AUTHOR=Li Qingqing , Yang Li , Li Rongrong , Chen Gangliang , Dong Jing , Wu Linying , Fu Yinghua , Yang Jie TITLE=Lipid analysis of meat from Bactrian camel (Camelus bacterianus), beef, and tails of fat-tailed sheep using UPLC-Q-TOF/MS based lipidomics JOURNAL=Frontiers in Nutrition VOLUME=10 YEAR=2023 URL=https://www.frontiersin.org/journals/nutrition/articles/10.3389/fnut.2023.1053116 DOI=10.3389/fnut.2023.1053116 ISSN=2296-861X ABSTRACT=Introduction

As a source of low-cost and high-quality meat for human beings, the consumption of camel meat was increasing, and beef has similar texture and nutritional characteristics with camel meat. Camel hump and fatty-tails are important parts of fat storage for camels and fat-tailed lambs, respectively, which were to adapt and endure harsh environments. Considering their similar physiological functions, their fat composition might be similar. Lipidomics is a system-level analysis of lipids method, which play an important role in the determination and quantification of individual lipid molecular specie, food adulteration and labeling.

Methods

A GC/MS was used to analyze fatty acids composition of Xinjiang Bactrian camel meat, hump, beef, and fatty-tails. UPLC-Q-TOF/MS based on lipidomics approach was used to analyze lipid composition, characterize and examine the lipid differences in Xinjiang Bactrian camel meat, hump, beef, and fatty-tails.

Results and discussion

The major fatty acids of the four samples were C16:0, C18:0, and C18:1cis, and camel meat had a significant low SFA content and high MUFA content. A total of 342 lipid species were detected, 192, 64, and 79 distinguishing lipids were found in the groups camel hump compared to camel meat, camel meat compared to beef, and camel hump compared to fatty-tails, respectively. Lipid metabolisms of ether lipid, glycerophospholipid, glycerolipid, and sphingolipid were the most influential pathways revealed by KEGG analysis. The results contributed to enrich the lipid information of Bactrian camel meat, and indicated that UPLC-Q-TOF/MS based on lipidomics was an alternative method to distinguish meat samples.