direct effects of each, we applied MVMR to

identify whether the effect of BMI and HDL-C is independent of

each other on PDR risks. The SNPs used to conduct MVMR were

combinations of IVs of each exposure (duplicates were excluded).

The SNP for each exposure has been described in the methods of

genetic instruments. We used the IVW method to estimate causal

effects in MVMR analysis.

According to Bonferroni correction analysis, a P-value

of <0.025 was considered to be statistically significant in

MVMR analyses.

Sensitivity analysis

Instrument strength for each candidate SNP in MR was

estimated using the F-statistic. We evaluated the SNP power using

the F statistics (12) (F = Beta2/SE2) for each SNP, and F > 10 was

viewed as a strong instrument.

Heterogeneity was tested by Cochran’s Q test and I2 statistics

(13) (I2 = 100%∗(Q-df)/Q, where Q represents the quantitative

value of Cochran’s Q test and df represents the degree of freedom

which equals to the number of instrumental variables used minus

one) to evaluate the stability and reliability of MR results. A p-

value of < 0.05 or an I2 value of >50% was regarded as statistically

significant (14). The intercept of the Egger model can be used for

the statistical test of pleiotropy (15), where deviation from 0 denotes

the presence of directional pleiotropy. In addition, theMR-PRESSO

test can detect possible outliers, and the MR-PRESSO global test

can be used to identify the potential horizontal pleiotropic effects

of the SNPs (16). A leave-one-out sensitivity test was utilized to

examine the effect of individual SNPs on the causal inference. We

removed the single SNPs one by one and calculated the effect of the

remaining SNPs by the IVWmethod (17).

UVMR and MVMR analyses were performed in R (version

4.2.1) using the “TwoSampleMR” version 0.5.6 and “MR-PRESSO”

package (18) (https://mrcieu.github.io/TwoSampleMR/). A P-value

<0.05 was considered to indicate nominal significance.

Results

MR analysis of BMI and risk of PDR

In total, 35 SNPs for BMI (Supplementary Table 2) were

selected as the genetic instruments. We calculated F-statistics to

evaluate the strength of the instrumental variable effect. The rule-

of-thumb of F was set as 10 to avoid bias.

The causal associations of genetically predicted BMI with PDR

presented a positive result, which means that higher BMI was

associated with a higher risk of PDR [odds ratio (OR)= 1.120, 95%

confidence interval (CI) = 1.076–1.167, P < 0.001, using the IVW

method] (Table 1) (Figure 2A). The sensitivity analysis showed that

there were no heterogeneities (IVW: Q-value = 39.657; df = 34;

P = 0.232; I2 = 14.26%; MR Egger: Q-value = 39.656; df = 33; P

= 0.198; I2 = 16.78%) and no directional pleiotropies (MR–Egger

intercept= 2.942× 10−4; SE= 0.010; P= 0.976).

In addition, the MR-PRESSO global test (P for global test

= 0.355) supports this result. Moreover, the leave-one-out test

suggested that the observed associations may not be driven by any

single SNP (Figure 2B), indicating that the results were reliable

and stable.

In reverse MR analysis, there was no evidence of a causal effect

of PDR on BMI (OR = 0.91, 95%CI = 0.79–1.05, P = 0.18, using

the IVWmethod).

MR analysis of plasma lipid levels and risk of
PDR

We further investigated the relationship between plasma lipid

levels and the risk of PDR (Table 1). In total, 65 SNPs for HDL-C

(Supplementary Table 3), 43 SNPs for LDL-C, and 37 SNPs for TGs

were selected as the genetic instruments.

Frontiers inNutrition 03 frontiersin.org

https://doi.org/10.3389/fnut.2023.1099807
https://gwas.mrcieu.ac.uk/
https://r5.finngen.fi/
https://mrcieu.github.io/TwoSampleMR/
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Shu et al. 10.3389/fnut.2023.1099807

TABLE 1 Five MR results of BMI and plasma lipids on risk of PDR.

Variable exposure nSNP OR 95%CI P-value

BMI

MR egger 35 1.118 0.999–1.252 0.061

Weighted median 35 1.113 1.050–1.180 <0.001

IVW 35 1.120 1.076–1.167 <0.001

Simple mode 35 1.147 1.025–1.284 0.023

Weighted mode 35 1.115 1.033–1.204 0.009

HDL-C

MR egger 65 0.978 0.815–1.172 0.806

Weighted median 65 0.966 0.838–1.114 0.637

IVW 65 0.898 0.811–0.995 0.040

Simple mode 65 0.902 0.690–1.181 0.457

Weighted mode 65 0.947 0.822–1.090 0.447

LDL-C

MR egger 43 0.908 0.785–1.051 0.202

Weighted median 43 0.949 0.841–1.072 0.402

IVW 43 0.933 0.848–1.027 0.156

Simple mode 43 0.964 0.786–1.180 0.722

Weighted mode 43 0.964 0.858–1.082 0.532

TG

MR egger 37 1.034 0.678–1.579 0.876

Weighted median 37 0.922 0.761–1.118 0.409

IVW 37 1.009 0.814–1.251 0.932

Simple mode 37 0.993 0.653–1.506 0.972

Weighted mode 37 0.839 0.626–1.124 0.246

PDR, proliferative diabetic retinopathy; HDL-C, high-density lipoprotein cholesterol; LDL-

C, low-density lipoprotein cholesterol; TG, triglyceride; IVW, inverse variance weighted; MR,

Mendelian randomization; OR, odds ratio; nSNP, number of single nucleotide polymorphism.

The causal associations of genetically predicted HDL-C levels

with PDR based on the IVWmethod showed that the lower HDL-C

levels were associated with a higher risk of PDR (OR = 0.898, 95%

CI = 0.811–0.995, P = 0.040) (Table 1, Figure 3A). The MR-Egger

intercept test suggested a low probability of directional pleiotropy

for HDL-C (intercept = −6.249× 10−3; SE = 5.691 × 10−3; P =

0.276). Although the results of Cochran’s Q (Q-value= 100.583; df

= 63; P = 0.0024, by IVW) showed there was heterogeneity, I2 =

37.37% suggested that it did not have significant heterogeneity. We

still used the random effects IVWMR analysis (P= 0.040), Bowden

et al. (19) indicating that a higher HDL-C level was associated with

a lower risk of PDR. The result of the MR analysis was driven

by potentially influential SNPs identified in the “leave one out”

analysis, and we should carefully interpret the result and draw a

cautious conclusion (Figure 3B).

When we assessed the causal relationship between LDL-C and

PDR, no evidence of an association was detected using the IVW

analysis method (P = 0.156) (Table 1; Supplementary Figure 1).

The MR-Egger intercept test did not reveal signs of horizontal

pleiotropy for LDL-C (intercept = 2.884 × 10−3, SE = 5.910 ×

10−3, P= 0.628). Non-significant heterogeneity was detected across

the instrument SNP effects (Q = 57.027; P = 0.061, by IVW).

Furthermore, in the leave-one-out sensitivity analysis, we found

that no single SNP significantly influenced the overall effect of

LDL-C on PDR (Supplementary Figure 2).

In the UVMR analysis of TG and PDR, the causal effect

estimated from five methods all suggested a negative result (P >

0.05) (Table 1; Supplementary Figure 3). No statistical evidence of

horizontal pleiotropy was found across TGs (intercept = −1.673

× 10−3, SE = 0.013, P = 0.895). Furthermore, no significant

distortion was observed in the causal estimates before and after

outlier removal (MR-PRESSO distortion test, p= 0.855). Although

heterogeneity in the SNP effects was indicated by the Cochran’s

Q test (Q = 134.209, P = 3.053 × 10−13), plots of leave-one-out

analysis that are shown in Supplementary Figure 4 demonstrated

no consistent causal relationship between genetically predicted TG

and PDR. Thus, this suggests that there is stability in our results.

MVMR analysis

Moreover, we carried out IVWMVMR analyses to estimate the

direct causal effect of genetically predicted BMI and HDL-C levels

on PDR risk. In the MVMR analysis controlling for BMI, there was

no evidence for a direct causal effect of the HDL-C level on the risk

of PDR (IVWOR= 0.911, 95% CI= 0.823, 1.008, P= 0.072). After

adjusting for theHDL-C level, there was strong evidence for a direct

causal effect of BMI on the risk of PDR (IVW OR = 1.106, 95% CI

= 1.049, 1.166, P < 0.001) (Supplementary Table 4).

Discussion

In the present study, we utilized both UVMR and MVMR

analyses to estimate a causal and independent effect of BMI and

plasma lipid level on PDR risk. Our study provided robust evidence

that BMI was responsible for deleterious effects on higher PDR risk,

and BMI may account for the protective effects of HDL-C against

the risk of PDR, whereas no clear evidence for an independent

causal effect of HDL-C on the risk of PDR. By using MVMR

analysis, we found that BMI can still directly influence PDR after

adjustment for HDL-C. The results of reverse MR analysis showed

no evidence of reverse causality from PDR to BMI. Moreover,

several sensitivity analyses of our results are essentially robust,

including heterogeneity tests, pleiotropy tests, and leave-one-out

sensitivity tests.

The appearance of retinal neovascularization means a critical

change in the progression of DR, the sight-threatening endpoint

(PDR). Visual loss can occur suddenly because of vitreous

hemorrhage (VH) or tractional retinal detachment (TRD) due

to progressive fibrosis (1). In this stage, it is necessary to

intervene with some treatments, such as laser photocoagulation and

intraocular injection of anti-VEGF agents, and even vitreoretinal

surgery may occasionally be needed. Therefore, it is crucial to

explore the modifiable risk factors for PDR, which is why we chose

PDR rather than DR as the outcome of our study.
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FIGURE 2

Scatter and leave-one-out plots for BMI on the risk of PDR. (A) Scatter plots of the genetic associations of BMI-associated SNPs against the genetic

associations of PDR. The slopes of each line represent the causal association for each method. (B) Leave-one-out analysis plots for BMI on PDR risk.

It is widely acknowledged that obesity correlates with an

increased risk for hypertension, stroke, coronary atherosclerotic

heart disease, and diabetes. Moreover, the influence of obesity on

eye diseases has been widely confirmed, such as primary open-

angle glaucoma (20), age-related maculopathy (21), and cataracts

(22). In the study, obesity was judged by BMI, and three kinds of

plasma lipid levels were included for analysis simultaneously. To

date, various studies have focused on the mechanism between BMI

and DR. Miyazawa- Miyazawa-Hoshimoto et al. (23) found that

VEGF concentrations were positively correlated with BMI, while

VEGF has been shown to be involved in the pathogenesis of PDR.

This is consistent with our results that a higher BMI was associated

with a greater risk of PDR. Considine et al. (24) found that there was

a strong positive correlation between serum leptin concentrations

and BMI. Some studies have suggested that serum leptin plays a role

in the pathogenesis of DR. Uckaya et al. (25) found that the plasma

level of leptin was significantly higher in PDR than that in patients

with non-PDR or without retinopathy. In addition, the result that

vitreous leptin concentrations were especially higher in patients

with PDR supports the conclusions above (26). This phenomenon

may be involved in the mechanism of leptin-induced promotion

of angiogenesis and neovascularization (27). In addition, BMI is

often correlated with hypertension and dyslipidemia, which are

correlated with DR. All the results have supported a relationship

between BMI and PDR. Moreover, central obesity was defined by

waist circumference (WC) or waist-to-hip ratio (WHR). Zhou et al.

(28) found that WC is associated with the risk of DR in the Chinese

population.Man et al. (29) found that a higherWHRwas associated

with the presence and severity of DR in women. Ranganathan et al.

(30) also supported this finding, and they found that increased waist

circumference was a risk factor for diabetic retinopathy in type 2

diabetes patients older than 45 years.

The role of dyslipidemia in DR has now attracted increasing

attention although the results remain controversial. Previous

studies have shown an association between dyslipidemia and

DR, but the causal effect remains unclear. Yau et al. (31) found

that higher total serum cholesterol was associated with a higher

risk of DME and confirmed the importance and influence of

dyslipidemia, hyperglycemia, and hypertension asmajormodifiable

risk factors for the risk of all DR, whereas Wong et al. (32)

published the conflicting reports about this risk factor, showing

that higher total cholesterol levels were associated with reduced

odds of DR. The study by Zhang et al. (33) provided strong

evidence that dyslipidemia promotes the development of DR by

increased secretion of VEGF-A, VEGF-C, VEGF-D, and PlGF

in patients with DR. On the other hand, elevated lipids are

associated with endothelial dysfunction, causing hemodynamic

changes, retinal tissue hypoxia, and microcirculatory disorders,

and with breakdown of the blood-retinal barrier, which causes the

development of DR (4). Although our results did not show a clear

causal relationship between plasma lipids and PDR, the mechanism

behind them still deserves further investigation.

MR was first proposed and used in 1991 (34), and then it

became a greatly powerful approach to identify the causal effect

of exposure on the outcome in epidemiology. The core of MR

is the use of IVs, which must be associated with the exposure

and only affect the outcome via the exposure, while there is

no factor that can cause both the IVs and the outcome (35).

Our study had some strengths as follows: First, we used GWAS

summary data to extract SNPs for exposure and selected the

latest studies and the largest SNP database, which means that the

results were reliable. Second, the law of independent assortment

means that the genetic variations related to exposure are randomly

distributed among the population at birth and, thus, compared with
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FIGURE 3

Scatter and leave-one-out plots for HDL-C on the risk of PDR. (A) Scatter plots of the genetic associations of HDL-C-associated SNPs against the

genetic associations of PDR. The slopes of each line represent the causal association for each method. (B) Leave-one-out analysis plots for HDL-C

on PDR risk.

traditional observational research and RCTs, the causal association

of BMI, plasma lipids, and PDR was not distorted by confounding

factors. Third, our results were robust according to the results of

sensitivity analysis. However, there are several limitations in our

study. First, only participants of European ancestry were included

in our study; thus, it is unclear whether our results are also

applicable to other populations. Further investigation is needed in

other ethnic groups. Second, although several sensitivity analyses

of our results are essentially robust, there may be unidentified

pleiotropic effects in these datasets, so future investigators should

analyze more MR methods and collect more data to minimize

and avoid bias. Finally, although our results indicated that BMI is

Frontiers inNutrition 06 frontiersin.org

https://doi.org/10.3389/fnut.2023.1099807
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Shu et al. 10.3389/fnut.2023.1099807

associated with an increased risk of PDR, the mechanisms are not

entirely clear.

In summary, our results suggested a significant influence of

BMI on PDR risks, providing genetic evidence that higher BMI is

related to a higher risk of PDR. No clear evidence was found for

an independent causal effect of HDL-C on PDR risk. Moreover,

further studies are needed to investigate the underlying mechanism

of BMI for prevention and therapeutic treatment in PDR. Our

results provide a new research field for the effective screening and

management of PDR risk factors.
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