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Effect of octenyl succinic
anhydride modified starch on soy
protein-polyphenol binary
covalently linked complexes
Die Dong*, Tenglong Geng, Bo Cui*, Chao Yuan, Li Guo,
Meng Zhao, Feixue Zou, Pengfei Liu and Hongxia Zhang

State Key Laboratory of Biobased Material and Green Papermaking, Department of Food Science
and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China

The present study aimed to investigate the effects of octenyl succinic anhydride

modified starch (OSAS) on soy protein (SP)-(-)-epigallocatechin-3-gallate (EGCG)

binary covalently linked complexes. Mean diameters of OSAS-SP-EGCG complexes

decreased from 379.6 ± 54.9 nm to 272.7 ± 47.7 nm as the OSAS-to-SP-EGCG

ratio changed from 1:2 to 4:1, while ζ-potential decreased from -19.1 ± 0.8 mV

to -13.7 ± 1.2 mV. Fourier transform infrared spectroscopy results revealed that

the characteristic peaks at 1725 cm−1 and 1569 cm−1 for OSAS disappeared in

the OSAS-SP-EGCG complexes, indicating an interaction between OSAS and SP-

EGCG complexes. X-ray diffraction analysis showed that with the increase of OSAS

content, the diffraction peak at approximately 8.0◦ decreased from 8.22◦ to 7.74◦,

implying that the structures of OSAS and SP-EGCG complexes were rearranged

after forming into OSAS-SP-EGCG complexes. The contact angle of the OSAS-SP-

EGCG complexes significantly increased from 59.1◦ to 72.1◦ with the addition of

OSAS increased, revealing that the addition of OSAS improved hydrophobicity of

the SP-EGCG complexes. Transmission electron microscopy images revealed that

the individual OSAS-SP-EGCG complexes became smaller but stuck together to

form large fragments, which was different from the morphology of OSAS and SP-

EGCG complexes. Thus, the OSAS-SP-EGCG complexes developed in this study

may be effective emulsifiers for improving the stability of emulsion systems in the

food industry.

KEYWORDS

octenyl succinic anhydride-modified starch, EGCG (−)-epigallocatechin-3-gallate,
complexes, structure, soy proteins

1. Introduction

Proteins and polyphenols are widely found in various foods, playing important roles in food
production and nutritional value (1). In food systems, the interactions between proteins and
polyphenols during storage and processing cannot be avoided. Currently, protein-polyphenol
complexes have received significant research interest. Proteins and polyphenols combine with
phenolic hydroxyl groups and polar sites of the protein, such as hydrogen bonding and
hydrophobic bonding, to form conjugates with specific functional properties (2, 3). In recent
years, protein-polyphenol complexes have attracted increasing attention (4–6).
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Soy protein (SP) is one of the most naturally widely used
vegetable proteins and contains essential amino acids similar to
those found in animal proteins (7). (-)-Epigallocatechin-3-gallate
(EGCG), the major catechin in green tea, has high antioxidant activity
attributed to the active phenolic hydroxyl groups and has been
endowed with numerous health benefits (8). SP and EGCG can form
non-covalent-linked and covalent-linked complexes via different
types of interactions (9). In recent years, SP-EGCG complexes have
been investigated in many studies, including their formation (9),
functional properties (10, 11), antioxidant properties (12), and their
use in emulsion stability and nutrient delivery (13, 14). However, it is
difficult for SP-EGCG complexes to meet the different requirements
of food systems. Thus, other food ingredients should be used to
broaden the use of SP-EGCG complexes in the food industry. As
reported previously, the addition of polysaccharides can influence the
formation of SP-EGCG complexes and improve their physical and
functional properties (12, 15).

Octenyl succinic anhydride-modified starch (OSAS) is produced
using an esterification reaction between –OH groups on starch and
the OSA reagent. OSAS has amphiphilic properties because it consists
of a hydrophilic starch backbone with attached hydrophobic octenyl
groups (16). The hydrophobic octenyl group impart an emulsifying
capability to OSAS (17). Previous studies have shown that OSAS can
be used as a food ingredient or emulsifier in food systems (18), as the
OSAS molecule can form a thick coating around the oil droplets to
increases the steric repulsion between the droplets (19). However, to
our knowledge, there are no reports on the use of OSAS to improve
the properties of SP-EGCG complexes.

The present study investigated the effects of OSAS on SP-EGCG
complexes. The formation and structural properties of the OSAS-
SP-EGCG complexes were characterized by mean diameter and ζ-
potential measurements, Fourier transform infrared spectroscopy
(FTIR), X-ray diffraction (XRD), contact angle analysis, and
transmission electron microscopy (TEM). The results found here will
help better understand the formation of OSAS-SP-EGCG complexes
and aid in the design of new food materials for nutraceutical and
biomaterial applications.

2. Materials and methods

2.1. Materials

SP were prepared as previously reported (20). The dried SP
powder had 92.8% protein content, as determined by rapid N exceed
(Elementar, Langenselbold, Germany), with a nitrogen conversion
factor of 6.25. OSAS (CAS#66829-29-6) was purchased from
Shanghai Yuanye Bio-Technology Co., Ltd. EGCG (purity ≥ 98%)
was purchased from Shanghai Macklin Biochemical Co., Ltd. All
chemicals used were of analytical grade and used without further
purification. Distilled water from a Lichun water purification system
(Lichun, Jinan, China) was used in all the experiments.

2.2. Preparation of SP-EGCG covalently
linked complexes

SP-EGCG complexes formed by covalent interactions were
prepared according to the procedures described by Ju et al. (21) with

some modifications. Briefly, 2.0 g SP was dissolved in 100 mL of
distilled water at 25◦C, and the pH of the dispersion was adjusted
to 9.0 using 0.5 mol/L NaOH. SP-EGCG complexes were formed by
mixing the SP solution with an EGCG concentration of 0.2% (w/v)
for 12 h at 25◦C. Dialysis was performed for 24 h using distilled water
to remove free EGCG from the protein dispersion. Then, the pH of
the dispersion was adjusted to 7.4 to stop the reaction. The dialysate
was freeze-dried for further use.

2.3. Preparation of OSAS-SP-EGCG
complexes

Octenyl succinic anhydride-modified starch dispersions (2%,
w/v) were prepared by dispersing OSAS powder in distilled water,
followed by gelatinization in a water bath at 95◦C for 30 min to
obtain a homogeneous solution. Fresh starch solution was prepared
for each experiment.

Covalently linked SP-EGCG complexes were dispersed in distilled
water at a concentration of 2% (w/v). The SP-EGCG complex
dispersion was then mixed with OSA-modified starch dispersions
(2%) in ratios of 1:4, 1:2, 1:1, and 2:1 (w/w). Each sample was
adjusted to pH 7.0 and then freeze-dried. The resultant powders were
incubated at 60◦C and 79% relative humidity (RH) in the presence
of saturated KBr solution for 24 h (22). The samples were pre-frozen
and freeze-dried for further use.

2.4. Mean particle diameter and surface
potential analysis

The mean particle diameter and surface potential of the OSAS-
SP-EGCG complexes and covalently linked SP-EGCG complexes
were measured at 25◦C using dynamic light scattering and
electrophoresis (Nano ZS, Malvern Instruments, Worcestershire,
UK). Suspensions of the OSAS-SP-EGCG complexes were diluted 10-
fold using a buffer solution to obtain an appropriate light intensity
for reliable measurements. The mean and standard deviation were
calculated from measurements of at least three samples.

2.5. FTIR

Freeze-dried OSAS, SP-EGCG, and OSAS-SP-EGCG complexes
were combined with KBr and ground to form a mixture, which was
then molded into a disk and analyzed using an FTIR spectrometer
(Nicolet iS10, Thermo-Fisher, Waltham, MA, USA) at 25◦C. The
scanning range was set to 400–4000 cm−1 with a resolution of 4 cm−1

and 64 scans (23).

2.6. XRD

XRD (Ultima IV, Rigaku, Japan) was performed to determine
whether OSAS, SP-EGCG, and OSAS-SP-EGCG complexes had
crystalline structures or were amorphous, using a method similar to
that used by Niu et al. (24). Briefly, freeze-dried OSAS, SP-EGCG, and
OSAS-SP-EGCG complexes were analyzed using Cu Kα radiation, a
scan angle of 2θ, a range of 5–60◦, a scan rate of 2◦/min, and working
conditions of 40 kV and 40 mA.
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2.7. Contact angle measurement

The contact angles of the OSAS, SP-EGCG, and OSAS-SP-
EGCG complexes were determined using an OCA 40 (Dataphysics
Instruments GmbH, Stuttgart, Germany) following the method
described by Dai et al. (25). First, the dried sample powders were
pressed to obtain particle-based tablets (13 mm diameter and 2 mm
thickness). A drop of pure water (5 µL) was then lightly dripped
onto the surface of the tablets. After equilibrium was reached,
the droplet was photographed, and the profile of the droplet was
automatically fitted to the Laplace-Young equation using software

to acquire the contact angle. Measurements were performed at
least three times.

2.8. Transmission electron microscopy

The morphology of the OSAS-SP-EGCG complexes was
determined by transmission electron microscopy (TEM). Briefly,
the samples were diluted 10-fold using double-distilled water and
then placed onto a copper mesh grid for 4 min. The sample was
then stained using a 1% uranyl acetate solution (1 min) and washed
with double-distilled water three times. The sample-loaded grid

FIGURE 1

The average diameters for OSAS-SP-EGCG complexes, SP-EGCG complexes and OSAS.

FIGURE 2

The ζ-potentials for OSAS-SP-EGCG complexes, SP-EGCG complexes and OSAS.
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was air-dried at room temperature and imaged using a commercial
TEM (JEM-2100F, JEOL, Ltd., Tokyo, Japan) operating at a
voltage of 200 kV.

2.9. Statistical analysis

All measurements were performed in triplicate. Statistical
significance (p< 0.05) was determined using SPSS statistical analysis
program (SPSS Inc., Chicago, IL, USA). All data shown represent
mean± standard deviation (SD).

3. Results and discussion

3.1. Mean particle diameter and surface
potential of OSAS-SP-EGCG complexes

The average sizes of the OSAS, SP-EGCG complexes, and OSAS-
SP-EGCG complexes are shown in Figure 1. The OSAS and SP-
EGCG complexes had an average particle size of 132.2 ± 8.8 nm
and 315.8 ± 11.7 nm, respectively. Meanwhile, the average particle
size noticeably changed to 379.6 ± 54.9 nm, 316.5 ± 31.8 nm,

FIGURE 3

FTIR spectrum for OSAS, SP-EGCG complexes (A) and OSAS-SP-EGCG complexes (B).
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306.6 ± 57.2 nm and 272.7 ± 47.7 nm for OSAS-SP-EGCG
complexes with mass ratios of OSAS to SP-EGCG at 1:2, 1:1, 2:1,
and 4:1, respectively. With a lower addition of OSAS (i.e., the mass
ratio of 1:2), the average size of the OSAS-SP-EGCG complexes
increased significantly compared with that of the OSAS and SP-
EGCG complexes. One speculative possibility is that SP-EGCG was
excessive under these conditions. As a result, more SP-EGCG was
bound to the surface of OSAS, resulting in micro-aggregation and
the formation of large composites (26). It is also possible that the
higher concentration of SP-EGCG resulted in a loose structure of the
OSAS-SP-EGCG complexes, which may be due to the conformational
changes induced by some other interactions between OSAS and
SP-EGCG. By continuously increasing the concentration of OSAS
(i.e., the OSAS-to-SP-EGCG mass ratio from 1:1 to 4:1), the average
particle size significantly decreased (p< 0.05). This may be explained
by the possibility that a relatively compact structure between OSAS

and SP-EGCG was formed with sufficient OSAS content under these
conditions.

Figure 2 shows the surface charge densities of the OSAS, SP-
EGCG complexes, and OSAS-SP-EGCG complexes. The results
showed that the ξ -potentials of all samples examined were negative.
The ξ -potentials for OSAS and SP-EGCG complexes were -
15.9 ± 1.0mV and -21.2 ± 1.0 mV, respectively. The result
corresponded to those of Zhao et al. (15) and Liu et al. (27), which
were −16.8 mV and −18.0 mV for OSAS and SP-EGCG complexes,
respectively. The OSAS-SP-EGCG complexes showed lower absolute
ζ-potential values than that of the SP-EGCG complexes. This may be
because the added OSAS interacted with the SP-EGCG complexes,
causing a reduction in the net charge on the surface of OSAS-SP-
EGCG, resulting in a reduction in ξ -potentials. With the mass ratio
of OSAS to SP-EGCG complexes from 1:2 to 4:1, the absolute values
of ξ -potentials for OSAS-SP-EGCG complexes continued to decrease

FIGURE 4

XRD spectrum for OSAS, SP-EGCG complexes (A) and OSAS-SP-EGCG complexes (B).
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from −19.1 ± 0.8 mV to −13.7 ± 1.2 mV. This may be the reason
for the interaction between the -COO− of OSAS and -NH3

+ of SP-
EGCG complexes. With the increase in OSAS content, more -NH3

+

groups of SP-EGCG complexes reacted, resulting in a reduction in the
absolute values of the ξ -potentials.

3.2. Structure of OSAS-SP-EGCG
complexes revealed by FTIR analysis

The OSAS, SP-EGCG complexes, and OSAS-SP-EGCG
complexes were freeze-dried, and the interaction between OSAS and
SP-EGCG complexes was characterized by FTIR (Figure 3).

For both the OSAS and SP-EGCG complexes, there was a broad
peak at approximately 3,400 cm−1, which can be attributed to O–
H stretching vibrations. For OSAS, characteristic peaks were also

observed at 1,725 cm−1, 1,569 cm−1, 900–1,200 cm−1, 2,929 cm−1,
and 1,647 cm−1. The characteristic peak at 1,725 cm−1 was assigned
to the C = O stretching vibration of the ester group, whereas the peak
at 1,569 cm−1 was ascribed to the asymmetric stretching vibration
of the carboxyl group (28, 29). The peaks at 900–1,200 cm−1 were
characteristic of polysaccharide functional groups (27). The peak
at 2,929 cm−1 was attributed to the C-H stretching vibration of
the glucose unit (30). The peak at 1,647 cm−1 can be attributed
to the bending vibration of water, presumably because some water
molecules are associated with powdered starch (31). The FTIR
spectrum of the SP-EGCG complexes showed absorption bands
related to C = O stretching at 1,640 cm−1 (free carboxyl groups) and
N–H bending at 1,534 cm−1 (amide II) (Figure 3A). These two peaks
are primary characteristic peaks for SP, as reported by Chen et al. (32).
The absorption band at 1396 cm−1 is attributed to C–N stretching
and N–H bending (amide III) vibrations (33).

FIGURE 5

Contact angle for OSAS, SP-EGCG, and OSAS-SP-EGCG complexes (A) and the relationship between the measured and theoretical contact angle values
for OSAS-SP-EGCG complexes (B).

Frontiers in Nutrition 06 frontiersin.org

https://doi.org/10.3389/fnut.2023.1093250
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-10-1093250 February 3, 2023 Time: 15:7 # 7

Dong et al. 10.3389/fnut.2023.1093250

In the mixed OSAS-SP-EGCG systems, the broad peak at
3,420 cm−1 did not move toward lower wavenumbers (i.e., no red-
shift) compared to the OSAS and SP-EGCG complexes. These results
suggest that hydrogen bonding may not have occurred between the
OSAS molecule and SP-EGCG complexes. It can also be seen from
Figure 3B that the characteristic peaks at 1,725 cm−1 and 1,569 cm−1

for OSAS disappeared in the OSAS-SP-EGCG complexes, indicating
an interaction between OSAS and SP-EGCG complexes. Meanwhile,
as the OSAS-to-SP-EGCG ratio increased from 1:2 to 4:1, the peak at
approximately 2,927 cm−1 became increasingly obvious, indicating
an increase in the OSAS content of the OSAS-SP-EGCG complexes.

3.3. XRD analysis of OSA-SP-EGCG
complexes

XRD data can provide direct structural information for the
determination of amorphous or crystalline molecular characteristics.
Thus, X-ray scattering techniques are commonly used to determine
the crystal structures of starches, proteins, and other macromolecular
biopolymers. The main diffraction peaks of SP-EGCG complexes
were located at 8.48◦ and 20.44◦ in the 2θ region, which belonged
to the α-helix and β-sheet molecular structures of soy proteins,

respectively (34, 35). This result agrees with the results reported by
Tong et al. (6). For OSAS, the main diffraction peaks are located
at 7.98◦ and 20.66◦ in the 2θ region. Previous studies found a
characteristic peak at approximately 20◦ for V-type crystalline starch
(36). As reported previously, the main diffraction peaks of OSA-
modified starch are located at approximately 15◦, 17◦, 18◦, and
23◦ in the 2θ region (37, 38). These differences may be due to
gelatinization, after which the crystalline structures disappeared in
OSAS (Figure 4A), and only two broad amorphous peaks appeared
in the XRD spectra.

The OSAS-SP-EGCG complex also exhibited two peaks at
approximately 8.0◦ and 20.5◦ (Figure 4B). The diffraction peak
at approximately 8.0◦ decreased from 8.22◦ to 7.74◦ as the OSAS
to SP-EGCG mixing ratio increased from 1:2 to 4:1, implying
a rearrangement of the structures of the OSAS and SP-EGCG
complexes after the formation of the OSAS-SP-EGCG complexes.

3.4. Contact angle measurement of
OSAS-SP-EGCG complexes

Water contact angle measurements enable qualitative estimation
of the changes in the hydrophobicity of the samples. The

FIGURE 6

TEM images for OSAS, SP-EGCG complexes and OSAS-SP-EGCG complexes.
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water contact angle values of the OSAS, SP-EGCG complexes,
and OSAS-SP-EGCG complexes are shown in Figure 5. As
illustrated in Figure 5A, the contact angle of SP-EGCG complexes
was 51.4 ± 4.7◦, suggesting that SP-EGCG complexes were
predominantly hydrophilic. The contact angle of OSAS was
77.8± 3.5◦, indicating higher hydrophobicity. As reported previously
(39), the contact angle for OSAS is related to the degree of
substitution (DS) of OSA and the starch source. After the addition
of OSAS, the contact angle of the OSAS-SP-EGCG complexes
significantly increased from 59.1◦ to 72.1◦ as the OSAS-to-SP-EGCG
mixing ratio increased from 1:2 to 4:1. The results revealed that
the hydrophobicity of SP-EGCG complexes was improved by the
addition of OSAS, which was beneficial for the adsorption of OSAS-
SP-EGCG complexes at the oil-water interface, thereby serving as a
good emulsion stabilizer.

Furthermore, the regularity of the increase in the contact angle
seemed to follow the OSAS-to-SP-EGCG complex mixing ratio. To
determine whether the change in contact angle could be related to the
mixing ratio of OSAS to SP-EGCG complex, the theoretical contact
angle value was defined as follows:

TCAOSAS−SP−EGCG

= CASP−EGCG × RSP−EGCG + CAOSAS × ROSAS

where CASP−EGCG and CAOSAS are the contact angles for SP-EGCG
complexes and OSAS, respectively. RSP−EGCG and ROSAS are the ratio
of SP-EGCG complexes and OSAS in the mixtures, respectively. As
shown in Figure 5B, TCAOSAS−SP−EGCG for mixtures with different
OSAS to SP-EGCG complex mixing ratios were in good agreement
with the corresponding measured contact angles for the OSAS-SP-
EGCG complexes. This indicated that the addition of OSAS greatly
influenced the hydrophobicity of the SP-EGCG complexes. However,
we could speculate that the actual ratio of OSAS to SP-EGCG
complexes was approximately equal to the mixing ratio of OSAS to
SP-EGCG complexes.

3.5. Morphology of the OSAS-SP-EGCG
complexes

TEM was used to confirm the formation of OSAS-SP-EGCG
complexes. Figure 6 shows the TEM images of the OSAS, SP-EGCG
complexes, and OSAS-SP-EGCG complexes.

It could be seen from Figure 6 that the freeze-dried SP-
EGCG complexes were distinct flaky particles with relatively larger
fragments. The gelatinized OSAS were relatively smaller, and seemed
to be stuck together with unsmooth surfaces. The morphologies
of OSAS-SP-EGCG complexes with different OSAS to SP-EGCG
mass ratios were all different from the morphology of SP-EGCG
complexes. As shown in Figure 6, all the OSAS-SP-EGCG complexes
were spherical with smooth surface and stuck together. This may be
caused by interactions between OSAS and SP-EGCG to form tertiary
complexes. With the increase in OSAS to SP-EGCG from 1:2 to 4:1,
it appeared that the individual OSAS-SP-EGCG complexes became
smaller but stuck together to form large fragments. This result
agreed with the results showing that the mean diameter decreased
as the OSAS to SP-EGCG ratio increased from 1:2 to 4:1 (Figure 1).
Microscopy images indicated that the addition of OSAS had obvious
effects on the microstructure of the SP-EGCG complexes.

4. Conclusion

In the present study, the effects of OSAS on SP-EGCG binary
covalently linked complexes were investigated using diameter
analysis, ζ-potential measurement, FTIR and XRD analyses, contact
angle measurement, and TEM analysis. These results indicated the
formation of OSAS-SP-EGCG complexes. In particular, the contact
angle of the OSAS-SP-EGCG complexes prominently increased from
59.1◦ to 72.1◦ as the OSAS-to-SP-EGCG mixing ratio increased
from 1:2 to 4:1. This revealed that the hydrophobicity of SP-EGCG
complexes was improved by the addition of OSAS, which was
beneficial for the adsorption of OSAS-SP-EGCG complexes at the
oil-water interface, thereby serving as a good emulsion stabilizer.
Consequently, the OSAS-SP-EGCG complexes developed here may
be effective emulsifiers for improving the physical and chemical
stability of emulsion systems in the food industry. In future studies,
the use of OSAS-SP-EGCG complexes to stabilize oil-water emulsions
should be investigated.
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