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The potato (Solanum tuberosum L.) is the world’s fifth most important staple

food with high socioeconomic relevance. Several potato cultivars obtained

by selection and crossbreeding are currently on the market. This diversity

causes tubers to exhibit different behaviors depending on the processing

to which they are subjected. Therefore, it is interesting to identify cultivars

with specific characteristics that best suit consumer preferences. In this work,

we present a method to classify potatoes according to their cooking or

frying as crisps aptitude using NIR hyperspectral imaging (HIS) combined

with a Partial Least Squares Discriminant Analysis (PLS-DA). Two classification

approaches were used in this study. First, a classification model using the

mean spectra of a dataset composed of 80 tubers belonging to 10 different

cultivars. Then, a pixel-wise classification using all the pixels of each sample

of a small subset of samples comprised of 30 tubers. Hyperspectral images

were acquired using fresh-cut potato slices as sample material placed on

a mobile platform of a hyperspectral system in the NIR range from 900 to

1,700 nm. After image processing, PLS-DA models were built using different

pre-processing combinations. Excellent accuracy rates were obtained for

the models developed using the mean spectra of all samples with 90% of

tubers correctly classified in the external dataset. Pixel-wise classification

models achieved lower accuracy rates between 66.62 and 71.97% in the

external validation datasets. Moreover, a forward interval PLS (iPLS) method

was used to build pixel-wise PLS-DA models reaching accuracies above 80

and 71% in cross-validation and external validation datasets, respectively. Best

classification result was obtained using a subset of 100 wavelengths (20
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intervals) with 71.86% of pixels correctly classified in the validation dataset.

Classification maps were generated showing that false negative pixels were

mainly located at the edges of the fresh-cut slices while false positive were

principally distributed at the central pith, which has singular characteristics.

KEYWORDS

Solanum tuberosum L. cooking, frying as crisps, hyperspectral imaging (HSI),
chemometrics, partial least squares discriminant analysis

Introduction

The potato (Solanum tuberosum L.) is a crop of great
importance to the global economy and food security. It is
the world’s fifth most important staple food, followed by
rice, wheat, corn, and sugarcane. Potato production worldwide
has been growing in recent decades, mainly in developing
countries, reaching 370,436,581 tons in 2019 (1). This rise is
largely due to the increase in both population and global per
capita consumption.

In terms of potato quality, a distinction must be made
between external and internal quality. The parameters that
describe external quality include size, shape, color, and the
presence/absence of defects. The internal quality of potatoes
is defined by physicochemical parameters such as flesh color,
texture, dry matter (DM) and starch content, percentage of
reducing sugars (RS), susceptibility to enzymatic browning and
discoloration after cooking. Several potato cultivars obtained by
selection and crossbreeding are currently on the market. This
diversity causes tubers to exhibit different behaviors depending
on the processing to which they are subjected. Therefore, it
could be convenient to identify those cultivars with specific
characteristics that meet the requirements of the type of
industrial processing (2, 3). The DM content for crisps industry
is preferred between 22 and 24%. Higher levels result in too
brittle goods while if the content is lower soft products are
obtained with a higher oil retention in the frying process (4, 5).
Alternatively, the optimal potato for cooking should have a
lower DM content around 17 and 19% since tubers with higher
levels tend to be more susceptible to bruising and disintegrate
more easily when cooked (6). Regarding RS, for the crisps
processing industry levels should not exceed 0.2 and 0.3% of the
fresh weight to avoid both acrylamide formation during frying
and products with a dark color and bitter taste that are generally
rejected by consumers (4). For the cooking industry, there is no
established reference limit for RS content, as cooking processes
do not lead to the formation of acrylamide as temperatures are
not as high as in deep-frying. However, it would be advisable
not to exceed the above-mentioned limits since, regardless of
their culinary suitability, these potatoes can be used for frying
and thus, pose a potential risk for browning and acrylamide
formation. There is a linear relationship between the content

of RS in tubers and the level of browning after frying, so that
the higher the former, the higher the latter (7). Likewise, some
authors have found a strong correlation between the content of
RS and the potential for acrylamide formation (8, 9).

Acrylamide (C3H5NO) is an organic compound formed
when certain foods are cooked at temperatures usually above
120◦C in low moisture conditions. It is a by-product of the
Maillard reaction between free asparagine and RS. Consumption
of acrylamide poses a risk to human health since it is identified
as probably carcinogenic to humans. The category “potato fried
products” has been pointed out as the foremost contributor
to total dietary acrylamide exposure. The European Regulation
(EU) 2017/2,158 established a benchmark level for acrylamide
of 750 µg kg−1 for potato crisps (10). Therefore, the formation
of this potential carcinogenic should be mitigate to the extent
possible and for this, the level of RS in potato cultivars with
different processing aptitudes should be known in advanced.
However, as the quantity of potatoes processed worldwide is
continuously increasing, their characterization and classification
has become a strategic point to meet the production targets
of agri-food industries. Chemical composition of tubers is
generally obtained by mostly destructive and time-consuming
tests. Therefore, there is a need to characterize the properties
and aptitudes of tubers in a more efficient way to meet quality
standards and current demand.

Non-destructive imaging-based methods are a quick and
useful solution for agri-food industries, as they can provide
reliable quantitative and quality information of a great range
of samples including not only food but also packaging (11).
In this respect, the application of hyperspectral imaging (HSI)
techniques could allow the development of a fast and reliable
non-destructive method to determine different characteristics
of potatoes. HSI combines the advantages of traditional
computer vision and spectroscopy allowing the simultaneous
measurement of spatial and spectral variation of a sample (12).

For these reasons, the objective of this study is to evaluate
the functionality of HSI to classify potatoes according to their
frying or cooking aptitude. A field not yet addressed by this
technology as far as we are concerned. To meet this target, a PLS-
DA chemometric method was carried out for the classification
of a dataset comprised of 80 tubers belonging to 10 different
cultivars with a pre-assigned aptitude for processing as either
suitable for cooking or for frying as crisps.
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Materials and methods

Vegetal material

In this study, potato tubers of 10 different cultivars harvested
in October 2016 were used.

Prior to any analysis, potatoes were characterized, and for
this purpose, each tuber was identified and weighed individually.
The tubers were then divided into two groups with the same
number of varieties each. One group was used for the analysis of
DM, starch, RS content and quality processing while the other
was used for image analysis.

Information regarding these cultivars is shown in
Supplementary Table 1. Five out of the 10 cultivars used
were classified with industrial aptitude for cooking and the
other 5 with industrial aptitude for frying as crisps.

Analysis of dry matter, starch and
reducing sugars content and quality
processing

The tuber DM content was obtained by drying in an oven
at 105◦C for 24 h. Three samples were analyzed for each
cultivar. Estimation of the RS concentration was performed by
spectrophotometry based on the reduction of dinitrosalicylic
acid (DNSA method) as described by Lindsay (13). A total of
0.3 g of the mixture was weighed and 1 mL of distilled water
and 2 mL of dinitrosalicylic acid were added. The samples
were heated at 100◦C in a water bath with stirring for 10 min.
Then, they were diluted with distilled water and the absorbance
was measured in the UV-VIS spectrophotometer at 546 nm.
The content of RS was calculated as described by Barredo (14)
(Equation 1):

% RS = (absorbance− 0.00385) ∗ 1.07893 (1)

Specific gravity was determined by weighing a sample in
air and also immersed in water, and applying a scale that
gives a correlative measure of the starch content in the tuber
(15).

For each potato cultivar an approximately 5 kg sample was
selected for the processing quality. The tubers were stored in a
cool place and kept at 8◦C for 20 d after harvest. Analyses of
cooked potatoes and crisps were performed. For the frying test,
3 tubers from each sample were cut into 1.5 mm thick slices
with a 20 mm diameter and fried at 176 ± 5◦C for 3 min in
sunflower oil. The process temperature was controlled with a
Hanna thermometer (Hanna Instruments, Bedfordshire, UK).
The slices were drained after frying for 5 min and left at room
temperature. The color score from 1 (darker) to 9 (lighter) was
given to crisps according to the color chart as described by
Burton (15). For the cooked potato tests, the tubers were peeled
and steamed for 30 min. Each sample was assigned a value for

each parameter according to the assessments of disintegration,
texture firmness, mealiness, structure and flavor as described
by Hassanpanah et al. (5). A panel of judges with an extensive
experience from previous years was selected to determine the
variations in cooked potatoes.

Near-infrared hyperspectral imaging

Eighty tubers were used (8 potatoes per cultivar) for the
image analysis. Tubers were kept refrigerated at 10◦C until the
subsequent analyses. Two classification groups were established
for the study: cultivars with industrial aptitude for cooking, and
cultivars with industrial aptitude for frying as crisps.

Hyperspectral images were acquired using fresh-cut potato
slices as sample material. A thick slice (1 cm) was extracted per
tuber from a transversal cut at the central part and analyzed one
by one by the HSI system. A Braher slicer (Model USA280) was
used to prepare the samples.

The imaging system is composed of a hyperspectral device,
a mobile platform, a light source, and a computer. The
hyperspectral system used consisted of a Xeva 1.7-320-100
Hz camera (Xenics, Leuven, Belgium), with a sensitive linear
scanning system in the NIR range from 900 to 1,700 nm, with
an InGaAs detector of 320 × 256 pixels resolution and USB
connection. This camera was coupled to an ImSpector N17E
spectrograph (Specim, Spectral Imaging Ltd., Oulu, Finlad) with
a slit of 30 µm, and to a lens OPT-000034 (SWIR, 16 mm,
f/1.4, Xenics, Leuven, Belgium) with a focal length of 16 mm.
A linear actuator system (LEFS25, SMC Corporation, Tokyo,
Japan) attached to a black sample holder plate was used to
move the sample at constant speed through the scanning area
(camera field of view).

Samples were placed in a platform 30 cm below the lens
and scanned at a speed of 9 mm/s, adjusted to provide the
same vertical and horizontal resolution (0.56 mm pixel−1).
In addition, a focal length of 0.25 m and the maximum
diaphragm aperture (f/1.4) were set on the lens. The images
were acquired at the maximum scanning speed (100 Hz) with
an integration time of 2,000 µs. All images were composed of
320 columns, 256 wavelengths (every 3.14 nm approximately)
and a variable number of rows (depending on the size of the
potato slice scanned).

Four 46 W halogen lamps (Lexman) emitting radiation in
the infrared spectrum were used as the light source for the
samples. They were positioned so that each lamp focused on one
corner of the sample plate to achieve homogeneous illumination
over the entire field of view. To avoid interference from external
radiation from ambient light, the whole system was covered with
a black opaque blanket during the image acquisition process.

A computer equipped with Xeneth 2.5 software controlled
the hyperspectral acquisition system. This software allowed
establishing the test parameters of the camera and controlling
its operation during image acquisition.
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Figure 1 shows the imaging system and a sample of a potato
slice placed on the platform.

Image processing

To normalize the reflectance recorded from the images with
the maximum and minimum intensity captured by the receiver,
images of standards with high and low reflectance coefficients,
commonly called “white” and “black,” were acquired with the
HSI system. The white reference was obtained by measuring a
calibration tile of 600 × 50 × 10 mm with standard reflectance
of 99% (Specim, Spectral Imaging Ltd., Oulu, Finland); while the
dark reference was recorded by covering the lens with its opaque
black cap and turning off the light source. Then, raw intensity
values were converted into relative reflectance values R (x, λ) at
each position x on the line and each wavelength λ of the image,
using Equation (2):

R (x,λ) =
I(x,λ)− ID(x,λ)

IW(x,λ)− ID(x,λ)
(2)

where I (x, λ) is the reflectance intensity of the slice potato
sample and ID (x, λ) and IW (x, λ) are the intensity values at
wavelength λ captured at the xth pixel for the dark and white
references, respectively.

FIGURE 1

The imaging system used in this study with a sample of a potato
slice placed on the platform.

Then, each potato slice was segmented using the algorithm
presented in Lopez-Molina et al. (16). By this procedure, a
superpixel image is defined as a result of the calculation of
local contrast measurements for spectral comparison based on
Baddeley’s metrics. Next, the final binary region is created using
Otsu thresholding algorithm and some basic morphological
operations. Accordingly, with this algorithm, the potato slice
was discriminated from the background.

After image segmentation, the relevant spectral data were
extracted by unfolding the 3D hyperspectral array (hypercube)
into a 2D data matrix of the potato pixel reflectance values at the
selected wavelengths (226 bands, from 994 to 1,700 nm). The
first 30 wavelengths were removed from the study due to high
signal to noise ratio.

For this study, as explained further in section- “Partial
least squares discriminant analysis (PLS-DA),” two classification
approaches were used: a classification model using the mean
spectra of the whole dataset (n = 80) and a pixel-wise
classification using all the pixels of each sample of a small
subset of samples (30 tubers, n = 143,090), with the aim of
creating classification maps to discriminate the potato samples
according to their industrial processing aptitude. It should
be considered that a pixel-wise classification requires a fast
processor as well as a large data storage due to the high
number of samples used, so that sometimes it is not possible
to use the whole data set in its entirety, but a smaller number
of samples must be selected. In this case, 30 potato tubers,
3 tubers per cultivar, were randomly selected for the pixel-
wise analysis. Moreover, for both approaches, samples were
randomly divided into calibration and validation datasets. Thus,
for the classification model using the mean spectra of each
sample, 75% of samples were used to build the classification
model (nCal = 60), while the remaining 25% was used to
externally validate it (nVal = 20). However, for the pixel-wise
classification 2 tubers per cultivar were randomly selected to
build the calibration group (20 samples) and the rest (1 tuber
per cultivar, 10 samples) was used to validate the model. Hence,
20 hypercubes consisting of 100,166 pixels were used for model
calibration and 10 hypercubes of 42,924 pixels were used for
validation.

All data analysis was carried out using the PLS_Toolbox
version 8.6 (Eigenvector Research Inc., Wenatchee, WA, USA)
within MATLAB (release R2020b, The MathWorks, Inc., Natick,
MA, USA) and additional in-house written functions.

Spectral pre-processing

In general, spectral information, whether from conventional
spectroscopy or HSI, are affected by undesirable effects such as
random noise, light scattering or surface roughness in samples,
among others (17). Therefore, mathematical algorithms are
normally used to improve spectral data (18).
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In our study, different pre-processing methods were
combined to enhance the robustness of the classification models
including de-noising techniques, scatter correction procedures,
derivatives, and centering methods. Thus, Smoothing (SM) de-
noising algorithm by the Savitzky-Golay method using a 15-
point filter was applied to spectral data. In addition, Standard
Normal Variate (SNV) and Multiplicative Scatter Correction
(MSC) techniques were applied to correct light scattering.
Although both SNV and MSC offer similar results, SNV is
performed by subtracting to each spectrum its mean value and
dividing by its standard deviation (19). MSC, however, requires
the use of a reference spectrum to perform a linear regression
of each individual spectrum onto it (20). Moreover, derivatives
were used in this study to augment differences between spectra.
First (1D) and second (2D) derivatives by the Savitzky-Golay
algorithm using a second order polynomial and 15 window
points were calculated.

Finally, scaling of data by mean-centering (MC) was
performed. Using this method, the average spectrum of the
dataset is subtracted from each individual spectrum.

Chemometric methods

Principal component analysis
Principal Component Analysis (PCA) is an unsupervised

chemometric technique commonly used prior to multivariate
analysis to explore the structure of the data, as well as to
identify separation trends among classes. By this method, the
dimensionality of the data is highly reduced while maintaining
the existing variation to some extent. For this, PCA defines new
variables, Principal Components (PC), as linear combinations
of the original ones and orthogonal to each other (21).
The first PC covers most of the variation in the data while
the second captures as much of the remaining variation as
possible, and so forth.

Two PCAs were carried out in this study, 1 using the
individual pixel spectra of each tuber of the calibration dataset
(20 tubers, n = 100,166) and the other using the mean spectrum
of each tuber of the whole dataset (n = 80). These PCAs were
performed on the previously pre-processed data by means of a
Savitzky-Golay SM with a 15-point window, followed by SNV
and MC. Their analysis was accomplished by visually examining
the scores and loadings plots.

Partial least squares discriminant analysis
After PCA analysis, two classification approaches were

carried out using PLS-DA, one based on the mean spectra of
each sample (n = 80) and the other performed at pixel level,
namely pixel-wise classification, using only a small subset of
samples (30 tubers). PLS-DA, unlike the PCA, is a supervised
chemometric technique that combines linear regression by
partial least squares (PLS) with discriminant analysis, through

which the separation between classes might be obtained. In this
way, the classification model establishes a relationship between
the predictive variables X (values of the reflectance of each pixel)
and the dependent variable Y (classes in the data). For this, PLS-
DA creates new uncorrelated variables, Latent Variables (LV),
as linear combinations of the initial ones that maximize the
covariance between X and Y (22). In this study, the number
of LV to be considered was established based on the model
that minimized both the mean calibration and cross-validation
(CV) error as suggested by Baumann et al. (23). A Venetian
Blinds CV method to optimize the model and guarantee its
independence within the calibration was used, with 10 divisions
and 1 sample per division.

The effectiveness of the PLS-DA models was evaluated using
the confusion matrix to get the accuracy, sensitivity, specificity,
and class error. Confusion matrix is an N x N matrix where the
elements in the diagonal are those correctly classified, i.e., the
true positives (TP) and true negatives (TN), while the elements
outside the diagonal are misclassified, i.e., the false positives
(FP) and false negatives (FN). The sensitivity, specificity, and
class error take values from 0 to 1 such as the closer to 1 the
sensitivity and specificity and, the closer to 0 the error, the most
accurate the classification of the samples. They are calculated as
(Equations 3–6):

Accuracy (%) =
TP + TN

TP + TN + FP + FN
x 100 (3)

Sensitivity =
TP

TP + FN
(4)

Specificity =
TN

TN + FP
(5)

Class error = 1− ((Sensitivity + Specificity)/2) (6)

A suitable classification performance would present high
accuracy, sensitivity, specificity, and low class error. Moreover,
a classification image for the validation dataset was displayed
to visualize the distribution of correctly and incorrectly
classified pixels.

Variable selection
HSI systems generate an enormous amount of data due to

the large number of wavelengths they cover. However, these
data often present collinearity problems, in addition to the
complexity of their handling. Therefore, it is convenient to
select a few bands containing the most variability and thus,
most significant information for the implementation of these
HSI in automatic in-line sorting and grading systems (24). For
this reason, in this study we used interval partial least squares
regression (iPLS) to find the most suitable wavelengths ranges
for the classification of tubers. This is a variable selection method
developed by Nørgaard et al. (25) to optimize and help in the
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TABLE 1 DM, starch, and RS content of potato cultivars.

Cultivar DM (%) Starch (%) RS (%)

Ambition 18.56± 0.18 11.47± 0.09 0.145± 0.008

Laudine 18.57± 0.19 11.49± 0.11 0.116± 0.006

Levantina 18.63± 0.22 11.55± 0.07 0.150± 0.010

Madeleine 17.77± 0.23 10.66± 0.10 0.162± 0.012

Rudolph 18.87± 0.14 11.79± 0.12 0.076± 0.007

Agria 21.00± 0.23 13.95± 0.11 0.140± 0.012

Corsica 20.93± 0.15 13.91± 0.14 0.065± 0.009

Hermes 22.81± 0.17 15.84± 0.09 0.099± 0.010

Lady Amarilla 20.47± 0.21 13.44± 0.16 0.103± 0.011

Lyoness 23.14± 0.14 16.18± 0.10 0.061± 0.007

Values are expressed as mean± SD.

interpretation of PLS regression models. The principle of iPLS
is to divide the full spectrum into smaller equidistant regions
and develop PLS regression models for each of the intervals.
Afterward, a comparison between the prediction performance of
these local models and the full-spectrum model is made mainly
considering the root mean squared error of cross-validation
(RMSECV) although other parameters are also evaluated (25).

We used forward iPLS to reduce the number of variables
selecting an automatic number of intervals with an interval size
of either 1 or 5.

Results and discussion

Chemical analysis and quality
processing

Table 1 gathers the DM, starch and RS content of the
different cultivars used in this study in percentage of fresh
weight.

Tables 2, 3 include the information obtained for the quality
processing parameters measured for each industrial aptitude.

It can be seen in Table 1 that all cultivars with cooking
aptitude contained lower DM concentrations, between 17 to

TABLE 3 Evaluation of frying as crisps at 176 ± 5◦C.

Cultivars Colora Crisps performance

Agria 7 Good

Corsica 8 Very good

Hermes 8 Very good

Lady Amarilla 7 Good

Lyoness 7 Good

a1–4 = very dark brown, non-accepted; 5–6 = strong golden, accepted; 7–9 = pale golden,
accepted.

19%. As explained in section- “Introduction,” higher levels of
DM lead to a more easily disintegration. In this study, cultivar
“Ambition” provided the worst disintegration and texture
firmness results among the rest of the cultivars with a moderate
performance and a classification as “rather soft” (Table 2). In
these two categories the rest of the cultivars gave none or light
disintegration and were classified as “rather strong.” Regarding
the rest of the parameters, “Ambition” was identified as not
mealy, with a fine structure and neutral flavor; however, the
overall cooking performance of this cultivar was poor in contrast
with the rest of the cultivars with good and very good cooking
performances. “Laudine” was the only cultivar with a very good
cooking performance due to its lack of disintegration when
cooked along with its fine structure. Cultivars “Levantina” and
“Rudolph” did not perform as good, probably because of their
rather strong flavor. Likewise, the overall cooking performance
of the cultivar “Madeleine” was good, maybe due to its light
disintegration combined with an only “rather strong” texture
firmness (Table 2).

DM content of cultivars with industrial aptitude for frying as
crisps ranged between 20 and 23%, slightly below the preferred
levels reported by Nivaa (4). However, all those 5 cultivars
performed either good or very good at the evaluation of frying
as crisps based on the color developed after frying at 176 ± 5◦C
(Table 3).

Regarding RS, the content was below 0.2% for all cultivars
included in the study. In general, cultivars with industrial
aptitude for cooking reported higher levels of RS excepting

TABLE 2 Values assigned to each parameter measured for cultivars with cooking aptitude.

Cultivar Disintegrationa Texture firmnessb Mealinessc Structured Flavore Cooking performance

Ambition C C A A A Poor

Laudine A B B A B Very good

Levantina B B A B C Good

Madeleine B B A A A Good

Rudolph B B A A C Good

aA = none; B = light; C = moderate; D = complete.
bA = strong; B = rather strong; C = rather soft; D = soft.
cA = none; B = light; C = mealy; D = very mealy.
dA = fine; B = rather fine; C = rather coarse; D = coarse.
eA = neutral; B = moderate; C = rather strong; D = strong.

Frontiers in Nutrition 06 frontiersin.org

https://doi.org/10.3389/fnut.2022.999877
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-09-999877 October 11, 2022 Time: 16:47 # 7

López-Maestresalas et al. 10.3389/fnut.2022.999877

cultivar “Rudolph” with 0.076%. Among cultivars with frying
aptitude, “Agria” provided the highest concentration of RS with
0.14%. These results are in accordance with those reported by
Gallego et al. (2) for cultivars “Agria” and “Hermes” regarding
DM content, while the RS contents provided were somewhat
lower than the ones obtained here (1.1 g kg−1 and 1.4 g
kg−1 of fresh weight for “Agria” and “Hermes,” respectively).
In any case, authors confirmed the suitability of both cultivars
for the frying processing industry. Hassanpanah et al. (5)
while studying the cooking quality characteristics of advanced
clones and potato cultivars, also found “Agria” the cultivar
with the highest content of RS. However, authors reported
the suitability of cultivar “Agria” for French-fry industry while
here it is considered preferable for crisps industry. In a study
carried out by Amrein et al. (8) to evaluate the potential for
acrylamide formation in potatoes, authors obtained a content of
RS for the cultivar “Hermes” very similar to the one obtained
here (904 mg kg−1) and slightly lower for cultivar “Agria”
compared to the result in this study (1,020 mg kg−1). They also
found a strong correlation between RS and the potential for
acrylamide formation for the cultivars studied, reporting levels
of acrylamide of 703 and 791 µg kg−1 for cultivars “Agria” and
“Hermes,” respectively. It should be noticed that these values of
acrylamide are, respectively, below and above the benchmark
level established by the European Regulation (EU) 2017/2158.
Yang et al. (7) analyzed 8 different potato cultivars to determine
their aptitude for processing. They also found cultivar “Agria”
suitable for frying due to its DM and RS contents, similar to
those obtained here. Same authors studied the influence of
the frying process and potato cultivar on acrylamide formation
reporting RS content of cultivar “Agria” in line with this study

(26). They reported higher acrylamide levels in fried potato
products when higher frying temperatures were used; however,
the degree of increase was different among the cultivars studied.

Spectral pre-processing

Figure 2A shows the mean reflectance spectra of the 80
tubers with either cooking or frying industrial aptitude used in
this study. Small differences in the magnitude of reflectance of
both classes can be seen at the very beginning of the spectrum
and in the 1,200–1,.400 nm where pixels from tubers with
aptitude for frying as crisps showed slightly higher reflectance
values than pixels from the tubers within the cooking class.
Moreover, 3 major reflectance valleys are observed at around
1,015, 1,200, and 1,450 nm corresponding to absorption bands.
The strong absorption band at 1,450 nm is due to O–H bond
stretching and first water overtone. The absorption band at
1,200 nm corresponds to a weak water combination band and
that at 1,015 nm is related to C–H stretching vibration modes in
CH3 groups (27).

Figure 2B shows the relative reflectance of the pixels from
the two classes (cooking and frying as crisps) included in the
calibration dataset of the pixel-wise classification approach at a
randomly selected wavelength (1,210 nm). At this wavelength
reflectance values mostly ranged between 0 and 0.6 with few
exceptions.

Potato tubers do not have a homogeneous distribution of
components along the tuber since they present compositional
gradients in radial direction from the pith to the peel (28). This
was also reflected in their spectral behavior as Figure 2B shows,

FIGURE 2

Mean reflectance spectra of all tubers belonging to cooking and frying as crisps classes (A) and reflectance intensity values of all pixels at
1,210 nm of cooking and frying as crisps classes included in the calibration dataset in the pixel-wise classification approach (B).
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pixels belonging to the central pith showed the lowest reflectance
values (closer to cero). As many authors have pointed out, the
central pith of the potato has statistically significant lower DM
content than the rest of the tissues (28), since pith tissue contains
relatively few starch granules and cortical tissue is packed with
them (29). This fact translates into a higher water content and,
consequently, a lower spectral reflectance.

Figure 3 shows different spectral pre-processing methods
and their influence in the visualization and possible
discrimination between classes of fresh-cut potato slices in
3 different wavelengths: 1,025, 1,220, and 1,445 nm. The
application of smoothing (Figure 3A) helped eliminating the
spectral noise, but it was not possible to separate among cooking
and frying as crisps classes. The combination of smoothing
and SNV (Figure 3B) also corrected the scattering effect that
is usually present in NIR radiation. Moreover, it appeared that
a slight separation between classes could be accomplished at
the 1,220 and 1,445 nm wavelengths. This behavior was also
perceived after the application of a 1st derivative (Figure 3C),
but only at 1,445 nm.

Principal component analysis

As mentioned before, two PCAs were performed to explore
the variation of the two classes analyzed (cooking and frying as
crisps) using both the pixel and mean spectra of the samples

previously pre-processed by SM+SNV+MC. First, a PCA using
the mean spectra of each tuber of the whole dataset (n = 80) was
developed. In this case, PC 1 explained 56.59% of total variance
while PC 2 39.54%. Figures 4A,B show, the score and loading
plot of the first two PCs, respectively. According to Figure 4A
it appears that PC 1 played a significant role in the separation
of the classes, as all the frying as crisps samples had negative
score values on PC 1 except from two samples belonging to
cultivar “Lady Amarilla.” Besides, most samples belonging to the
cooking class had positive score values on PC 1. According to the
loadings plot (Figure 4B), potatoes with frying aptitude can be
related to the wavelength range from 1,200 to 1,350 nm; while
potatoes with cooking aptitude can be related to a specific band
at around 1,100 nm and to the wavelength range from 1,450 to
1,700 nm.

Then, a PCA using the individual pixel spectra of 20 tubers
comprising the calibration dataset (n = 100,166) was carried
out to generate a score image plot and get an overview of
the distribution of the spectral data information. The first
two PCs explained 89.24% of the total variance (81.35 and
7.89%, respectively). Looking at the score surface and the
corresponding loading of PC 1 (Figures 4C,D, respectively), a
subtle difference could be observed between the score values
of the cultivars with cooking aptitude and those with frying as
crisps aptitude. The formers presented, in general, lower values
(dark blue) than the pixels of samples with frying aptitude
(light blue). It should be noted that the pixels from the tuber

FIGURE 3

Influence in the visualization of samples of different pre-processing techniques: smoothing (A), smoothing + SNV (B) and 1st derivative (C) at
three specific wavelengths (1,025, 1,220, and 1,455 nm).
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FIGURE 4

PCA models. Score (A) and the corresponding loading (B) plot from the first two PCs of the PCA using the mean spectra of all samples. Score
(C) and corresponding loading of PC 1 (D); score (E) and corresponding loading of PC 2 (F) of the PCA model using the individual pixel spectra
of each tuber of the calibration dataset. Explained variance of each PC is indicated in brackets.

pith tissue presented the lowest score values for all cultivars
in PC 1 as in concordance with the relative reflectance values
shown in Figure 2B. The correspondence between the negative
part of the score surface and the loading suggest that the peak
located around 1,100 nm and the last wavelength range (1,450–
1,700 nm) could be the main sources of difference for the two
aptitudes. PC 2 scores and loadings (Figures 4E,F, respectively)
did not provide any substantial information regarding the
industrial aptitude of the cultivars. Moreover, some strikes are
observed in Figure 4E due to the noise generated by the system.

Partial least squares discriminant
analysis

Table 4 shows the results of the 10 PLS-DA models
developed using different pre-processing combinations and the
mean spectra of the whole dataset. It shows the number of LV
used; the percentage of variance explained; the sensitivity and
specificity of each class (cooking and frying as crisps) and the
overall error and accuracy obtained for each model in the CV
and external validation datasets.

High accuracy rates above 84% were obtained for all
the models in CV. The highest accuracy among the models
developed was obtained for the combination of SM+SNV+MC
with more than 91% of samples correctly classified and an error
rate of 0.071. This model was built using 4 LV explaining 98.69%
of variance. Regarding sensitivity and specificity values, cultivars

with industrial aptitude for frying as crisps were better classified
into their class as they achieved a higher sensitivity value than
the cultivars with cooking aptitude.

Very good classification results were obtained for the
external validation dataset with accuracies between 80 and 90%.
In this case, also the combination of SM+SNV+MC achieved
the best results with 90% of samples correctly classified and the
smallest error rate among the rest of the models (0.090).

Pixel-wise classification

Table 5 shows the results of the 10 PLS-DA models
developed using different pre-processing combinations in the
pixel-wise classification model. It shows the number of LV
used; the percentage of variance explained; the sensitivity and
specificity of each class (cooking and frying as crisps) and the
overall error and accuracy obtained for each model in the CV
and external validation datasets.

Accuracy rates above 71% were obtained for all the models
in CV. The highest accuracy among the models carried out
was obtained for both the combination of 1D+SNV+MC and
1D+MSC+MC with very similar results, 78.92 and 78.39% with
an error rate of 0.211 and 0.215, respectively. Six LVs were
used to build these PLS-DA models both accounting for more
than 95% of explained variance. In these 2 models, the cultivars
with industrial aptitude for frying as crisps achieved higher
sensitivity values than the cultivars with cooking aptitude, which
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TABLE 4 PLS-DA results of classification based on the mean spectra of the CV and external validation datasets using different pre-processing combinations.

Pre-processing #LV Variance (%) Class Cross-validation (CV) External validation

Sensitivity Specificity Error Accuracy (%) Sensitivity Specificity Error Accuracy (%)

None 4 99.99 “C” 0.821 0.968 0.105 89.83 0.727 0.889 0.191 80

“FC” 0.968 0.821 0.889 0.727

MC 4 99.92 “C” 0.786 0.967 0.158 84.48 0.727 0.889 0.191 80

“FC” 0.967 0.786 0.889 0.727

SM+SNV+MC 4 98.69 “C” 0.889 0.968 0.071 91.38 0.818 1 0.090 90

“FC” 0.968 0.889 1 0.818

SM+MSC+MC 3 97.64 “C” 0.889 0.935 0.104 89.66 0.800 0.889 0.155 84.21

“FC” 0.935 0.889 0.889 0.800

1D+MC 3 98.15 “C” 0.750 0.966 0.142 85.96 0.818 0.889 0.146 85

“FC” 0.966 0.750 0.889 0.818

2D+MC 3 96.97 “C” 0.778 0.967 0.146 85.96 0.750 0.889 0.180 82.35

“FC” 0.967 0.778 0.889 0.750

1D+SNV+MC 3 97.46 “C” 0.828 0.931 0.120 87.93 0.881 0.931 0.146 85

“FC” 0.931 0.828 0.931 0.881

1D+MSC+MC 3 97.77 “C” 0.852 0.903 0.138 86.21 0.818 0.889 0.146 85

“FC” 0.903 0.852 0.889 0.818

2D+SNV+MC 3 94.51 “C” 0.857 0.903 0.137 87.93 0.818 0.889 0.146 85

“FC” 0.903 0.857 0.889 0.818

2D+MSC+MC 4 98.42 “C” 0.929 0.857 0.142 85.71 0.818 0.889 0.146 85

“FC” 0.857 0.929 0.889 0.818

LV, Latent variables; “C,” cooking; “FC”, Frying as crisps. Values in bold correspond to the best results obtained in terms of highest accuracy and lowest error.
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TABLE 5 PLS-DA results of the pixel-wise classification of the CV and external validation datasets using different pre-processing combinations.

Pre-processing #LV Variance (%) Class Cross-validation (CV) External validation

Sensitivity Specificity Error Accuracy (%) Sensitivity Specificity Error Accuracy (%)

None 5 99.97 “C” 0.662 0.852 0.243 75.61 0.583 0.746 0.335 66.64

“FC” 0.852 0.662 0.746 0.583

MC 5 99.58 “C” 0.700 0.814 0.242 75.72 0.580 0.756 0.332 66.99

“FC” 0.814 0.700 0.756 0.580

SM+SNV+MC 5 94.62 “C” 0.698 0.866 0.218 78.11 0.667 0.693 0.320 67.99

“FC” 0.866 0.698 0.693 0.667

SM+MSC+MC 5 95.88 “C” 0.700 0.862 0.218 78.05 0.662 0.697 0.320 67.97

“FC” 0.862 0.700 0.697 0.662

1D+MC 7 98.71 “C” 0.681 0.862 0.228 77.05 0.640 0.732 0.313 68.83

“FC” 0.862 0.681 0.732 0.640

2D+MC 6 95.31 “C” 0.629 0.804 0.283 71.54 0.505 0.821 0.337 66.78

“FC” 0.804 0.629 0.821 0.505

1D+SNV+MC 6 95.72 “C” 0.748 0.829 0.211 78.92 0.691 0.750 0.279 71.97

“FC” 0.829 0.748 0.750 0.691

1D+MSC+MC 6 97.39 “C” 0.739 0.830 0.215 78.39 0.704 0.672 0.311 68.76

“FC” 0.830 0.739 0.672 0.704

2D+SNV+MC 7 92.71 “C” 0.769 0.714 0.245 75.48 0.692 0.660 0.323 67.62

“FC” 0.741 0.769 0.660 0.692

2D+MSC+MC 5 93.82 “C” 0.761 0.681 0.301 72.16 0.656 0.702 0.321 67.95

“FC” 0.681 0.761 0.702 0.656

LV, Latent Variables; “C,” Cooking; “FC,” Frying as crisps. Values in bold correspond to the best results obtained in terms of highest accuracy and lowest error.
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means they were better classified into their group. This was
true for all models except for the ones using the combination
of 2D+SNV+MC and 2D+MSC+MC where potatoes suitable
for cooking were better classified than cultivars suitable for
frying as crisps.

Regarding the external validation, accuracies ranged
between 66.64 and 71.97%, being also the model pre-processed
with 1D+SNV+MC the one achieving the highest rate of
correctly classified samples with the lowest error rate (0.279).

Of the 10 PLS-DA models developed, only the 5 with
the best results were chosen for variable selection (values in
bold). Forward iPLS was used by automatically selecting the
number of intervals and establishing an interval size of either
1 or 5 depending on the pre-processing method applied. The
results are shown in Table 6. The sensitivity, specificity, class
error and accuracy values of the CV and external validation
datasets after iPLS and different pre-processing algorithms
are shown. For the CV dataset slightly better classification
results were obtained with a considerably smaller number of
variables. This was even more remarkable in the case of the
1D+MC pre-processed spectra where only 24 variables were
used to build the classification models. Supplementary Table 2
is an extension of Table 6 including the wavelength ranges
selected for each combination of pre-processing. It can be
seen in Supplementary Table 2 that in the combinations of
SM+SNV+MC and SM+MSC+MC the last part of the spectral
range was discarded and only wavelengths up to 1,430 nm were
used to build the classification models whereas in the rest of the
models, the used intervals or wavelengths were distributed over
the entire spectral range.

As in the PLS-DA models using the full-spectrum, the
best accuracies were obtained for the 1D+SNV+MC and
1D+MSC+MC combinations with more than 80% of correctly
classified samples using 95 and 100 wavelengths (19 and 20
intervals), respectively, in the CV datasets.

Supplementary Figure 1 shows the results of the forward
iPLS method obtained for the dataset pre-processed with
1D+MSC+MC. The used intervals (in green) were distributed
over the entire spectral range.

Regarding the external validation dataset, good classification
results above 68% of correctly classified pixels were obtained for
the 5 PLS-DA models. The highest accuracy (71.86%) and lowest
error (0.281) was obtained for the 1D+MSC+MC pre-processed
spectral data. Figure 5 shows the classification maps for the10
tubers composing the validation dataset of the classification
model after application of 1D+MSC+MC. For this, the matrix
obtained in the PLS-DA prediction containing the estimated
class assigned to each pixel needed to be folded back. In this way,
the spatial distribution of the classified and misclassified pixels
could be explored.

Misclassified pixels in tubers from cooking class (in yellow,
false negatives) were mostly located at the edges of the slices
while misclassified pixels in tubers from frying class (in light T
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FIGURE 5

Classification maps for the validation dataset obtained by the
PLS-DA model built from 1D+MSC+MC pre-processed spectra
(1D+MSC+MC of Table 6) in the pixel-wise classification model.

green, false positives) were mainly localized at the central pith. It
should be noticed that the first slice of the frying class (top right
in Figure 5) presented many more FP than TN pixels. This slice
belonged to the cultivar “Agria” and such misclassification could
be due to the high RS content of this cultivar with respect to the
rest of the cultivars in the frying class. Moreover, the last slice of
the cooking class (bottom left in Figure 5), belonging to cultivar
“Rudolph,” was the worst classified in this class with a higher
number of FN than TP. Cultivar “Rudolph” gave the lowest value
of RS in this class, unlike cultivar “Agria.” For this reason, it is
hypothesized here that the RS content may have influenced the
classification of the pixels.

The potential of HSI to classify potato tubers based on
different aspects has been broadly evaluated. However, this study
is novel in tackling the classification of potatoes regarding their
industrial aptitude by means of HSI. Most authors have focused
on HSI classification of defective tubers. For instance, Ji et al.
(30) combined the use of a HSI system and support vector
machines (SVM) to classify 600 potatoes into six groups: Intact
ones, green skin, germination, dry rot, wormhole and damage.
For image acquisition, a visible-near infrared system in the range
of 400–1,000 nm was used, and the mean spectra of each potato
was selected for further analysis. Authors developed a linear
discriminant analysis (LDA) to reduce the dimension of the data

and the SVM model to classify the groups. Excellent accuracy
was achieved up to 90% with SNV pre-processing. Similar
results were obtained by Zhang et al. (31) while classifying
potato defects, although they used a multispectral imaging
system instead of a HSI. A total of 417 potato samples were used
in their experiment and 25 spectral images were acquired for
each tuber in the 676–952 nm spectral range. A SVM model was
used to classify different defects of potato achieving an accuracy
of 90.70% for the test set. Ye et al. (32) studied the detection of
minor bruises in potatoes by a visible-near infrared HSI portable
device covering the spectral range from 400 to 1,000 nm. They
used 220 potato samples free of any damage and diseases and
hit them in a controlled way by releasing a pendulum arm
equipped with a ball in one end at an angle of 57◦. Each tuber
was impacted 3 times defining 3 bruise levels as: level I (hit one
time), level II (hit twice) and level III (hit 3 times). Hyperspectral
images were acquired before and 1 h after each impact. SVM
models were carried out reaching accuracies up to 95% for the
test set. A somehow similar study was conducted by López-
Maestresalas et al. (33) with the objective of classifying potato
tubers as either healthy or bruised. For this, 188 tubers were
divided into two groups of the same size (healthy and damaged).
The latter group was subjected to a controlled impact at the
laboratory and hyperspectral images were recorded at 1, 5, 9,
and 24 h after damage. Two hyperspectral systems were used,
covering the 400–1,000 nm and the 1,000–2,500 nm spectral
ranges. PLS-DA models were developed using the mean and
the individual spectra of each tuber. Excellent classification rates
were achieved with more than 98% of tubers correctly classified.
At the same time, authors identified early bruises in potatoes
within 5 h after bruising, with an accuracy of 97.12%.

However, the application of HSI to the study of potatoes has
gone beyond damage detection. In this context, Rady et al. (34)
identified sprouting activity in potatoes during storage by Vis-
NIR HSI. They recorded 400 tubers by a HSI system covering
the 400–1,000 m spectral range. Different machine learning
techniques were tested to classify tubers as having either high or
low sprouting activity. Very high classification accuracy values
were obtained of 87.5 and 90% for sliced and whole samples,
respectively. The same year, Xiao et al. (35) conducted a study
to detect the color parameters and water content of fresh-cut
potato tuber slices by HSI combined with multivariate analysis.
For the experiment, 30 tuber slices of 3-mm each were taken
out from 6 different tubers, resulting in 240 samples. A HSI
system in the Vis-NIR region (380–1,030 nm) was used to
acquire the images of the fresh-cut slices. Least Squares Support
Vector Machines (LS-SVM) models were developed to predict
and show the spatial distribution of color and water content
in the slices. Determination coefficients of 0.84 and 0.77 were
obtained in the prediction test for 5 color indicators and the
water content, respectively. In a more recent study, Wang et al.
(36) predicted the starch content of potatoes and visualized its
distribution in fresh-cut slices by HSI. A system covering the
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380–1,000 nm spectral range was used to acquire the images of
96 potato slices of 0.2 cm. Different pre-processing of data was
tested along with wavelength selection methods to develop PLS
regression models for starch content prediction. However, the
best result was obtained using the full-spectrum pre-processed
by SNV with a correlation coefficient of 0.9 in the prediction set.
Regarding the visualized distribution of starch, authors found
that it was mainly located along the cortical tissue with the pith
having less starch content. This is in accordance with the results
obtained in section “Spectral pre-processing.”

Li et al. (37) also used fresh-cut potato slices as sample
material to detect Escherichia coli (E. coli) on their surface by
means of HSI. For this, E. coli suspensions were prepared to
colonize on the surface of potato slices. A total of 128 samples
were prepared and analyzed by a HSI in the 400–100 nm
spectral range. PLS and back-propagation neural network (BP-
NN) models were established to predict E. coli based on
full-spectrum and characteristic wavelengths. Best performance
was obtained by the BP-NN model based on full-spectrum,
with an overall accuracy of 97.6%. In a different study, Rady
et al. (38) evaluated the sugar content in potatoes over 3
growing seasons (2008, 2009, and 2011) by HSI. The dataset
was comprised of 1,210 tubers that were analyzed for glucose
and sucrose content and measured in the 400–1,000 nm spectral
range. PLS regression models along with PLS-DA and K-nearest
neighbor (Knn) were developed to predict the sugar content
and classify tubers into two classes: high or low sugar level.
The best PLS model was obtained for the prediction of glucose
with a correlation coefficient of cross-validation of 91.8%. Best
classification accuracy was obtained for glucose levels using Knn
with 91.3% of samples correctly classified in the test set.

The large number of studies in this field and the recentness
of these papers demonstrate that this is a current field of
research with many possibilities. However, as commented above,
there is no other study focused on the HSI classification of
tubers according to their industrial aptitude to the best of our
knowledge. Therefore, this study can be considered novel in this
field with very promising results. Even so, for future research
it would be interesting to cover a series of aspects such as
including a larger dataset to encompass more variability and
checking the acrylamide content once the potatoes are fried to
establish the correlation with RS. It would also be convenient to
try segmenting the pith tissue to obtain better classifications.

Conclusion

The capability of NIR HSI to discriminate very similar
potato cultivars into two industrial aptitudes (cooking or
frying as crisps) has been demonstrated in this work. We
obtained very good classification accuracies up to 90% of
samples correctly classified in the external validation when using
the mean spectra of the whole dataset and the combination

of SM+SNV+MC pre-processing. Moreover, we accomplished
a pixel-wise classification to build chemical images of the
samples under study. With the latter approach, accuracies
above 66% were obtained in the external validation dataset
using the full spectrum. Besides spectral data pre-processed
with 1D+SNV+MC achieved the best classification result with
an accuracy of 71.97% and an error rate of 0.279. To cope
with the vast amount of data provided by the hyperspectral
systems, a forward iPLS method was used to rebuild the PLS-
DA models achieving accuracies above 78 and 68% in CV and
validation datasets, respectively. Best classification result was
obtained for spectral data pre-processed by 1D+MSC+MC using
100 wavelengths (20 intervals) with 71.86% of pixels correctly
classified in the external validation dataset. The classification
maps obtained showed that false negative pixels were mainly
located at the edges of the fresh-cut slices while false positive
were principally distributed at the central pith, which has
singular characteristics. Therefore, subsequent analyses should
be performed after segmentation and removal of the pith tissue.

According to the results obtained, the use of NIR
HSI coupled with PLS-DA may have potential for rapid
discrimination of industrial aptitude of potatoes, allowing the
selection of cultivars that best suit consumer preferences.
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