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Background: This study applied machine learning (ML) algorithms to construct a 
model for predicting EN initiation for patients in the intensive care unit (ICU) and 
identifying populations in need of EN at an early stage.

Methods: This study collected patient information from the Medical Information 
Mart for Intensive Care IV database. All patients enrolled were split randomly into 
a training set and a validation set. Six ML models were established to evaluate 
the initiation of EN, and the best model was determined according to the area 
under curve (AUC) and accuracy. The best model was interpreted using the Local 
Interpretable Model-Agnostic Explanations (LIME) algorithm and SHapley Additive 
exPlanation (SHAP) values.

Results: A total of 53,150 patients participated in the study. They were 
divided into a training set (42,520, 80%) and a validation set (10,630, 20%). In 
the validation set, XGBoost had the optimal prediction performance with an 
AUC of 0.895. The SHAP values revealed that sepsis, sequential organ failure 
assessment score, and acute kidney injury were the three most important 
factors affecting EN initiation. The individualized forecasts were displayed 
using the LIME algorithm.

Conclusion: The XGBoost model was established and validated for early prediction 
of EN initiation in ICU patients.
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1. Introduction

The nutritional status has a strong association with clinical outcomes in critically ill patients. 
Malnutrition can lead to more complications, difficulty in ventilator discontinuation, prolonged 
length of stay in intensive care unit (ICU), and increased readmission rate and mortality (1). 
Enteral nutrition (EN) refers to a nutrition therapy that foods for special medical purposes are 
administered via the gastrointestinal tract. EN should be  preferred when gastrointestinal 
function allows (2, 3).
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EN is an important treatment method for patients in the 
ICU. EN promotes the recovery of intestinal function and reduces 
the consumption of skeletal muscle. EN can also decrease the 
incidence of infection and mortality and shorten the time of 
hospitalization and medical expenses (4, 5). The American Society 
for Parenteral and Enteral Nutrition recommends early use of EN in 
appropriate critically ill patients (6). However, the proportion of EN 
feeding is suboptimal (7). Therefore, there is a need to identify high-
risk patients who will benefit from early EN, which may aid 
clinicians in decision-making and improve the outcome of critically 
ill patients.

At present, EN initiation largely depends on physicians’ 
awareness. Machine learning (ML) is a subset of artificial intelligence 
(AI) with the ability to process complex data and quantify the risk of 
event occurrence (8). It includes logistic regression (LR), support 
vector machine (SVM), decision tree (DT), κ-nearest neighbor 
(KNN), random forest (RF), and extreme gradient boost (XGBoost), 
etc. (8). ML algorithms have been widely used in clinical nutrition 
and critical care (9–11), including diet pattern analysis, disease 
diagnosis, and prognosis prediction. However, it has not been applied 
to initiate EN in ICU patients. Accordingly, we aimed to develop a 
model to predict EN initiation for patients in an ICU setting. This 
model can assist early identification of populations in need of EN, 
and provide a basis for physicians’ decision-making to initiate 
EN. Furthermore, we wished this model can guide the development 
of standard nutrition protocol and the improvement the 
nutrition therapy.

2. Methods

2.1. Data source

The information was collected from the database of Medical 
Information Mart for Intensive Care IV (MIMIC-IV). About 76,000 
ICU admissions were included in MIMIC-IV, authorized by the 
Institutional Review Boards at Beth Israel Deaconess Medical Center 
(2001-P-001699/14) and the Massachusetts Institute of Technology 
(No. 0403000206). This is a freely available, retrospective, singer-
center database where patients offered consent for their data to 
be accessed (12). The ethical approval statement was waived because 
patients were not directly involved in this study. One of our members 
was responsible for data extraction from this database (certification 
number 35970146). This study adhered to the tenets of the Declaration 
of Helsinki in 2013 and was conducted per the Transparent Reporting 

of a multivariable prediction model for Individual Prognosis or 
Diagnosis (TRIPOD) Statement (13).

2.2. Study population

We enrolled all 18-year-old and older adults from the MIMIC IV 
database. Patients who had multiple ICU admissions were excluded.

2.3. Data extraction and processing

Clinical information was gathered from the MIMIC-IV 
database, including patient demographics, comorbidities, vital 
signs, laboratory results, treatments, and illness severity scores. Age, 
sex, weight, and ethnicity were collected as demographic 
characteristics. Comorbidities in our study included diabetes, 
congestive heart failure, myocardial infarction, cerebrovascular 
disease, peripheral vascular disease, chronic lung disease, liver 
disease, renal disease, tumor, dementia, rheumatic disease, 
intestinal fistula, short bowel syndrome, pancreatitis, abdominal 
hypertension, peptic ulcer disease, paraplegia, acute kidney injury 
(AKI), and acquired immune deficiency syndrome. The 
Implementation of the International Statistical Classification of 
Disease and Related Health Problems, 10th Revision coding systems 
were used to define these conditions (14). Within the first 24 h of 
their ICU stay, we collected averages of vital signs such as mean 
arterial pressure (MAP), heart rate, body temperature, respiratory 
rate, and oxygen saturation (SpO2). We extracted the maximum 
values in the initial 24 h admitted to ICU for laboratory findings 
(Supplementary Table S1). For treatment, EN route (percutaneous 
endoscopic gastrostomy (PEG), percutaneous endoscopic 
jejunostomy (PEJ), Nasogastric tube, and Nasointestinal tube), 
dialysis, vasopressors, and mechanical ventilation were chosen 
within 24 h of ICU admission. Simplified Acute Physiology Score II 
for severity scores of illness and Sequential Organ Failure 
Assessment (SOFA) were gathered within the initial 24 h after ICU 
admission. The missing data of all valuables in this study were 
below 20% and dealt with by the multiple imputation (MI) method 
(Supplementary Table S2). The main process of MI begins by 
creating multiple data sets, which are then analyzed separately to 
obtain a set of parameter estimate values. Finally, all estimates is 
combined and evaluated to get the plausible estimates for the 
missing data (15). In this study, we perform MI using the MICE 
package of R software, whose default interpolation method is 
multiple imputation by chained equations. EN is defined as 
nutritional support via a nasoduodenal or nasogastric tube during 
the ICU (16). For each patient, the protein intake was 1.2–2.0 g/kg/
day and lower energy intake should be preferred in the early stage 
(6). The optimal nutrition formula of patients was confirmed based 
on nutritional status and primary diseases.

2.4. Statistical analysis

The continuous variables of normal distribution were expressed 
by means ± standard deviations, and Student’s t-test was utilized to 

Abbreviations: AKI, Acute kidney injury; AI, artificial intelligence; AUC, Area under 

curve; DCA, decision curve analysis; DT, Decision tree; EN, Enteral nutrition; ICU, 

Intensive care unit; KNN, κ-nearest neighbor; LIME, Local Interpretable Model-

Agnostic Explanations; LR, Logistic regression; MAP, Mean arterial pressure; MI, 

multiple imputation; MIMIC-IV, Medical Information Mart for Intensive Care IV; 

PEG, percutaneous endoscopic gastrostomy; PEJ, percutaneous endoscopic 

jejunostomy; RF, Random Forest; SHAP, SHapley Additive exPlanation; SOFA, 

Sequential Organ Failure Assessment; SpO2, Oxygen saturation; SVM, Support 

vector machine; TRIPOD, Transparent Reporting of a multivariable prediction 

model for Individual Prognosis or Diagnosis Statement; XAI, artificial intelligence; 

XGBoost, Extreme Gradient Boost.
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assess differences between groups. The continuous data of skew 
distribution were described by median and interquartile range (IQR), 
and the Mann–Whitney U test was employed to compare the two 
groups. Categorical data were described by frequency and percentage, 
and the comparison between two groups was performed by Chi-square 
test or Fisher’s exact test. All data were statistically analyzed using R 
software (Version 4.2.3) and Python (Version 3.9.12). A two-sided p 
value below 0.05 was perceived as statistically significant.

2.5. Machine learning models

We randomized all the patients into two parts, a training set 
(80%) and a validation set (20%). The comparisons of parameters 
between the two sets were presented in Supplementary Table S3. 
We tried to construct and validate the models using LR, SVM, DT, 
KNN, RF, and XGBoost. We initially used default hyper-values to 
generate an initial model, and then used grid search and ten-fold 
cross-validation to find the ideal parameters for each model. 
We computed accuracy, sensitivity, specificity, and the area under 
curve (AUC) and plotted the calibration curve and decision curve 
analysis (DCA) for the validation cohort to assess the predictive 
performance of models. We  confirmed the final model with the 
optimized performance according to the AUC and accuracy. The 
difference of AUCs was compared with DeLong test. Furthermore, 
SHapley Additive exPlanation (SHAP) values were intended to 
enhance the clarity and interpretability of the best model (17). 
We used the SHAP summary plot to depict the rank of the predictors 
attributed to the model. The SHAP dependency graph was used to 
analyze the importance of a single feature affecting the model output. 

Finally, the Local Interpretable Model-Agnostic Explanations (LIME) 
algorithm was implemented to illustrate the impact of these attributes 
on the best model for each patient (18).

3. Results

3.1. Baseline characteristics

A total of 76,540 participants were screened for eligibility. 
Twenty-three thousand three hundred and ninety patients were 
eliminated due to numerous ICU admissions (including only the first 
admission for analysis), and 53,150 patients were recruited (Figure 1). 
The utilization rate of EN was 13.57% (7,210/53150). The median age 
of these patients was 66.76 (IQR, 54.49–78.24) years, and 43.9% 
(23,353/22360) were female. Diabetes (14,613/53150, 27.50%), 
congestive heart failure (12,622/53150, 23.70%), and chronic lung 
disease (12,398/53150, 23.30%) were the top three comorbidities. 
Baseline characteristics comparisons between groups are summarized 
in Table 1.

3.2. Model development and validation

In total, 53,150 patients were randomly divided into the 
training set (42,520, 80%) and validation set (10,630, 20%). 
We constructed six ML models, including SVM, KNN, XGBoost, 
RF, LG, and DT, to predict the onset of EN. The calculated 
sensitivity, specificity, accuracy, and AUC are presented in Table 2. 
In the validation, the AUC of the XGBoost model was 0.895, 

FIGURE 1

Patient selection from the MIMIC IV database.
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TABLE 1 Baseline characteristics between EN group and non-EN group.

Variables Total (N = 53,150) Non – EN (n = 45,940) EN (n = 7,210) p- value

Age (years) 66.76 (54.49–78.24) 66.81 (54.50–78.39) 66.56 (54.48–77.57) 0.027

Sex, male, n (%) 29,797 (56.1) 25,709 (56.0) 4,088 (56.7) 0.246

Weight (kg) 78.45 (65.90–93.10) 78.40 (66.00–93.00) 78.90 (65.50–95.30) 0.016

Ethnicity, n (%) <0.001

White 35,668 (67.1) 31,318 (68.2) 4,350 (60.3)

Black 4,874 (9.2) 4,238 (9.2) 636 (8.8)

Other 12,608 (23.7) 10,384 (22.6) 2,224 (30.8)

Myocardial infarct, n (%) 8,531 (16.1) 7,468 (16.3) 1,063 (14.7) 0.001

Congestive heart failure, n (%) 12,622 (23.7) 10,717 (23.3) 1905 (26.4) <0.001

Peripheral vascular disease, n (%) 5,820 (11.0) 5,022 (10.9) 798 (11.1) 0.746

Cerebrovascular disease, n (%) 8,539 (16.1) 6,596 (14.4) 1943 (26.9) <0.001

Dementia, n (%) 1930 (3.6) 1,612 (3.5) 318 (4.4) <0.001

Chronic pulmonary disease, n (%) 12,398 (23.3) 10,515 (22.9) 1883 (26.1) <0.001

Rheumatic disease, n (%) 1717 (3.2) 1,506 (3.3) 211 (2.9) 0.125

Liver disease, n (%) 5,766 (10.8) 4,546 (9.9) 1,220 (16.9) <0.001

Peptic ulcer disease, n (%) 1,457 (2.7) 1,243 (2.7) 214 (3.0) 0.219

Intestinal fistula, n (%) 170 (0.3) 126 (0.3) 44 (0.6) <0.001

Short bowel syndrome, n(%) 40 (0.1) 30 (0.1) 10 (0.1) 0.06

Acute pancreatitis, n (%) 907 (1.7) 627 (1.4) 280 (3.9) <0.001

Abdominal Hypertension, n (%) 1,144 (2.2) 553 (1.2) 591 (8.2) <0.001

Diabetes, n (%) 14,613 (27.5) 12,582 (27.4) 2031 (28.2) 0.172

Paraplegia, n (%) 2,748 (5.2) 1799 (3.9) 949 (13.2) <0.001

Renal disease, n (%) 9,386 (17.7) 8,050 (17.5) 1,336 (18.5) 0.039

Tumor, n (%) 7,723 (14.5) 6,678 (14.5) 1,045 (14.5) 0.938

Aids, n (%) 284 (0.5) 237 (0.5) 47 (0.7) 0.166

AKI, n(%) 29,551 (55.6) 23,280 (50.7) 6,271 (87.0) <0.001

Sepsis, n (%) 23,901 (45.0) 17,830 (38.8) 6,071 (84.2) <0.001

Heart rate (beats/min) 82.83 (73.25–94.16) 82.40 (73.00–93.42) 86.42 (75.39–98.88) <0.001

MAP (mmHg) 77.52 (71.27–85.61) 77.54 (71.28–85.65) 77.41 (71.21–85.37) 0.345

Respiratory rate (beats/min) 18.38 (16.39–20.96) 18.24 (16.31–20.72) 19.50 (17.08–22.47) <0.001

Body temperature (°C) 36.81 (36.59–37.07) 36.79 (36.58–37.03) 36.99 (36.67–37.39) <0.001

SpO2 (%) 97.07 (95.69–98.36) 97.00 (95.65–98.25) 97.60 (96.00–98.95) <0.001

Hematocrit (%) 35.20 (31.00–39.60) 35.20 (31.00–39.50) 35.50 (30.90–40.20) 0.001

Hemoglobin (g/dL) 11.70 (10.20–13.20) 11.60 (10.20–13.20) 11.70 (10.10–13.30) 0.572

Platelets (K/uL) 210.00 (158.00–275.00) 210.00 (158.00–274.00) 215.00 (156.00–282.00) 0.042

WBC (K/μL) 12.30 (8.80–16.70) 12.00 (8.70–16.40) 13.90 (10.10–19.00) <0.001

Bicarbonate (mmol/L) 24.00 (22.00–27.00) 24.00 (22.00–27.00) 24.00 (21.00–27.00) <0.001

Anion gap (mEq/L) 15.00 (13.00–18.00) 15.00 (13.00–18.00) 16.00 (14.00–19.00) <0.001

BUN (mg/dL) 19.00 (14.00–30.00) 19.00 (13.00–29.00) 23.00 (15.00–37.00) <0.001

Serum calcium (mg/dL) 8.60 (8.10–9.00) 8.60 (8.10–9.00) 8.50 (8.10–9.00) 0.003

Serum sodium (mEq/L) 140.00 (137.00–142.00) 140.00 (137.00–142.00) 141.00 (138.00–144.00) <0.001

Serum chloride (mEq/l) 106.00 (102.00–109.00) 106.00 (102.00–109.00) 106.00 (103.00–110.00) <0.001

Serum potassium (mEq/L) 4.40 (4.00–4.80) 4.40 (4.00–4.80) 4.40 (4.00–5.00) <0.001

(Continued)
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higher than other models (LR: 0.874; SVM: 0.868; KNN: 0.646; 
DT: 0.671; RF: 0.888, respectively) (Figure  2). The calibration 
curve and DCA for each model are depicted in 
Supplementary Figures S1, S2. The AUC of the XGBoost model 
outperformed the RF model without statistically significant 
(p = 0.373) (Supplementary Table S4). Nevertheless, the XGBoost 
model was superior to RF in consistency and clinical utility by 
observing the calibration curve and DCA. To sum up, the 
XGBoost model presented more accurate in predicting 
performance among the 6 models we developed.

3.3. Model explainability

Figure 3A shows the ranking of the importance of the features 
of the XGBoost model. The top three factors contributing to the 
output of the XGBoost model were sepsis, SOFA score, and 
AKI. In addition, it is depicted in Figure 3B how a single feature 

affected the predicted effect of the dependent variable in the 
model. Figure 4 reveals a detailed change trend of the top four 
variables that affect the model output. In order to understand 
how the model achieves individualized prediction, we extracted 
a sample from the validation set for interpretation (Figure 5). The 
patient was 43 years old and had chronic pulmonary disease, 
SOFA score of 3, and did not use EN. Likely, the predicted 
outcome of the XGBoost model was that the risk of not using EN 
was 94% (Figure 5A). The AKI and body temperature of 37.23°C 
contributed to the increased EN initiation rate. Factors that did 
not recommend EN were no PEG, no PEJ, no sepsis, no 
paraplegia, no cerebrovascular disease, or no nasointestinal tube. 
The other patient was a 34-year-old man and used EN. Likely, the 
predicted outcome of the XGBoost model was more inclined to 
implement EN. Factors that recommended EN were SOFA score 
of 10, sepsis, AKI, and body temperature of 37.53°C. No PEG, no 
paraplegia, no PEJ, or no cerebrovascular disease decreased EN 
initiation rate.

TABLE 1 (Continued)

Variables Total (N = 53,150) Non – EN (n = 45,940) EN (n = 7,210) p- value

Creatinine (mg/dL) 1.00 (0.80–1.40) 1.00 (0.80–1.40) 1.10 (0.80–1.80) <0.001

Glucose (mg/dL) 137.00 (113.00–178.00) 135.00 (112.00–173.00) 156.00 (126.00–205.00) <0.001

INR 1.30 (1.10–1.50) 1.30 (1.10–1.50) 1.30 (1.10–1.60) <0.001

PT (s) 14.00 (12.40–16.60) 14.00 (12.40–16.40) 14.30 (12.60–17.90) <0.001

PTT (s) 31.30 (27.50–40.00) 31.20 (27.50–39.40) 32.30 (27.70–44.30) <0.001

eGFR(ml/min/1.73 m2) 1.01 (0.81–1.06) 1.01 (0.81–1.06) 1.01 (0.81–1.06) 0.025

Dialysis, n (%) 1,668 (3.1) 1,228 (2.7) 440 (6.1) <0.001

Vasopressors use, n (%) 2004 (3.8) 1,324 (2.9) 680 (9.4) <0.001

Parental Nutrition, n(%) 885 (1.7) 470 (1.0) 415 (5.8) <0.001

Mechanical ventilation, n (%) 38,366 (72.2) 31,872 (69.4) 6,494 (90.1) <0.001

PEG, n (%) 934 (1.8) 174 (0.4) 760 (10.5) <0.001

PEJ, n (%) 66 (0.1) 23 (0.1) 43 (0.6) <0.001

Nasogastric tube, n (%) 164 (0.3) 113 (0.2) 51 (0.7) <0.001

Nasointestinal tube, n (%) 47 (0.1) 21 (0.0) 26 (0.4) <0.001

SOFA score 4.00 (2.00–6.00) 3.00 (2.00–6.00) 7.00 (4.00–11.00) <0.001

SAPS II score 33.00 (25.00–42.00) 32.00 (24.00–40.00) 40.00 (31.00–51.00) <0.001

Numbers are presented as median (interquartile range) or numbers (percentages). EN, enteral nutrition; Aids, acquired immune deficiency syndrome; AKI, acute kidney injury; MAP, mean 
arterial pressure; SpO2, oxygen saturation; WBC, white blood cell; BUN, blood urea nitrogen; INR, international normalized ratio; PT, prothrombin time; PTT, partial thromboplastin time; 
eGFR, estimated glomerular filtration rate; PEG, percutaneous endoscopic gastrostomy; PEJ, Percutaneous Endoscopic Jejunostomy; SAPS II, Simplified Acute Physiology Score II; SOFA, 
sequential organ failure assessment.

TABLE 2 The evaluation of the six ML models predictive performance.

Models AUC (95% CI) Accuracy Sensitivity Specificity

κ-Nearest neighbor 0.637 (0.620–0.653) 0.867 0.506 0.699

Decision tree 0.679 (0.663–0.696) 0.841 0.459 0.900

Support vector machine 0.880 (0.868–0.892) 0.867 0.818 0.802

Logistic regression 0.884 (0.872–0.895) 0.895 0.799 0.822

Random forest 0.895 (0.883–0.906) 0.896 0.801 0.833

XGBoost 0.904 (0.893–0.915) 0.901 0.809 0.842

AUC, area under curve; CI, confidence interval; XGBoost, Extreme Gradient Boosting.
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FIGURE 2

The ROC curves of six models.

A B

FIGURE 3

SHAP summary plot for the first 20 clinical features contributing to the XGBoost model. (A) The ranking of importance features in the XGBoost 
model. The matrix of SHAP summary plot describes the importance of each features in the development of the XGBoost model. (B) The attribute of 
each feature in the final model. The horizontal coordinate represents the SHAp value. Each line indicates a feature, and the high and low feature 
values are shown in red and blue, respectively. SOFA, sequential organ failure assessment; AKI, acute kidney injury; SpO2, oxygen saturation; MAP, 
mean arterial pressure; PEG, percutaneous endoscopic gastrostomy; PT, prothrombin time; SHAP, SHapley Additive explanation.
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4. Discussion

In this study, we developed and validated the application of 
six machine learning methods for early evaluation of EN in ICU 
patients, and the XGBoost model showed the best accuracy. The 
ranking of feature importance and the influence of variables on 
XGBoost prediction were described per SHAP values. The top 4 
significant factors were sepsis, SOFA score, AKI, and body 
temperature. We also used the LIME algorithm to perform the 
individualized predictions of XGBoost. Only 13.57% 
(7,210/53150) of patients used EN in this study. Early prediction 
of EN initiation may be helpful to improve EN implementation 
in ICU patients.

Based on the MIMIC-IV database, we  developed and 
validated an effective tool for predicting EN initiation. XGBoost 
combines multiple weak classification tree models to establish 
an accurate prediction model. It offers the benefits of excellent 
generalization ability, automatic processing of missing values, 
flexibility and robustness, and fast operation speed. XGBoost, on 
the other hand, can solve this problem of overfitting or 
underfitting in ML models, which results from the low 

occurrence rate of the predicted events (the ratio of the number 
of events to the total number of samples is less than 1:10) (19). 
Choi et  al. predicted refeeding hypophosphatemia, XGBoost 
showed higher accuracy than Logistic, Lasso, and Ridge 
pressures (20).

Additionally, explainable AI (XAI) was applied to facilitate users’ 
comprehension of the decision-making process of the models (21). 
In the present study, SHAP values and the LIME method were 
incorporated into the XGBoost model to attain the highest predicted 
accuracy and interpretability. Individual explanations by the LIME 
algorithm can provide evidence for the model’s prediction results and 
assist physicians in better use models when making decisions.

Our study found that sepsis was the strongest predictor of EN 
initiation. In sepsis, inflammatory mediators induce the 
catabolism of protein, fat, and carbohydrate stored in the body, 
which leads to severe energy shortage in patients. There are 
studies showing that early moderate EN decreases mortality and 
incidence of secondary inflammation in sepsis patients (22, 23). 
Several guidelines recommend that EN be  initiated early and 
gradually after hemodynamic stability (3, 17). The SOFA score is 
used to determine the extent of major organ failure in critically 

A B

C D

FIGURE 4

SHAP dependence plot of the first 4 variables influencing the XGBoost model. (A) Sepsis; (B) SOFA score; (C) AKI; (D) Body temperature. The 
probabilities of EN initiation increase when SHAP values of features exceed zero. AKI: acute kidney injury, SHAP: SHapley Additive explanation, SOFA: 
sequential organ failure assessment, XGBoost: eXtreme Gradient Boosting, EN: enteral nutrition.
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A

B

FIGURE 5

LIME algorithm for explaining individualized prediction. (A, B) Showed the risk prediction charts for the use of EN in critically ill patients or not. 
(A) Presented a Non-EN case with the LIME algorithm. (B) Presented a EN case with the LIME algorithm. The prediction probabilities by LIME are 
depicted in the left of the two screenshots. The first 8 features that significantly affected on using EN or not are presented in the middle sections from 
top to bottom. The weight (importance) of each feature in risk prediction is indicated per the bar’s length. The longer bar represents the more 
contribution to EN initiation or not. The critical values of these 8 features are shown on the right parts when they had the maximize effect on using EN 
or not. LIME, local interpretable model-agnostic explanations; EN, enteral nutrition; AKI, acute kidney injury; PN, parental nutrition; PEG, percutaneous 
endoscopic gastrostomy. PEJ, Percutaneous Endoscopic Jejunostomy; SOFA, sequential organ failure assessment.

ill patients, which is strongly associated with prognosis. In 
ranking the XGBoost model’s feature importance, the SOFA score 
was found to be the second key factor, consistent with previous 
findings (24). Increased nutritional intake can improve outcomes 
in patients with higher SOFA scores (24). In addition, AKI and 
body temperature were also important factors affecting EN 
initiation. The patients with AKI have not only abnormal 
metabolism of water and electrolyte but also carbohydrates, 
protein, and lipid. They are at high risk for malnutrition and 
muscle wastage (25). This study considered that the possibility of 
starting EN was greater, as the body temperature increase led to 
more body consumption. Unfortunately, a study showed that 
elevated body temperature was related to the failure of EN 
initiation in patients with severe acute pancreatitis (26). To 
investigate the relationship between body temperature and EN 
initiation, more studies should be performed. Interestingly, this 
study found that the placement of PEG is another predictor of EN 
initiation. ESPEN recommends that PEG is preferred for patients 
with prolonged EN (27).

This was, as far as we are aware, the first study to use the 
XGBoost model as a predictive tool in EN initiation. We  are 
committed to opening the black box of ML models and using 
interpretable ML approaches (SHAP value and LIME algorithm) 
to better explain how predictors contribute to the model and how 
the model makes judgments. It is important to note that the study 

has limitations. We neglected to include the acute gastrointestinal 
injury grade, a crucial indicator of understanding gastrointestinal 
function, in the models’ development, because it was not reported 
in the MIMIC-IV database. These may have led to selected bias. 
This is a retrospective study. The patients had already been 
discharged from the hospital at the time of data extraction, and 
the use of EN had already been determined. Thus, we have no 
way of knowing if the EN was started according to the gold 
standard. Thirdly, XGBoost can explore the interaction between 
features, but not all interactions can be displayed in LIME. Finally, 
this study developed a model based on single-center data and 
only conducted internal validation. These findings may not 
generalize to other populations. More factors need to be included 
for further model optimization, and prospective multicenter 
studies should be performed to verify the external applicability 
of this model.

5. Conclusion

We developed and validated the application of six machine 
learning methods for early evaluation of EN in ICU patients, and the 
XGBoost model showed the best predictive performance. Sepsis, 
SOFA score, AKI, and body temperature were used as the four most 
important predictors of EN initiation.
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