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Spinal cord injury leads to loss of innervation of skeletal muscle, decreased

motor function, and significantly reduced load on skeletal muscle, resulting in

atrophy. Factors such as braking, hormone level fluctuation, inflammation, and

oxidative stress damage accelerate skeletal muscle atrophy. The atrophy process

can result in skeletal muscle cell apoptosis, protein degradation, fat deposition,

and other pathophysiological changes. Skeletal muscle atrophy not only hinders

the recovery of motor function but is also closely related to many systemic

dysfunctions, a�ecting the prognosis of patients with spinal cord injury. Extensive

research on the mechanism of skeletal muscle atrophy and intervention at the

molecular level has shown that inflammation and oxidative stress injury are the

main mechanisms of skeletal muscle atrophy after spinal cord injury and that

multiple pathways are involved. These may become targets of future clinical

intervention. However, most of the experimental studies are still at the basic

research stage and still have some limitations in clinical application, and most of

the clinical treatments are focused on rehabilitation training, so how to develop

more e�cient interventions in clinical treatment still needs to be further explored.

Therefore, this review focuses mainly on the mechanisms of skeletal muscle

atrophy after spinal cord injury and summarizes the cytokines and signaling

pathways associated with skeletal muscle atrophy in recent studies, hoping to

provide new therapeutic ideas for future clinical work.

KEYWORDS
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Introduction

Spinal cord injury (SCI) is a serious and disabling disease. In recent years,
the incidence of spinal cord injury caused by traffic accidents, industrial accidents,
and sports injuries has been increasing (1–4). SCI leads to the loss of central
regulation of peripheral nerves below the injured segment, resulting in sensory,
motor, and autonomic dysfunction, muscle paralysis, and reduced muscle load (5, 6).
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Injury to the neuromuscular system and reduced integrity of the
musculoskeletal system are important features of SCI (7), and are
also significant obstacles to the recovery of motor function. As
the main component of human tissue structure, skeletal muscle
accounts for about 40% of body weight (8). In addition to
maintaining the homeostasis of exercise, skeletal muscle also plays
a number of physiological functions such as support, protection,
and respiration (9, 10). The muscle type most frequently atrophied
after SCI is skeletal muscle, manifesting as loss of mass and strength
(8), with 18–46% decreases in cross-sectional area (CSA) of skeletal
muscle 6 weeks after injury (7, 11, 12).

After SCI, somatic and visceral nerve functions are affected (4),
and these strongly correlate with skeletal muscle atrophy. After
somatic nerve function damage, the corresponding skeletal muscle
is denervated, and motor dysfunction is severe in patients with
higher injury segments. The limbs of these patients maintain long-
term braking and lose the nutritional effect of the nerve, causing
skeletal muscle physiological, biochemical and biomechanical
changes, and many functional reductions (13–15). Visceral nerve
function damage leads to disruption of some hormones secretion,
many of which are closely related to the maintenance of skeletal
muscle mass, such as testosterone, insulin, growth hormone, and
others (16–18), with multiple factors coinciding to aggravate
skeletal muscle atrophy after SCI (19). Skeletal muscle atrophy can
cause systemic secondary metabolic dysfunction, such as glucose
intolerance, type 2 diabetes and insulin resistance (6, 20). Although
the quality and function of skeletal muscles can be recovered to
some extent through voluntary movement, the effect is often very
limited (21) and is easily affected by the patient’s psychological
focus and other factors, and the optimal recovery period may be
missed. Muscle atrophy is irreversible even if the axons, endplates,
and skeletal muscle can be reconnected later (22). Therefore,
maintaining skeletal muscle integrity is crucial for maintaining
cell homeostasis and systemic metabolism, and research on the
prevention and treatment of skeletal muscle atrophy after SCI is
highly significant for optimal patient benefit (23, 24).

In recent years, there have beenmany studies on skeletal muscle
atrophy after spinal cord injury, but most of them are experimental
studies aimed at prevention and treatment strategies, but much
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factor-related weak apoptosis-inducing factor; Fn14, fibroblast growth
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regulated protein kinase; JNK, c-Jun N-terminal kinase; MuRF1, muscle-

specific RING finger protein 1; PGC-1α, peroxisome proliferator-activated

receptor-γ coactivator-1α; ROS, Reactive Oxygen Species; IL-1, interleukin

1; IL-6, interleukin 6; NHO, neurogenic heterotopic ossification; COX-
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kinase; mTOR, mammalian target of rapamycin; UPS, Ubiquitin–proteasome

System; FGF6, Fibroblast growth factor 6; FGFR, fibroblast growth factor
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work is still needed before practical clinical application. There
is also a lack of review of the related mechanisms of skeletal
muscle atrophy. However, it is important to clarify and organize
the factors, pathological changes and relatedmechanisms of skeletal
muscle atrophy after spinal cord injury for subsequent research
and treatment.

Factors in skeletal muscle atrophy

SCI often results in upper or lower motor neuron damage
or both (7), upper being relatively common, and the muscle
atrophy differs between the two (25). When upper motor neurons
are injured, the lower motor neurons are often intact. In
SCI the conduction process is blocked (26) (Figure 1). Spinal
motor neurons become highly excited (27), thereby pathologically
activating the antigravity muscles of the lower limbs, such as
the quadriceps femoris, gastrocnemius, and others, leading to
spasticity. Deep hyperreflexia occurs (28), but moderate spasticity
also reduces muscle atrophy to some extent (29, 30).

Although the signs of muscle atrophy after SCI are standard
in most forms of disuse muscle atrophy, skeletal muscle atrophy is
often faster after SCI due to denervation, immobilization, and other
factors (23). This is because the γ -loop is damaged after spinal cord
injury (31), leading to inhibition of α motor neurons that excite
muscles, accompanied by different levels and patterns of muscle
atrophy signals and anabolic signals. A combination of factors
caused rapid skeletal muscle atrophy after SCI (20). Severe SCI
results in impaired neural drive function, accompanied by changes
in neuromuscular junctions (8, 20), and leads to impaired skeletal
muscle function around and below the injury site. Etzel et al.
(32) found in rats that compared with simple immobilization, SCI
resulted in a more significant decrease in muscle cross-sectional
area, wet muscle weight, andmuscle strength within 7–21 days after
immobilization. This indicates that neural input and mechanical
load have a combined effect on the mass and strength of skeletal
muscle after SCI.

Pathophysiological process

The spinal cord establishes a nutritional connection with
skeletal muscle through peripheral nerves, and spinal motor
neurons also trigger the contraction of skeletal muscle by
transmitting action potentials to the motor endplate (33). When
the spinal cord is injured, some motor neurons undergo apoptosis.
The morphology and function of the remaining motor neurons
also change; synapses are shortened (34), and the skeletal muscles
innervated by these motor neurons and synapses undergo some
level of atrophy and fibrosis (35–37). The motor endplate, also
known as the neuromuscular junction, is the chemical synapse
between motor neurons and skeletal muscle, consisting of motor
nerve endings, the synaptic cleft, acetylcholine-containing synaptic
vesicles, and a postsynaptic membrane (38). The motor endplate
degenerates after injury, and its acetylcholinesterase (AchE) content
decreases significantly (Figure 1). Acetylcholine cannot be removed
in time, and excess calcium flows into the postsynaptic membrane
through acetylcholine receptor channels. Intracellular proteases are
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FIGURE 1

The spinal cord and brain constitute the central nervous system. After a spinal cord injury (A) the conduction of peripheral nerves innervating skeletal

muscle will be interrupted or blocked (B) and some motor neurons innervating skeletal muscle will undergo apoptosis (C) Endplates degenerate, and

acetylcholinesterase content of synapses will decrease significantly (D) eventually leading to skeletal muscle atrophy (C).

activated in skeletal muscle cells, triggering protein degradation
and apoptosis (33, 39, 40) (Figure 2).

The protein content of skeletal muscle accounts for about 60%
of total body protein (41). Skeletal muscle atrophy after SCI is
mainly a process of protein production and degradation imbalance
(42). After an injury, protein hydrolysis is activated, the rate of
protein degradation is greater than the rate of synthesis (8) and
many organelles and muscle contractile proteins are degraded
into free amino acids (43–45). Studies have shown that long-term
disuse-related muscle atrophy is mainly due to a reduced rate of
protein synthesis. In contrast, short-term disuse-related muscle
atrophy is accompanied by a reduction in protein synthesis and an
increase in decomposition, so the early stage of muscle disuse is
manifested as clearly apparent muscle atrophy (46), indicating that
short-term disuse-related muscle atrophy is more closely related to
muscle mass and volume reduction. A study by Moore et al. (11)
showed that muscle CSA in an SCI group decreased compared with
that of a control group (8, 11), and the degree of muscle atrophy
was closely related to the degree of injury. Muscle atrophy is
more pronounced in complete than incomplete SCI (47). Metabolic
protein changes have consequences throughout the lifespan, so age
can also exacerbate the process of muscle wasting in patients with
SCI (46) (Figure 2).

A persistent secondary injury cascade follows SCI (28),
including many systemic effects closely related to skeletal muscle

atrophy. For example, levels of hormones such as testosterone
(a sex hormone), glucocorticoids, mineralocorticoids and others
may fluctuate. Studies have found that dihydrotestosterone, the
active metabolite of testosterone, may reduce synaptic dissection
after nerve injury (35), strengthen afferent central nervous
system signals, and promote the recovery of motor function
(48). Men are prone to hypotestosteronemia after SCI, and
exogenous testosterone treatment can prevent oxidative neural
stress damage, effectively preventing SCI skeletal muscle atrophy
and maintaining skeletal muscle mass [16]. Studies have found
that another sex hormone, estradiol, can improve motor function
and has anti-inflammatory effects, effectively reducing apoptosis
(35, 49) and preventing further damage to spinal cord tissue.
Its main target is the nervous system, but whether estradiol has
a direct therapeutic effect on skeletal muscle atrophy after SCI
remains unclear. Hormone therapy has shown strong potential in
improving motor function and reducing skeletal muscle atrophy.
Synthetic steroid hormones are used clinically in treating skeletal
muscle atrophy, such as testosterone, insulin-like growth factor,
and others. Combating skeletal muscle atrophy by increasing the
transcriptional level of myogenic fibronectin DNA and activating
the proliferation and differentiation of muscle satellite cells (50)
(Figure 2). However, hormone therapy, while having a better
therapeutic effect, is also associated with a certain risk of side
effects, so it has to be applied appropriately and may not be suitable
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FIGURE 2

Pathological changes of skeletal muscle after spinal cord injury: ① muscle denervation, neuromuscular junction degeneration; ② decreased sex

hormone secretion; ③ fat deposition; ④ protein degradation; ⑤ macrophage phenotype switch, from M2 to M1 type transition; ⑥ insulin resistance;

⑦ muscle fiber type transition, from slow oxidation type to fast glycolysis type; ⑧ muscle cell apoptosis.

for all patients, and therefore researchers are currently exploring
alternative treatments.

The spinal cord mainly relies on α motor neurons to regulate
skeletal muscle, at the same time according to the regulation of
different types of muscle fibers, α motor neurons can be divided
into S motor neurons (slow contraction, anti-fatigue), FR motor
neurons (fast contraction, fatigue-resistant), FF motor neurons
(fast contraction, easy fatigue) three subtypes, so as to coordinate
the various functions and effects of skeletal muscle, control type I
muscle fibers, IIb muscle fibers and IIx muscle fibers respectively
(51). Spinal cord injury can cause slow motor neuron axon
conduction speed to slow down (52, 53). Skeletal muscle fiber
undergoes a transition after SCI from a slow-oxidative to a fast
fatigue and fast glycolysis variety, and at the same time develops
toward the direction of muscle fibrosis, that is, the transformation
of type II fiber to type I fiber (7, 54–57). which often precedes the
deposition of adipose tissue (7), this may attribute to changes in
the expression of genes that control myosin subunits, resulting in
a significant decrease in the proportion of the slow myosin heavy
chain (MHC) isoform and a corresponding increase in the fast
MHC isoform (58, 59). However, if spasticity occurs after spinal
cord injury, the change in muscle fiber type may not be obvious
(56) (Figure 2).

In addition to skeletal muscle fiber changes, specific
abnormalities occur in the glucose and lipid metabolism of

the skeletal muscle. Intramuscular fat (IMF) comprises fat
infiltrated within a single muscle group (intramuscular and extra
muscular fat compartments) and intermuscular adipose tissue
between different muscle groups. An essential pathological change
after skeletal muscle atrophy is the deposition and infiltration of
numerous IMFs (11) more extensively in patients with SCI than
in healthy individuals. Elder found that the IMF content in the
muscles of SCI subjects was more than three times that of control
subjects, and the subfascial fat content was about four times that of
controls, and this is a cause of decreased strength in SCI patients
(60) (Figure 2).

The glucose metabolism of skeletal muscle becomes disordered
after SCI. Skeletal muscle, as an important consumer of
glucose (61), develops insulin resistance (60) and initiates an
inflammatory response in skeletal muscle after SCI, with an
increase in macrophages within the muscle. The phenotype
of muscle macrophages can affect the insulin sensitivity,
and macrophages will polarize from the M2 phenotype to
the M1 phenotype (62, 63), inducing insulin resistance.
Macrophages may also affect the uptake and metabolism
of glucose in skeletal muscle by affecting the secretion of
factors related to glucose homeostasis (64), also resulting in
insulin resistance in the muscle. These changes account for
the occurrence of type 2 diabetes mellitus after SCI (65, 66)
(Figure 2).
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Cytokines associated with skeletal
muscle atrophy after SCI

Skeletal muscle atrophy is often closely related to the severity
of spinal cord injury. Incomplete spinal cord injury tends to cause
skeletal muscle atrophy within the first 6 weeks of injury (6), while
complete spinal cord injury continues to cause skeletal muscle
atrophy within 24 weeks after injury (7). Chronic inflammatory
response and oxidative stress in skeletal muscle after SCI may
be the mechanisms leading to atrophy (9, 67–69). At present,
the known factors and related proteins involved in skeletal
muscle atrophy include: tumor necrosis factor-alpha (TNF-α)
and its receptor (70–72), human tumor necrosis factor-related
weak apoptosis-inducing factor (TWEAK) and its receptor (56,
67, 73), interleukin-1β (IL-1β) (72, 74), interleukin-6 (IL-6) and
its receptor (75, 76), growth factor (IGF-1) (77, 78), human
dystrophin (Fbox-1, also known as Atrogin-1) (79, 80), muscle-
specific RING finger protein 1 (MuRF1) (79, 80), peroxisome
proliferator-activated receptor-γ coactivator-1α (PGC-1α) (20, 58,
81), fibroblast growth factor-inducible receptor 14 (Fn14) (73),
reactive oxygen species (ROS) (20, 68, 82) and others. The discovery
of these skeletal dystrophins has provided a deeper understanding
of skeletal muscle atrophy at the molecular level and suggest the
possibility of intervening via corresponding signaling pathways
and factors to delay the atrophy process or promote skeletal
muscle regeneration.

Inflammation-mediated skeletal
muscle atrophy after spinal cord injury

Tumor necrosis factor-alpha

As a pro-inflammatory cytokine, TNF-α is a potent inducer
of skeletal muscle atrophy after SCI. It was found that the
expression levels of TNF-α and TNF-α receptors were elevated
in the atrophied skeletal muscle during the chronic phase of
spinal cord injury patients, which played a very important
role in mediating skeletal muscle atrophy during the chronic
phase of SCI (5, 67, 72). TNF-α binding to tumor necrosis
factor receptor 1 (TNFR1) induces atrophy and autophagy of
C2C12 myotubes in skeletal muscle (9, 42), while leading to
ROS accumulation and activating the inflammatory response
pathway. The expression level of nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB) is also increased, and the
degradation rate of skeletal muscle protein is accelerated (83, 84).
TNF-α is closely related to the occurrence of energy disorder
and stress as well as abnormal glucose and lipid metabolism
in the process of skeletal muscle atrophy (42). Consistent with
this, its levels are significantly positively correlated with muscle
strength (85). The MAPK signaling pathway is activated to
varying degrees after SCI due to various factors such as oxidative
stress and inflammation (86, 87). TNF-α as an inflammatory
factor activates the MAPK signaling pathway mediated by
extracellular regulated protein kinas (ERK), p38 MAPK, c-Jun
aminoterminal kinase (JNK) mediated MAPK signaling pathway

(83, 88) (Figure 3) and enhances the expression of Atrogin-1
and MuRF1.

Previous studies have found that the differentiation of C2C12
myoblasts in the early stage of skeletal muscle injury is strongly
correlated with the concentration of TNF-α (89), which is closely
related to the tissue repair effect of TNF-α in the acute phase, while
in the chronic phase TNF-α is related to tissue damage (90). Low
doses of TNF-α can induce the proliferation of C2C12 myoblasts,
promote muscle production in skeletal muscle cells, while high
doses cause skeletal muscle atrophy by interfering with the ability
of muscle cells to differentiate into muscle fibers. Therefore, TNF-α
exhibits a time- and dose-dependent induction of skeletal muscle
atrophy (42). It was found that functional electrical stimulation
therapy and endurance exercise training can effectively reduce
the level of TNF-α in SCI patients and animals, thus acting as
a treatment against skeletal muscle atrophy (91, 92). Therefore,
suppressing elevated levels of inflammatory factors in the acute
phase of SCI or fighting chronic inflammation in the chronic phase
are also effective strategies to treat skeletal muscle atrophy.

Tumor necrosis factor-like weak inducer of
apoptosis /fibroblast growth
factor-inducing factor 14

TWEAKmay be an essential mediator of chronic inflammation
and fibrotic changes in skeletal muscle after SCI, and higher
levels of TWEAK and TWEAK R in SCI may affect the oxidative
metabolism of the body. On the one hand, TWEAK inhibits the
normal oxidative metabolic process in skeletal muscle by activating
NF-κb, thus causing oxidative stress injury (67, 93). On the other
hand, TWEAK can activate NF-κB signaling and other proteolytic
pathways (94) (Figure 3), activate the autophagy pathway, induce
muscle proteolysis, and inhibit the proliferation of myoblasts,
thereby inhibiting the regeneration of skeletal muscle fibers. In
addition, TWEAK reduces the number of mitochondria in skeletal
muscle cells, weakens the ability of skeletal muscle cells to resist
oxidative stress (93), and causes metabolic dysfunction in skeletal
muscle cells (93, 95).

Fn14 is stimulated and up-regulated after SCI, and can combine
with TWEAK to synergistically affect the atrophy of skeletal muscle
(93) (Figure 3). It may also be involved in the transition process
of skeletal muscle fiber types (93), but at higher levels Fn14
has a TWEAK-independent effect, promoting the expression of
critical factors in skeletal muscle regeneration, thereby promoting
skeletal muscle regeneration (94). Activation of TWEAK/Fn14 is
also coupled to TNF-α-TNFR1 signaling and can sensitize skeletal
muscle to TNF-α signaling (96).

In the persistent state of injury after SCI, TWEAK-TWEAK
R activation may lead to pathological remodeling of muscle,
activating proliferation and activation of fibroblasts and causing
muscle fibrosis. Yarar-Fisher et al. (67) found that expression
levels of TWEAK R, Fn14, and NK-κB in the skeletal muscle of
patients with SCI were significantly increased, and the degree of
muscle fibrosis was also significantly increased, suggesting a close
association. In addition, TWEAK is also an important regulator
of the skeletal muscle fiber type transition process after SCI (67).
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FIGURE 3

The inflammatory factor tumor necrosis factor-alpha (TNF-α) can induce the apoptosis of skeletal muscle cells and lead to the accumulation of

reactive oxygen species (ROS). The collection of ROS can lead to mitochondrial dysfunction and depolarization, while TNF-α can activate the MAPK

signaling pathway and cause nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). NF-κB expression levels to increase, inducing

inflammation and protein degradation. Tumor necrosis factor-related weak apoptosis-inducing factor (TWEAK) can activate NF-κB signaling to

promote proteolysis and simultaneously increase the expression level of fibroblast growth factor-inducing factor 14 (Fn14), both of which act

synergistically in the process of skeletal muscle atrophy. IL-1 (Interleukin 1) and IL-6 (Interleukin 6) are critical inflammatory factors that induce

skeletal muscle atrophy. IL-1 stimulates the expression of IL-6 by stimulating the expression of NF-κB. Overexpression of IL-1 and IL-6 induces an

inflammatory response in the body and thus induces skeletal muscle atrophy.

Mittal (55) and others compared mice with overexpression or
knockout of the TWEAK gene and found that skeletal muscle
atrophy and fast muscle fibers increased significantly after 4 to 5
months of overexpression, with increased Fn14 expression level
and the opposite finding in the knockout group. These studies have
confirmed that the TWEAK/TWEAK R/NF-κB signaling pathway
and Fn14 play essential roles in skeletal muscle atrophy after SCI.

Interleukin 1/6

SCI activates the body’s immune and inflammatory responses,
causes an increase in interleukin levels, such as IL-1β , IL-6, and
IL-1β causes secondary spinal cord injury, which further leads
to loss of central regulation of skeletal muscle, also IL-1β has a
role in promoting neurogenic heterotopic ossification (NHO) in
skeletal muscle after SCI, which limits joint movement and affects
the normal life of patients (97–100). IL-6 is mainly produced during
skeletal muscle contraction (101). High levels of IL-6 are also an
important influence on skeletal muscle atrophy after SCI (102).

Satellite cells are the power source for skeletal muscle cell
proliferation and regeneration, maintain skeletal muscle quality,

and endow skeletal muscle with a degree of plasticity (103). IL-1
and IL-6 have pro-inflammatory effects, activating satellite cells
in skeletal muscle, promoting muscle cell proliferation to some
extent, and have a particularly positive impact on promoting
muscle regeneration in the early stage of injury (99, 104). However,
high levels of IL-1 and IL-6 combined with TNF-α can inhibit
the synthesis and metabolism of IGF-1 (69). At an appropriate
level, IL-1β can promote the expression of cyclooxygenase 2
(COX-2) in muscle and reduce myostatin levels (103). A study
(105) showed that the proliferation and differentiation of myoblasts
was reduced in IL-1 knockout mice. With low concentrations
of exogenous IL-1 introduced to the body, the MAPK signaling
pathway was activated, and NF-κB stimulated the secretion of
chemokines and IL-6 (Figure 3). Low concentrations of IL-6 have
a positive effect on the promotion of muscle cell proliferation
by IL-1β . However, when spinal cord injury enters the chronic
inflammatory phase, it has the opposite effect, mainly by activating
the ubiquitin-proteasome system, inducing skeletal muscle atrophy
(9, 106), and simultaneously generating the production of
myostatin and causing cell damage. The accumulation of
mitochondrial ROS (84, 107) and other factors induce skeletal
muscle atrophy.
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Skeletal muscle is an integral producer of IL-1 and IL-6 (97),
healthy individuals can promote IL-6 levels through exercise, but
under short-term exercise SCI patients lack such a regulatory
mechanism due to skeletal muscle atrophy (101), and studies have
found that endurance exercise can regulate the expression of IL-1
and IL-6 in skeletal muscle (103, 108), which may explain the
positive effect of endurance training on skeletal muscle function
and muscle strength after SCI (75, 109).

Oxidative stress-mediated skeletal
muscle atrophy after spinal cord injury

Peroxisome proliferator-activated
receptor-γ coactivator (PGC)-1α

PGC-1α is a regulator of mitochondrial bioenergetics and
abundantly expressed in skeletal muscle, and plays an essential
role in skeletal muscle repair after SCI via transformation of fast-
twitch to slow-twitch muscle fibers (77, 81, 110, 111). It can
induce mitochondrial biogenesis, and by up-regulating nuclear
respiratory factors 1,2 (Nrf1, 2) and mitochondrial transcription
factors expressed against oxidative stress in skeletal muscle and
spinal cord (81, 112) it can increase myoglobin activity and
promote energy metabolism in skeletal muscle. After SCI, PGC-
1α expression decreases (110), and expression of myosin heavy
chain protein also decreases accordingly (31). PGC-1α has an
inhibitory effect on FoxO3 associated with muscle atrophy and
mass loss (110)whose expression is increased after SCI, indirectly
causing the expression of Atrogin-1 and MuRF1, resulting in
muscle atrophy (113). It was found that exercise training promotes
the expression of PGC-1α and the transformation of spinal cord
injury patients’ muscle fibers from fatigue-prone fast muscle fibers
to more endurance-prone slow muscle fibers, while improving
muscle endurance (111).Therefore, PGC-1α plays a vital role in the
repair of nerve and skeletal muscle structure and function after SCI.

Reactive oxygen species

Changes in mitochondrial structure and function in skeletal
muscle cells play a vital role in regulating overall skeletal muscle
mass and function (93). Denervation of skeletal muscle after SCI
can lead to mitochondrial toxicity (68, 114), this leads to oxidative
stress damage, mainly in the form of an imbalance between
ROS production and detoxification (68). After the mitochondrial
function is damaged, intracellular ROS cannot be effectively and
promptly removed. The antioxidant capacity of skeletal muscle
cells decreases, resulting in oxidative stress and ROS accumulation,
causing oxidative stress damage, apoptosis and mitochondrial
depolarization of myoblasts (Figures 3, 4) (115, 116), so scavenging
ROS and alleviating oxidative stress damage is an integral part of
the treatment of skeletal muscle atrophy after SCI. Under normal
circumstances, ROS scavenging mainly depends on antioxidant-
related enzymes and factors in vivo, such as catalase, glutathione,
superoxide dismutase, and others (41, 117, 118). The antioxidant
capacity of the spinal cord and skeletal muscle is impaired after
SCI, so exogenous interventions are often required to reduce or

reverse oxidative stress injury (119). Studies have found that many
vitamins, proteins, and other nutrients have antioxidant capacity.
For example, vitamin D, especially its 1,25-(OH)2D form, is
generally considered to be an antioxidant and its supplementation
can reduce skeletal muscle, illustrating the potential for ROS
generation to combat oxidative stress (120).

Sestrins (Sesns)

Sestrins is a highly conserved stress-inducible protein family,
which has attracted the attention of researchers in recent years due
to its anti-aging and muscle atrophy effects. It can activate AKT
and then autophagy, restoring neuronal autophagy flux. It can also
activate the MAPK signaling pathway to combat apoptosis and
oxidative stress, can affect the homeostasis of stem cells in skeletal
muscle (121–125), combat pathological changes such as insulin
resistance and fat accumulation (126), and coordinate skeletal
muscle synthesis and catabolism to delay the disuse of muscle
atrophy (127).

Sestrin1 has the highest expression level in skeletal muscle,
and decreases rapidly after SCI, while overexpression of the
Sestrin1 gene may reduce atrophy of skeletal muscle (127, 128).
SCI can also activate the Sestrin2-Keap1-Nrf2 pathway, increase
the expression level of Nrf2, enhancing its antioxidant effect
(126) (Figure 4). Elevated sestrin2 levels were found to improve
functional recovery and neuronal survival after spinal cord injury
through activation of autophagy (122). Therefore, the Sestrins
protein family significantly improves SCI skeletal muscle function
and promotes structural recovery, and should be further explored
as a potential therapeutic target.

Other related factors regulating
skeletal muscle atrophy after spinal
cord injury

Insulin-like growth factor-1

IGF-1 is expressed in skeletal muscle where it plays a vital role in
muscle and nerve metabolism. IGF-1 can regulate the proliferation
and differentiation of muscle satellite cells by activating PI3K/Akt
(77, 129, 130) and promote collagen formation, in turn promoting
skeletal muscle hypertrophy (131). It also has a specific nutritional
effect on the nervous system, enabling the protein synthesis of
neurons and glial cells, inhibiting apoptosis, promoting nerve
regeneration andmyelination (132), and strengthening the nervous
system and skeletal muscle connection. However, IGF-1 is highly
sensitive to the inflammatory response. Cheng et al. (133) found
that the inflammatory response after SCI resulted in decreased
IGF-1 levels in skeletal muscle, which caused diminished anabolism
of muscle tissue and atrophy of skeletal muscle (23, 134).

Hypothalamus-growth hormone (GH)-IGF-1 axis
GH plays a role in denervated muscle regeneration after

SCI by inducing the production of IGF-1 in the liver (132). In
chronic SCI patients, the (GH)-IGF-1 axis is inhibited (77, 135).
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FIGURE 4

The insulin-like growth factor-1 (IGF-1)/phosphatidylinositol trikinase (PI3K)/threonine kinase (Akt)/mammalian target of rapamycin (mTOR) signaling

pathway is a critical signaling pathway that promotes protein synthesis and plays a vital role in regulating skeletal muscle mass. Its downstream target

p70S6K can promote protein transcription while inhibiting eIF4E, a negative regulator of PHAS-1/4E-BP1, which binds eIF4E to eIF4G and initiates

translation. NF-κB activates ubiquitin-proteasome System (UPS) and degrades proteins by binding E1, E2, and E3, with Atrogin-1 and muscle-specific

RING finger protein 1 (MuRF1) being the two most common E3s Ligase, bone morphogenetic protein (BMP) a�ects the signaling pathway of Smad1,

Smad5, and Smad8 (Smad1/5/8) protein phosphorylation and finally converges to Smad4. Myostatin-ActRIIB-ALK5-Smad2/3 is another signaling

pathway that finally combines to Smad4 to cause protein degradation in skeletal muscle. Sestrin2 can activate the Sestrin2-Keap1-Nrf2 pathway,

increase the expression level of Nrf2, resist ROS-induced apoptosis, and play an antioxidant role.

The main reason may be that chronic inflammation caused by
SCI leads to increased expression of pro-inflammatory cytokines,
stimulates the hypothalamus to secrete growth Inhibitors, inhibits
the hypothalamus-GH-IGF-1 axis, and increases GH resistance.
Some studies have proposed that inflammatory factors work by
inhibiting GH signal transduction (132, 134). For example, TNF-α
and IL-1β can inhibit the abundance of growth hormone receptors,
while IL-6 plays a role in promoting the expression of suppressor
of cytokine signaling 3 (SOCS3), which has an enhancing effect on
GH resistance (134).

IGF-1/PI3K/Akt/mTOR signaling pathway
IGF-1/phosphatidylinositol trikinase (PI3K)/threonine kinase

(Akt)/mammalian target of rapamycin (mTOR) is a signaling
pathway that promotes protein synthesis and is involved in the
regulation of bone. It plays a vital role in muscle mass (77, 131,
136) (Figure 4). This signaling pathway is inhibited after SCI, and

reactivation can resist the resulting skeletal muscle atrophy (137–
139) and inflammatory response (133). The PI3K/Akt/mTORC1
pathway plays an essential role in the recovery of denervated
skeletal muscle (107).

PI3K is located in the hypothalamus and is anti-flammatory
after SCI, and activation of this kinase can be used primarily
to counteract the inflammatory response, which has a protective
effect in preventing the development of insulin resistance after SCI
(133). Akt/mTOR regulates skeletal muscle cell proliferation and
growth, normal protein metabolism, and prevents skeletal muscle
atrophy. This signaling pathway is down-regulated in skeletal
muscle atrophy (41, 137). After SCI, the PI3K/Akt/mTOR pathway
is inhibited, and the skeletal muscle protein degradation program
is initiated (50). IGF-1 creates this signaling pathway through PI3K
and Akt kinases in vivo, activating mTOR and phosphorylating it.
mTOR is sensitive to changes in amino acids and is a critical protein
turnover regulator that integrates nutrition signals, growth factors,
energy status, and stress (19, 140). Amino acid-sensitive signals
converge on GTPases, which are immobilized on the surface of
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lysosomes by the Ragator (RAG) complex (141). mTOR is inhibited
in amino acid deficiency. Supplementation of amino acids to
regulate the mTOR signaling pathway and protein metabolism has
received considerable attention as a potential treatment strategy for
muscle atrophy after SCI (142–145). Amino acids activate the RAG
complex by regulating the guanine dissociation and binding states
of RAG. Activation of the RAG complex promotes the translocation
and activation of mTORC1 to the lysosome (141, 146), thereby
promoting the activation of mTORC1 and its downstream targets
p70S6K and PHAS-1/4E-BP1, and thus enhancing synthesis of
skeletal muscle protein (141).

The downstream target p70S6K of the PI3K/Akt/mTOR
pathway can positively promote protein transcription: p70S6K is
phosphorylated after activation and inhibits the negative regulator
PHAS-1/4E-BP1 of the eukaryotic transcription initiation factor
eIF4E (147). Release of this factor from the inhibitory complex
allows it to bind to eIF4G and initiate translation, simultaneously
promoting protein synthesis by prolonging the translation process
(147) (Figure 4). Research has shown that 95% of the compensatory
hypertrophic changes in muscle were blocked after rapamycin’s
specific inhibition of mTOR (137). In contrast, in unloaded
muscles, the muscles showed a marked atrophic state, with
significantly decreased phosphorylation levels of Akt protein and
its downstream targets, and recovery of these when the load
was restored. This suggests that phosphorylation of AKT and its
downstream targets and activation of mTOR are required during
muscle hypertrophy. Signaling pathways play a crucial role in mass
recovery and hypertrophy of skeletal muscle atrophy caused by
SCI (137, 148). The current study found that androgens and β2-
adrenergic agonists have better therapeutic effects in activating
IGF-1/PI3K/AKT/mTOC signaling pathway for skeletal muscle
atrophy after spinal cord injury (19).

Ubiquitin-proteasome system

The main component of skeletal muscle is myogenic fibers,
and a characteristic of muscle atrophy is the rapid degradation
of myogenic fibers (149). UPS in skeletal muscle is activated after
SCI, the breakdown of proteins in skeletal muscle after SCI is
mainly accomplished through the ubiquitin-proteasome pathway
(50, 150), resulting in greater catabolism than anabolism in skeletal
muscle (151), in which the degraded proteins are covalently linked
to ubiquitin molecules via the ubiquitin ligase complex, which
is then processed by the 26S protease. It has been shown that
immobilization can up-regulate the mRNA expression of rat 26S
proteasome (25, 50, 152, 153). As a critical pro-inflammatory factor,
NF-κB, plays an important role between the inflammatory response
to skeletal muscle atrophy after SCI and the balance of apoptotic
and anti-apoptotic signaling, on the one hand, and determines
whether cells will undergo apoptosis in response to other apoptosis-
inducing-related factors such as TNF-α and TWEAK, affecting the
proliferation and survival of skeletal muscle cells (83). However,
the targets of NF-κB are ubiquitin-proteasome members, which
can trigger ubiquitin molecular markers. The target protein is
ultimately degraded by the ubiquitin-activating enzyme (E1),
ubiquitin-conjugating enzyme (E2), and ubiquitin ligase (E3) (107,

154). Two E3 ligases, Atrogin-1 and MuRF1 play a vital role in the
protein degradation process that mediates skeletal muscle atrophy
(7, 107) (Figure 4), and their expression levels are upregulated in
skeletal muscle after SCI (155). While the UPS is also key to the
neural recovery of SCI (153). Gonzalez-Ruiz et al. found that the
level of protein ubiquitination was significantly reduced after the
application of epicatechin [(-)-epicatechi] in clinical SCI patients,
the CSA of skeletal muscle was significantly increased; indicating
that using UPS as a target of intervention can prevent skeletal
muscle atrophy after SCI (156).

Calpain

Calpain is the key enzyme in regulating apoptosis by mediating
the degradation of cytoskeletal and membrane proteins, calpain is
activated thus causing apoptosis of neural cells in the spinal cord
and skeletal muscle cells in skeletal muscle after SCI (149, 157, 158),
usually acting in conjunction with caspase-3 in the apoptosis of
skeletal muscle, this is usually a key step in skeletal muscle atrophy
(68, 151, 158, 159). There are studies that attenuate apoptosis after
spinal cord injury from inhibition of calpain activation, and the
current study found that SJA6017 (159), calpeptin, MDL-28170
could inhibit apoptosis by inhibiting calpain activity and have
neuroprotective effects (158), but the effect on inhibiting skeletal
muscle atrophy still needs to be further investigated.

Autophagic lysosome system

Moderately activated autophagy helps protect cell structure
and maintain normal cellular energy metabolism, and autophagic
lysosomes are overactivated in skeletal muscle after SCI (160,
161). Beclin-1, a protein specific for autophagy, was found to be
significantly elevated after SCI, resulting in the degradation of
muscle proteins in skeletal muscle (160). Autophagy may depend
on the regulation of mTOR signaling pathway (162), so it was
found that regulation of mTOR may affect the autophagic process
after injury, such as the application of AMPK inhibitors (163) or
activators (164); also the autophagic process may not depend on
mTOR, and inosito also have the effect of inhibiting autophagy
(163). Exercise therapy is currently a very effective mainstream
treatment for skeletal muscle atrophy, and studies have found
that exercise training can slow down skeletal muscle atrophy by
reducing autophagosome levels in skeletal muscle and thereby
regulating autophagy (162).

Myostatin

Myostatin is an essential member of the TGFβ family and acts
as a negative regulator of skeletal muscle mass (20, 165). Some
studies have found that its expression level may gradually increase
with the inhibitory level of the PI3K-AKT signal after SCI, resulting
in the loss of skeletal muscle mass (136, 166). It is a crucial muscle
growth regulator, its inhibition increasing the mass of denervated
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skeletal muscle. In previous studies, myostatin-ActRIIB-ALK5-
Smad2/3 was found to be an essential pathway affecting muscle
mass (167) (Figure 4), and may be targeted at the molecular
level. Previous studies have used synthetic myostatin inhibitors to
interfere with Smad2/3, inhibiting the myostatin pathway (165)
and delaying the skeletal muscle atrophy and metabolism caused
by SCI (107, 168, 169) to treat post-SCI patients. The inhibition
of myostatin has not been found to alleviate skeletal muscle
atrophy of denervated limbs in experimental animals but has a
specific therapeutic effect on disuse muscle atrophy, indicating that
myostatin may be effective only in the presence of innervation (20).
Studies have found (170) that the level of myostatin in the serum
of patients with aerobic exercise, commonly used in the clinical
treatment of SCI, increases to some extent over time. However, the
mechanism underlying this increase needs to be further explored.

Bone morphogenetic protein

BMP is a member of the TGFβ family and acts on a signaling
pathway that affects the phosphorylation of Smad1, Smad5, and
Smad8 proteins and ultimately converges on Smad4, thereby
affecting muscle mass (Figure 4). BMP can inhibit muscle atrophy
by binding to BMP-type receptor (ALK3). It can also negatively
regulate the Fbxo30 (Musa1) gene, which plays a vital role in the
regulation of the muscle atrophy-related ubiquitin-protease system
(169, 171–173). Normal BMP signaling protects the neuromuscular
junction (NMJ) and prevents excessive denervation of muscle
fibers, and disturbed BMP signaling accelerates muscle atrophy
(171, 174); BMP is expressed at low levels in motor neurons in
a functionally intact state, and the expression of BMP2/4/7 and
the corresponding ligands and receptors, phosphorylated Smad,
are significantly upregulated in the spinal cord after SCI (175),
thereby participating in the inflammatory response and neuronal
apoptosis in the spinal cord, leading to abnormal neuromuscular
signaling between the spinal cord and skeletal muscle, thereby
affecting subsequent neurological recovery and skeletal muscle
atrophy (173).

Discussion

Skeletal muscle atrophy after SCI is a more complex
and difficult clinical problem that requires multidisciplinary
intervention. In recent years, little literature has outlined and
analyzed the mechanisms of skeletal muscle atrophy after SCI.
Therefore, this paper summarizes the pathophysiological changes
of skeletal muscle atrophy after SCI. It analyzes the related
factors and atrophy mechanisms, which can provide a specific
theoretical basis and research direction for future clinical treatment
to delay of skeletal muscle atrophy and enhance recovery of the
patient’s motor function. The current mainstream prevention and
treatment methods are mostly exercise and hormone therapy. As
described above in the article, exercise training and hormone
therapy have shown relatively good therapeutic effects through
various molecular pathways. The current clinical treatment for
skeletal muscle atrophy after SCI is based on exercise training. For
example, activity-based physical rehabilitation therapies (ABTs)

(176–178) have shown sound therapeutic effects in improving
neuromuscular plasticity and are widely used in many SCI
patients for motor function training. They can enhance residual
muscle strength (179), delay skeletal muscle atrophy, maintain and
improve residual motor function, and improve patients’ quality of
life (180). More common forms of treatment include body weight-
supported treadmill training, robot-assisted mobility training (8),
heavy load strength training (HLT) (181), resistance training (RT)
(182), but the therapeutic effect of ABTs decreases with the severity
of the patient’s injury. ABTs alone may therefore not be enough to
promote muscle regeneration and motor function reconstruction
in patients, and a combination of other adjuvant therapies
may be needed (8, 176). In a review by Alvaro Megía García
(183) et al. found that non-invasive transcutaneous spinal cord
stimulation (tSCS) was effective in activating lower limb muscles,
increasing muscle strength and improving muscle function; several
studies (184, 185) found that the combination of N-3 unsaturated
fatty acids and appropriate training delayed muscle atrophy and
improved physical function. In addition, testosterone and androgen
therapy can also significantly delay skeletal muscle atrophy (82).

However, these treatments often have their own limitations,
such as hormone therapy has certain side effects, and exercise
training is often difficult to achieve the desired results due to
the lack of patient’s endurance. SCI patients have energy and
substance metabolism disorders (186), so a good nutritional
intervention program may be able to improve the treatment
effect of SCI skeletal muscle atrophy and optimize the treatment
plan. Glutathione (GSH) is a small-molecule antioxidant substance
that can counteract oxidative stress damage after SCI, thereby
reducing skeletal muscle damage and protecting skeletal muscle
from atrophy (68). Glycine is a non-essential amino acid as
well as one of the main components of GSH. Glycine levels in
serum, spinal cord and skeletal muscle tissue are decreased in SCI
(187, 188), however glycine has been found to increase skeletal
muscle mass, protect skeletal muscle functions under pathological
conditions (189, 190), and fight against inflammatory response after
disease (191). Leucine has also been found to be a potent amino
acid effective in reducing skeletal muscle catabolism. The body’s
perception of leucine is impaired after injury due to inflammation
and other factors, but glycine can restore the role of leucine in the
body (192) and activates GSH metabolism (189). Glycine can be
supplemented orally (193), therefore glycine therapy may be a safe,
effective and promising dietary treatment.

Vitamin D has also been shown to be strongly associated
with skeletal muscle health. Vitamin D can activate the vitamin
D receptor in skeletal muscle cells by affecting the balance of
calcium and phosphate, which promotes the proliferation and
differentiation of skeletal muscle cells (194), and also affects the
strength of skeletal muscle to a certain extent (195). The vitamin
D content in the skeletal muscle of SCI patients is decreased (196),
therefore, how to improve the skeletal muscle function of SCI
patients through vitamin D supplementation has received a lot of
attention from researchers in recent years (196, 197).

The metabolism of nutrients in the skeletal muscle of SCI
patients is disturbed after the injury, and timely supplementation
is needed. Therefore, appropriate dietary treatment and nutritional
therapy are necessary to perhaps compensate for some of the
drawbacks of medication and exercise training, and to improve the
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physical function of SCI patients by means of dietary intake, so that
the therapeutic effects of multiple treatments can be maximized.
However, how to carry out multiple nutrient supplementation,
i.e., the ratio and content of each component nutrient, still
needs to be clarified through further investigation of safe and
effective nutritional intervention programs and the development of
strict guidelines.

Limitation

In order to write this review, we conducted a literature search
in PUBMED, ISI Web of Science, and MEDLINE and Google
Scholar databases before April 2022, searching “spinal cord injury,”
“skeletal muscle,” and “atrophy” and so on as keywords. Although
we conducted as extensive a literature search as possible and
cited relevant and high-quality literature in our field whenever
possible, there are still some relevant literature that may have been
overlooked, as well as some ongoing studies and recent results that
may not have been included.

Conclusions

Multiple factors cause skeletal muscle atrophy after SCI,
and the mechanism of atrophy is complex. The current clinical
treatment methods involving drugs or exercise training are often
insufficiently effective, especially for patients with more severe
injuries. This review reveals that future therapeutic modalities
may be explored and investigated at the cellular and molecular
levels to optimize current clinical treatment options and improve
the therapeutic effect of skeletal muscle atrophy after SCI, thus
effectively promoting functional recovery after SCI. Besides, many
regulatory factors related to skeletal muscle atrophy have a certain
value in theory, but the relationship and influence between various
regulatory factors also need to be further explored. Meanwhile,
the development of regulatory means with clinical translational
significance and how to carry out appropriate regulation are still
an academic problem that needs to be further studied.
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