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Although many dietary patterns have been studied for weight loss, various

limitations still exist. Therefore, we designed a novel weight loss diet

(NWLD) with carbohydrate, protein, and fat (energy) contents of 45%, 20%,

and 35%, respectively. The saturated fatty acids: monounsaturated fatty

acids:polyunsaturated fatty acids ratio was 1:2:1, and the insoluble: soluble

dietary fiber ratio was 2:1. We aimed to observe the e�ect of NWLD on weight

loss and understand the underlying metabolic mechanisms. Twenty-nine male

C57BL/6J mice were selected. Nine mice were fed ordinary feed in a blank

control group, and the rest were fed a high-fat diet (HFD) to establish obese

mouse models. Twelve weeks later, obesity models were established, and 10

obesemicewere switched to NWLD feeding. Six weeks after switching the diet,

the serum, intestinal feces, and kidneys ofmicewere collected.Obesity-related

indicators, gut microbial composition, and fecal metabolite profiles of all the

mice were determined, and the correlations among these indicators were

analyzed. Kidney function indicators were also assessed. The results showed

that the NWLD attenuated HFD-induced weight gain, serum triglycerides (TG),

and inflammatory factors, optimized the body composition without kidney

function impairment. Amino acid metabolism pathways andmetabolites might

play key roles in this process. The findings of this research imply that NWLD

could be an e�ective nutritional remedy formanaging dietary-induced obesity.
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Introduction

Undeniably, obesity poses a severe public health concern

worldwide. Being overweight and obese are risk factors

for several diseases, for example, hypertension, cancer, and

cognitive impairment (1–3).

Dietary management is a critical component of obesity

control strategies. The effects of multiple single foods or

nutrients, such as dietary fiber (4) and symbiotic supplements

(5), that can contribute to weight loss have been previously

investigated. Distinct types of diets have also been developed

based on the health effects of complex diets and dietary

patterns (6); For instance, the low-carbohydrate diet, a diet

with a carbohydrate (CHO) energy ratio of ≤45% of the total

energy (7, 8), or even lower (9, 10). High-protein diets refer

to diets with a percentage of energy-yielding protein >20%

(11), >25% (12), or between 25% and 35% (13, 14). Other

diets include vegetarian (15, 16) and vegan diets (17, 18),

and the Mediterranean diet (19); some are high in protein

but normal in CHO (20). However, these dietary patterns are

not specifically defined and additionally, have limitations. For

instance, various complications, such as heart arrhythmias,

sudden death, and kidney damage, are linked to a long-term

restriction of CHO in the diet (21). A high-protein diet may

damage kidney function in obese patients (22), and adherence

to vegetarian diets often lead to nutritional deficiencies (23, 24).

The Mediterranean diet is also reportedly beneficial for weight

loss (25); however, it is not specifically designed for weight

loss. Chinese research showed that a low-fat and relatively

high-CHO diet, similar in macronutrient composition to that

traditionally consumed in China, is seemingly less likely to fuel

excessive weight gain (26). However, according to the Report

on (author?) (27), the percentage of energy-yielding dietary fat

in Chinese diets has reached 36% in urban areas and 33.7% in

rural areas. Modern lifestyles and dietary patterns substantially

differ from those in the past. A sudden regress to the previous

dietary patterns is unlikely. In addition, the application of

advanced techniques, such as 16S ribosomal RNA (16S rRNA)

sequencing, metagenomic analyses, and metabolomics revealed

that the microbial composition not only could change rapidly

in response to changes in the host diet or commonly used

drugs (28, 29) but also have many significant associations with

between long-term dietary information (30). Different types of

weight-loss diets, such as high protein (30% calorie intake) (31),

low-energy diets (800 and 1,200 kcal/day) (32), and the green-

Mediterranean (33), have different effects on the gut flora. A

caloric restriction intervention with fiber showed sex-specific

effects on either adiposity and fasting insulin. These effects

were thought to be linked to changes in specific gut microbiota

species, functional genes, and bacterially produced metabolites

(34). Higher-fat consumption by healthy young adults whose

diet is in a state of nutrition transition appeared to be associated

with unfavorable changes in gut microbiota, fecal metabolomic

profiles, and plasma proinflammatory factors (35).

Considering the above-mentioned factors, we designed a

novel weight loss diet (NWLD) that accommodates the current

dietary habits in China. It is characterized by a macronutrient

composition of 20% protein, 35% fat, and 45% CHO with

a high dietary fiber content (insoluble to soluble, 2:1) and a

ratio of saturated:monounsaturated:polyunsaturated fatty acids

of 1:2:1. Our main objective was to test the functionality of the

NWLD. The secondary objective was to preliminarily explore

its underlying metabolic mechanisms, including the roles of

the gastrointestinal flora and metabolism. We hypothesized

that the NWLD affects metabolites via alterations in the gut

microbiota, subsequently influencing obesity-related indicators.

This hypothesis was evaluated in a murine model of obesity.

Materials and methods

Experimental design and sample
collection

Twenty-nine normal, specific pathogen-free C57BL/6J

male mice (6-week-old), purchased from Beijing Vital River

Laboratory Animal Technology Co., Ltd. (Beijing, China; license

number: SCXK (Beijing) 2012-0006), were housed in the

animal facility of the Beijing Shijitan Hospital, Capital Medical

University. They were kept at 24 ± 2◦C, 45–60% relative

humidity, 12 h-day/12 h-night cycles (light phase 06:30–18:30),

with ad libitum access to standard food and water for 1 week

before the experiments. Then, mice were randomly divided into

two groups using simple randomization, with random numbers

generated with the standard = RAND() function in Microsoft

Excel (36). The control group comprised normal mice (NC

group, n = 9) fed standard fodder, while model mice (n = 20)

were fed an high-fat diet (HFD) (feed formula in Table 1) for

some weeks to induce obesity. Then, model mice were divided

into HFD and NWLD groups (n = 10 per group) using simple

randomization. Mice in the HFD group were fed an HFD, while

those in the NWLD group were fed the NWLD (Table 1).

During the experiments, food and water were provided ad

libitum, and conditions in the animal facility were kept constant.

All mice survived the whole experimental phase. The serum

and intestinal contents, and kidneys were collected from each

animal. The body weights of all 29 mice were measured every

2 weeks. At the end of the treatment period, five mice in each

group were randomly selected for body composition analyses,

after which all mice were fasted for 12 h, anesthetized, and

sacrificed by cervical dislocation after weighing. The animal

care procedures and methods adopted were approved by the

Animal Care and Use Committee of the Scientific Research

Ethics Committee, Beijing Shijitan Hospital, Capital Medical
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TABLE 1 Three mouse feed formulations.

NWLD NC (Standard Fodder) HFD

Mass percentage Energy percentage Mass percentage Energy percentage Mass percentage Energy percentage

Protein

Casein 22.40% 20.00% 20.00% 20.00% 25.80% 20.00%

L-cystine 0.30% 0.30% 0.40%

CHO

Corn starch 27.10% 45.00% 39.70% 64.00% 0.00% 20.00%

Maltodextrin 11.70% 13.20% 16.20%

Sucrose 8.00% 10.00% 8.90%

Cellulose 5.50% 5.00% 6.50%

Inulin 2.80% – –

Fat

Olive oil 7.10% 35.00% – 16.00% – 60.00%

Linseed oil 3.60% – –

Peanut oil 2.90% – –

Beef tallow 4.00% – –

Soybean oil – 7.00% 3.20%

Lard – – 31.70%

NC, normal control group; HFD, high-fat diet group (model); NWLD, novel weight loss diet group; CHO, carbohydrate; –, this substance was not added in the diet.

University (permission number: 2017-035). All possible efforts

were made to minimize the number of animals used and

their suffering.

Six weeks after the diet change, mice were sacrificed (with

CO2 inhalation) to collect the full blood, kidneys, jejunum,

and ileum. Whole blood samples were collected through eyeball

extirpation. The serumwas prepared as follows: whole blood was

left at room temperature for 60min and then centrifuged (3,500

rpm for 15min) to remove remaining insoluble residuals. The

serum was then stored at−80◦C. Next, jejunum and ileum were

collected, divided into 250mg per tube, and immediately treated

with liquid nitrogen for 15min. After labeling, these samples

were stored at −80◦C and then thawed in a refrigerator at 4◦C

for measurement. Kidneys were collected and weighted. The

serum, feces, and kidneys were the final samples we tested.

Laboratory and statistical analysis

The standard fodder was purchased from Beijing HFK

Bioscience Co., Ltd. (Beijing, China), and the high-fat feed

from Research Diets, Inc. (New Brunswick, NJ, USA). To

analyze blood samples, we used the Blood Lipid Series kit

(Nanjing Jiancheng Biotechnology Co., Ltd., Nanjing, China).

Inflammatory factors were detected using an ELISA kit (Beijing

Solarbio Science & Technology Co., Ltd., Beijing, China). A

microplate reader was provided by the Beijing Institute of

Clinical Medicine (Beijing, China). Serum creatinine and urea

were tested by fully automatic biochemical instrument BS-420

produced by MINDRAY Bio Medical Electronic Limited by

Share Ltd. Body composition was analyzed using a 7 Tesla

animal Magnetic resonance imaging scanner (7.0/16, Agilent,

US) at the Imaging Center of the Institute of Medical Laboratory

Animals, Chinese Academy ofMedical Sciences. Sequencing was

outsourced to the Wekemo Tech Group Co., Ltd. (Shenzhen,

China). Data were analyzed using the free online platform

Wekemo Bioincloud.

SAS software v.9.2 (SAS Institute, Cary, NC, USA) and

GraphPad Prism 6.2 (GraphPad Software, San Diego, CA, USA)

were used to analyze phenotypic characteristics and generate

plots. R Programming Language and Software and GraphPad

Prism 6.2 were used to analyze the microflora and metabolomics

data and generate plots. Student’s t-test for independent samples

was used for comparisons between two groups, and one-way

analysis of variance (ANOVA) and Bonferroni correction were

used to compare multiple groups. The results were considered

significant at a level of p < 0.05.

Phenotypic characteristics

Phenotypic characteristics such as body weight, blood

lipid levels, inflammatory factors, and body composition were

measured. Serum triglyceride (TG), total cholesterol (TC), HDL

cholesterol, LDL cholesterol, high-sensitivity C-reactive protein

(hs-CRP), interleukin-6, interleukin-1β (IL-1β), and tumor

necrosis factor-α (TNF-α) levels were assessed with a microplate

reader (Molecular Device, SpectraMax M3) according to the

manufacturer’s instructions.
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During in vivo imaging, mice were anesthetized with 2%

isoflurane in pure O2, and the isoflurane was reduced to 1%

for the maintenance of anesthesia. MRI studies of this line of

mice were conducted on the 7 Tesla MRI system. The SE-T1WI

imaging parameters were as follows: TR = 665ms, TE = 13ms,

FOV = 96 × 58mm, Thk = 0.6, matrix = 256 × 256, and

NEX = 8. We calculated the volume of total fat (T-fat), total

muscle, subcutaneous fat (SCF), visceral fat (VF), and brown fat

(BF), and the percentage of different types of fat in T-fat volume,

including SCF percentage (SCF%), VF percentage (VF%), and

BF percentage (BF%).

To assess kidney function in mice, we also calculated their

renal index (kidney weight as a percentage of body weight)

except for serum creatinine and urea.

Fecal analysis

16S rRNA gene sequencing analysis

Microbial DNAwas extracted from cecal fecal samples using

the E.Z.N.A. R© soil DNA Kit (Omega Bio-Tek, Norcross, GA,

U.S.) according to the manufacturer’s protocols. The V3–V4

hypervariable regions of the bacterial 16S rRNA gene were

amplified with primers 341F (5′-CCTAYGGGRBGCASCAG-

3′) and 806R (5′-GGACTACNNGGGTATCTAAT-3′) by

thermocycler PCR system (GeneAmp 9700, ABI, USA). The

detailed procedure is described in the Supplementary material.

The analysis was conducted following the “Atacama soil

microbiome tutorial” of Qiime2docs, along with customized

program scripts (https://docs.qiime2.org/2019.1/). The QIIME2

dada2 plugin was used to obtain the feature table of the amplicon

sequence variant (37). The QIIME2 feature-classifier plugin was

then used to align amplicon sequence variant sequences to a

pre-trained GREENGENES 13_8 99% database (trimmed to the

V3–V4 region bound by the 338F/806R primer pair) to generate

the taxonomy table (38). Any contaminating mitochondrial,

chloroplast, chimera, and low-quality sequences were filtered

using the QIIME2 feature-table plugin. Appropriate methods,

including ANOVA, Kruskal–Wallis, linear discriminant analysis

(LDA) effect size (LEfSe), and DEseq2, were employed to

identify differentially abundant bacteria between samples

and groups (39–41). Diversity metrics were calculated using

the core-diversity plugin within QIIME2. Feature level alpha

diversity indices, such as observed operational taxonomic units

(OTUs), Chao1 richness estimator, Shannon diversity index,

and Simpson index, were calculated to estimate the microbial

diversity within an individual sample. Weighted UniFrac, a beta

diversity distance measurement, was performed to investigate

the structural variation of microbial communities across

samples and then visualized via principal component analysis

(42). Co-occurrence analysis was performed by calculating

Spearman’s rank correlations between predominant taxa, and

the network plot was used to display the associations among

taxa. The correlation network was drawn by the R language

igraph package. In addition, the potential Kyoto Encyclopedia

of Genes and Genomes (KEGG) Ortholog functional profiles

of microbial communities were predicted using Phylogenetic

Investigation of Communities by Reconstruction of Unobserved

States (43). Unless specified above, parameters used in the

analysis were set as default.

Fecal metabolic analysis

For metabolite extraction, 50mg mouse feces samples were

accurately weighed, and the metabolites were extracted using

a 400 µl methanol:water (4:1, v/v) solution. The mixture was

allowed to settle at −20◦C and treated with a high-throughput

tissue crusher Wonbio-96c (Shanghai Wanbo Biotechnology

Co., Ltd.) at 50Hz for 6min, followed by vortexing for

30 s and ultrasound treatment at 40 kHz for 30min at 5◦C.

Samples were placed at −20◦C for 30min to precipitate

proteins. After centrifugation at 13,000 rpm at 4◦C for

15min, the supernatants were carefully transferred to sample

vials for liquid chromatography-mass spectrometry/mass

spectrometry analysis. The detailed procedure is described in the

Supplementary material. A multivariate statistical analysis was

performed using ropls (V. 1.6.2) R package from Bioconductor

on Majorbio Cloud Platform (https://cloud.majorbio.com). The

machine learning algorithm support vector machine (SVM)

was used for discriminant analysis to calculate the average

importance of metabolites with significant differences between

groups. To render the data close to a normal distribution, the

normalization function (with the arguments MedianNorm,

LogNorm, and AutoNorm) was adopted. Significant metabolites

were evaluated by a KEGG pathway enrichment analysis to

identify related metabolic pathways. Fold change values were

calculated to measure changes in metabolites. A volcano plot

was used to filter metabolites of interest based on log2 (fold

change) and –log10 (p-value). The metabolites with p < 0.05

(t-test) were used to conduct an over-representation analysis

(ORA), and the resulting KEGG pathways with p < 0.05 (ORA)

were considered statistically significantly enriched. Topology

analysis was performed to determine which pathways had

a greater impact; a higher impact value indicated that the

metabolites were more closely connected to upstream factors,

playing a greater role in observed differences between groups.

Support vector machine was implemented in the R package the

MetaboAnalystR (44). The normalization function is included

in the MetaboAnalystR package. Volcano plots were visualized

with the ggplot2 package in R language.

Results

General condition

After 12 consecutive weeks, the average weight of model

mice fed an HFD was 20.8% higher than that of NC animals.

There was a significant difference (p < 0.0001) in body weight
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TABLE 2 Body weight (g) changes of mice fed with di�erent diets

(mean ± SD).

Groups NC HFD NWLD

Week 0 26.00± 1.30 31.48± 3.10 30.86± 1.42

Week 2 26.21± 1.17 33.14*± 3.83 27.78± 1.36

Week 4 27.52± 1.24 35.22*± 4.80 28.09# ± 1.36

Week 6 27.34± 1.58 33.33*± 3.15 27.30# ± 0.99

NWLD, novel weight loss diet group.
*There were significant differences with group NC, normal control group.
#There were significant differences with group HFD, high-fat diet group (model).

between the two groups, indicating that the obesity model was

successfully established. The daily feed intake for each group

was stable throughout the experimental period. During the

experiment, mice in the NC group exhibited good activity and

normal feeding, whereas those in the HFD group were lethargic.

After 10 weeks, mice in the HFD group showed different degrees

of activity reduction. Furthermore, the body weight of mice in

the HFD group increased during the first 4 weeks and decreased

slightly over the following 2 weeks. By contrast, the body weight

of mice in the NWLD group decreased steadily and was similar

to that of mice in the NC group by week 6 (Table 2). The

mean body weight of mice in the model group was 20.8%

(5.42 g) higher than that of mice in the NC group (week 0).

There was a statistically significant difference in body weight

between mice in the NWLD and HFD groups after 4 weeks of

intervention. Furthermore, the weight loss in the NWLD group

was significant within 6 weeks of intervention (from 30.86 to

27.30 g, an 11.5% decrease).

Phenotypic characteristics

As shown in Figures 1A–M, in terms of plasma lipids,

TG levels were the lowest in the NWLD group (0.64 ± 0.13

mmol/L) and highest in the HFD group (1.07 ± 0.2 mmol/L),

differing significantly from levels in the other two groups.

Regarding inflammatory indicators, the hs-CRP level in the

HFD group (5.17 ± 1.59 mmol/L) was significantly higher

than in the other two groups. IL-1β (0.36 ± 0.14 ng/ml) and

TNF-α (2.3 ± 1.51 ng/ml) levels were significantly lower in the

NWLD group than in the other two groups. Concerning body

composition, T-fat levels in the HFD group were significantly

higher than those in groups NC and NWLD, while VF% and

SCF% were significantly lower in the NWLD than in the HFD

group. By contrast, the SCF% was significantly higher in the

NWLD group. The accumulation of SCF and VF in the HFD

group was apparent (Figures 1I,J). There were no significant

differences in kidney function indicators among the three groups

(Figures 1K–M).

The improvements in obesity-related phenotypes in NWLD-

fed mice were in line with our expectations without kidney

function impairment. Therefore, we conducted further studies

on gut microbiota and metabolomics of fecal bacteria to explore

the potential underlying mechanisms.

Fecal 16S rRNA gene sequencing analysis

Alternative gut microbiota composition in
di�erent groups

A total of 1,537 OTUs were detected in the public

sequence of the GreenGenes repository. The gut microbiota

characteristics of mice in each group are presented in Figure 2.

At the phylum level, the abundance of the top three species

in the NC group was 39% (Bacteroidetes), 35% (Firmicutes),

and 23% (Proteobacteria). Firmicutes/Bacteroidetes (F/B) ratio

= 0.90. The abundance of Firmicutes, Verrucomicrobia,

Bacteroidetes, and Proteobacteria in the HFD group was

55%, 19%, 15%, and 6%, respectively, F/B ratio = 3.67

(significantly different compared to the NC group, p < 0.05).

The abundance of Firmicutes, Proteobacteria, and Bacteroidetes

in the NWLD group was 54%, 24%, and 19%, respectively,

F/B ratio = 2.84 (no significant difference compared to

other groups).

At the generic level, the dominant genera in the

NC group were Unspecified_S24_7 (29%), Helicobacter

(13%), Oscillospira, Unspecified_Clostridiales, Desulfovibrio,

Unspecified_Lachnospiraceae (7%), and Prevotella (5%). The

dominant genera in the NWLD group were Desulfovibrio

(14%), Unspecified_S24_7 (15%), Unspecified_Ruminococcaceae

(11%), Unspecified_Clostridiales (10%), Oscillospira (8%),

Helicobacter (7%). The dominant genera in the HFD group

were Unspecified_Clostridiales (26%), Akkermansia (19%),

Bacteroides (10%), Oscillospira (8%), and Clostridium (7%).

Alpha and beta diversity analysis

As determined by observed OTUs and Chao1 and Shannon

indices (Figure 2C), the alpha diversity was significantly lower

in the HFD group than in the NC group (p = 0.0495 for

all comparisons) and was significantly higher in the NWLD

than in the HFD group (p = 0.0495). The composition of the

microbial communities among different samples was compared

by a beta diversity analysis, and the results are summarized

in Figure 2D.

Di�erent abundance between groups of
bacteria at the genus level

Compared to the NC and NWLD groups, the characteristic

genus of the HFD group was Clostridium, which was

from the Firmicutes phylum, Erysipelotrichaceae family

(Figure 2D).

Frontiers inNutrition 05 frontiersin.org

https://doi.org/10.3389/fnut.2022.987955
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Yang et al. 10.3389/fnut.2022.987955

FIGURE 1

Comparison of phenotypic factors among groups. Bar charts of (A) serum triglycerides (TG), (B) hs-CRP, (C) IL-1β, (D) TNF-α, (E) total fat, (F)

subcutaneous fat percentages, (G) visceral fat percentages, (H) brown fat percentages, and (I) white fat (the highlighted areas in the abdomen

and subcutaneous tissue) in each group (coronal plane). Images were taken from NC4 section 7, HFD3 section 9, and NWLD3 section 6. (J)

Brown fat of mice in di�erent groups (butterfly areas are indicated by arrows). Images were taken from NC2 section 8, HFD5 section 29, and

NWLD4 section 29. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. Bar charts of (K) renal index, (L) serum creatinine, (M) serum urea.
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FIGURE 2

Characteristics of the gut microbiota in di�erent groups. (A) Histograms of the relative distribution of groups at the phylum level (top 20 species

in relative abundance); (B) histograms of the relative distribution of groups at the genus level (top 20 species in relative abundance); (C) alpha

diversity. Box plots of observed OTUs, histogram of Chao1, Shannon, and Simpson indices. ANOVA, *p < 0.05; ns, no significance. (D) Beta

diversity; (E) LEfSe analysis LDA histograms (LDA score >2.0) and cladogram of characteristic microorganisms (the NC group compared to

group HFD). Kruskal–Wallis test, *p < 0.05. LDA, each transverse column represents a species; the length of the column represents the LDA

score, where a higher LDA score indicates a greater di�erence. The color of the bar indicates the species group. Layers from the inside to

outside of the cladogram correspond to di�erent classification levels, i.e., kingdom, phylum, class, order, family, and genus, and the lines

between levels represent relationships. Each circular node represents a species. Yellow nodes indicate no significant di�erence between groups;

non-yellow nodes indicate that the species is a characteristic microorganism of the corresponding group (with significantly higher abundance in

this group). The shaded fans mark the subclassification interval of the characteristic microorganism. (F) LEfSe analysis LDA histograms (LDA

score >2.0) and cladogram of characteristic microorganisms (group NWLD compared to group HFD). Kruskal–Wallis test, *p < 0.05.

Frontiers inNutrition 07 frontiersin.org

https://doi.org/10.3389/fnut.2022.987955
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Yang et al. 10.3389/fnut.2022.987955

FIGURE 3

Fecal untargeted metabolomics results. (A) Principal component analysis score plots for discriminating the fecal metabolome (positive and

negative charge metabolites) from the NC, HFD, and NWLD groups; (B) SVM ROC curves. The abscissa indicates accuracy, and the ordinate

indicates sensitivity. AUC values closer to 1 indicate a better predictive accuracy and a greater di�erence in metabolites between groups; (C)

ORA and topology analyses of metabolic pathways with significant di�erences between groups NC and HFD. The horizontal coordinate

represents the ORA p-value, and the blue area is significant (p < 0.05). The vertical axis shows the impact value in the topology analysis. Maps of

the main metabolic pathways are shown, including the alanine, aspartate, and glutamate metabolism pathways and steroid hormone

biosynthesis; (D) ORA and topological analyses of the metabolic pathways with significant di�erences between groups NWLD and HFD and

maps of the main metabolic pathways, including D-glutamine, D-glutamate, nitrogen, and histidine metabolism pathways.

Compared to the HFD group, the characteristic bacteria

of the NC group were Gemmiger, Candidatus_Arthromitus,

Butyricicoccus, and Anaerotruncus (Firmicutes phylum);

Clostridium (Firmicutes phylum, Clostridiaceae family);

Desulfovibrio and Helicobacter (Proteobacteria phylum);

Prevotella (Bacteroidetes phylum).

Compared with the HFD group, the characteristic

bacteria of the NWLD group were Gemmiger, Butyricicoccus,

Anaerotruncus, Ruminococcus (Firmicutes phylum);

Clostridium1 (Firmicutes phylum, Clostridiaceae

family); Erythrobacter, Helicobacter, Desulfovibrio

(Proteobacteria phylum).
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Results of fecal metabolic analysis

Identification of characteristic metabolites and
key metabolites

We identified 707 differential metabolites between groups

(p < 0.05), with 396 and 311 being positively and negatively

charged, respectively. The most influential pathway was the

amino acid metabolism pathway. Metabolite differences were

concentrated in the comparisons between NC and HFD groups

as well as between NWLD and HFD groups (but not between

NC and NWLD groups). Differences in metabolite composition

between groups, ORA, and topology analysis are summarized

in Figure 3 and Table 3. In Figure 3, we showed the most

important parts of the metabolic pathways, and the full contents

of metabolic pathways are listed in Supplementary Figure 1.

Differences in metabolites in the above pathways were

analyzed using Student’s t-tests. The most important differential

metabolic pathways between the NC and HFD groups included

the alanine, aspartate, and glutamate metabolism pathways

and the steroid hormone biosynthesis pathway. The NWLD

and HFD groups showed differences in the D-glutamine and

D-glutamate metabolism, nitrogen metabolism, and histidine

metabolism pathways. The key metabolites are shown in

Figure 3C (between NC and HFD groups) and Figure 3D

(between NWLD and HFD groups; marked in red).

TABLE 3 The metabolic pathways with significant enrichment of

di�erential metabolites between groups and their ORA enrichment

analysis and topo analysis.

Metabolic

pathway

KEGG pathway

enrichment analysis

Topo

analysis

Fold

enrichment

ORA P-value Impact

value

NC-HFD

Alanine, aspartate,

and glutamate

metabolism

6.2149 0.0394 0.36

Steroid hormone

biosynthesis

4.2784 0.0048 0.13

NWLD-HFD

D-glutamine and

D-glutamate

metabolism

9.9439 0.0147 0.67

Nitrogen metabolism 8.2865 0.0043 0.44

Histidine metabolism 4.9719 0.0199 0.31

The ORA (p < 0.05) indicated that the metabolites of interest were significantly enriched

in these metabolic pathways. The degree of enrichment is expressed as the “fold

enrichment.” A topology analysis illustrated the magnitude of the impact of significant

pathways in the ORA. The greater the impact value, the greater the impact of the pathway;

NC, normal control group; HFD, high-fat diet group (model); NWLD, novel weight loss

diet group.

As shown in Table 4, the mean peak areas for L-aspartic

acid and L-glutamic acid were increased in the HFD group and

decreased in the NWLD group compared to those in the NC

group. L-aspartic acid levels, which were enriched in different

pathways, negatively correlated withmost of the aforementioned

beneficial taxa. In addition, the fecal glutamate/glutamine ratio

was higher in the NWLD (30.78) than in the HFD group (22.31).

The model predictive performance was assessed by a receiver

operating characteristic (ROC) curve. The areas under the curve

(AUC) were all >0.72 (Figure 3B).

Correlation network analysis

We selected gut microbial taxa and fecal metabolites

with significant differences among dietary feeding groups to

construct an interaction network. The results are presented

in Table 5; the interaction network diagram is shown in

Supplementary Figure 2.

Regarding metabolites, L-glutamate was positively linked

to hs-CRP (r = 0.89, p = 0.018) and IL-1β (r = 0.94, p =

0.0048). As a differential metabolite, L-histidine was enriched

in histidine and nitrogen metabolic pathways. However, no

correlation was found between L-histidine, gut microbiota, and

obesity-related factors.

Discussion

To avoid the disadvantages of previous weight loss

diets, we designed the NWLD specifically for obese mice,

taking into account weight loss, fat distribution, protection

TABLE 4 The peak area of di�erential key metabolites compared

between groups.

Differential key

metabolites

Group and group

mean of peak area

Which-max

NC-HFD

L-aspartic acid

NC 49.523, HFD 76.264 HFD

L-glutamic acid NC 102.180, HFD 172.009 HFD

Cholesterol NC 0.377, HFD 0.618 HFD

Tetrahydrocorticosterone NC 0.492, HFD 1.732 HFD

Estriol NC 0.345, HFD 0.782 HFD

Estrone NC 6.622, HFD 0.286 NC

2-Methoxyesteone NC 1.301, HFD 0.393 NC

HFD-NWLD

L-glutamine

HFD 7.711, NWDL 3.466 HFD

L-glutamic acid HFD 172.009, NWDL

106.681

HFD

L-histidine HFD 29.568, NWDL 8.474 HFD

L-aspartic acid HFD 76.264, NWDL 38.785 HFD

NC, normal control group; HFD, high-fat diet group (model); NWLD, novel weight loss

diet group.
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TABLE 5 Result of Correlation Network Analysis among relative frequency of gut microbes, phenotype factors, and characteristic metabolites.

Gut microbes Phenotype factors Correlation coefficient

and P-value

Characteristic metabolites Correlation coefficient

and P-value

HFD

Clostridium Body weight r = 0.94, P = 0.005 Tetrahydrocorticosterone r = 0.89, P = 0.019

NWLD

Butyricicoccus

TG r =−0.94, P = 0.0048 L-aspartic acid r =−0.94, P = 0.0048

VF% r =−0.83, P = 0.0416 L-glutamate r =−0.83, P = 0.0416

hs-CRP r =−0.89, P = 0.0188

Desulfovibrio

TG r =−0.94, P = 0.048 L-asparaguses r =−0.94, P = 0.0048

VF% r =−0.83, P = 0.0416

BF% r = 0.81, P = 0.0499

Erythrobacter

hs-CRP r =−0.88, P = 0.0206

BF% r = 0.95, P =0.003

Ruminococcus

TG r =−0.83, P = 0.0416

VF% r =−0.94, P = 0.0048

Gemmiger

hs-CRP r =−0.81, P = 0.0499

Anaerotruncus

BF% r = 0.84, P = 0.0361

P-value < 0.05 were listed. NC, normal control group; HFD, high-fat diet group (model); NWLD, novel weight loss diet group; TG, total cholesterol; hs-CRP, high-sensitivity C-reactive

protein; VF%, visceral fat percentage; BF%, brown fat percentage.

of kidney function, satiety stimulation, and compliance.

We also combined the dietary habits prevalent in China.

In this study, we established a mouse model of HFD-

induced obesity, as evidenced by a decrease in BF% and

significant increases in body weight, T-fat, VF%, TG levels,

inflammatory factors, and a decrease in BF%. 16S rRNA

gene sequencing and metabolomics analysis revealed a lower

overall diversity in the gut microbiota of obese mice, with

disrupted amino acid and lipid metabolism. In addition,

interaction network analysis revealed that these microbial and

metabolic parameters correlated with body weight, TG levels,

inflammatory factors, and body fat distribution. The NWLD

attenuated the HFD-induced changes in the microbiota and

phenotype. Novel weight loss diet-fed mice had lower T-fat

and VF% levels and higher SCF% and BF% than mice in

other groups. These body composition and fat distribution

patterns are associated with lower occurrence and progression

rates of chronic diseases. An interaction network analysis was

constructed to further understand the occurrence of HFD-

induced obesity and elucidate the mechanisms underlying

the beneficial effects of NWLD. Results showed that the

obesity-related phenotypic factors correlated with specific

changes in the flora and fecal amino acid metabolites,

providing insight into the mechanism underlying the effects of

the NWLD.

The composition of the intestinal microbiota is also closely

related to host health. At the phylum level, our results

have shown that HFD reduces gut microbial richness and

increases the F/B ratio, which is supported by a previous

study (45). We also found that the abundance and diversity

of gut microbiota increased, and the F/B ratio decreased

in the NWLD group. Previous studies have confirmed that

Bacteroidetes primarily reside in the distal intestinal tract and

are the main carbohydrate-degrading bacteria. They contain

a variety of polysaccharides and glycosidases (46, 47) and

participate in the fermentation of indigestible polysaccharides,

such as dietary fibers like cellulose, hemicellulose, and β-

glucan, to produce short-chain fatty acids (SCFAs; mainly

acetate, butyrate, and propionate) (48). Short-chain fatty

acids influence host metabolism in multiple ways by acting

on G protein-coupled receptor 41 and G protein-coupled

receptor 43. Acetate and butyrate subsequently induce the

secretion of glucagon-like peptide 1 and peptide tyrosine-

tyrosine, contributing to increased energy expenditure (49),

reduced food intake (50), and improved glucose metabolism

and insulin secretion (51). They can regulate the dynamic
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balance of adipose tissue by regulating the balance between

anabolism and oxidation, which plays a key role in regulating

obesity (52). In addition, at the genus level, we found

that Butyricicoccus, Ruminococcus, Desulfovibrio, Erythrobacter,

Gemmiger, and Anaerotruncus were negatively correlated with

obesity-related risk factors and acted as beneficial bacteria.

Among them, Butyricicoccus and Ruminococcus were relatively

common butyric-producing bacteria (46). Short-chain fatty

acids were not detected by untargeted metabolomics methods

in our study. However, the correction of gut microbiota

structure and the increased abundance of SCFAs-producing

flora described above may explain the beneficial effects

of NWLD.

It is known that intestinal metabolites are directly influenced

by gut microbial composition and affect plasma metabolomics

via absorption into the blood (53). One study showed that

plasma aspartic acid was present at a significantly lower

concentration in adult patients with obesity enrolled in a 3-

week controlled body mass reduction program (54). Plasma

metabolomics was not examined in our study. However, our

results showed that in metabolites of fecal flora, L-aspartic

acid increased in the HFD group and decreased in the NWLD

intervention group, consistent with changes in plasma aspartic

acid concentrations reported in a previous study. In addition, L-

aspartic acid was inversely correlated with the aforementioned

beneficial flora in our research. These results suggest that

fecal L-aspartic acid may cause adverse effects. Experimental

evidence shows that the circulating glutamate levels positively

correlate with VF, abdominal obesity, and insulin resistance (55–

57). The marked increase in plasma glutamate concentrations

can cause a modest increase in plasma insulin concentration

and induce fatty acid synthesis (58). Our results showed no

direct correlation between fecal L-glutamate levels and VF%.

However, the concentration of fecal glutamate increased in the

HFD group, and the concentrations of fecal glutamate and

glutamine were lower in the NWLD group, partially explaining

the decrease in weight and T-fat levels in the NWLD-fed group.

Histidine, mainly obtained from dietary sources, accounts for

up to 15% of the metabolizable energy (59) and glucose

production by gluconeogenesis (60). Thus, changes in histidine

metabolism may lead to an imbalance in energy and glucose

homeostasis. Recent metabolomics analyses of fasting plasma

(61) and feces (62) have revealed that obesity is associated with

disrupted histidine metabolism, consistent with the results of

our research.

Our study had certain limitations. We detected correlations

among the microflora, metabolites, and phenotypes in

experimental mice under various feeding conditions; however,

the causal relationships among these factors have not been

clarified. In future studies, we plan to conduct population-based

studies and evaluate the causal relationships.

Overall, NWLD combined the advantages of a variety

of diets. It improved the abundance and composition of

gut microbiota in obese mice, increased SCFA-producing

bacteria, might increase SCFAs, and decreased the fecal

metabolites that may have adverse effects on obesity. These

changes in microflora and metabolites corrected obesity

and metabolic disorders in mice. Novel weight loss diet

shows potential as a novel dietary intervention program

for obesity.

Conclusions

This newly developed diet could effectively reduce body

weight, optimize body composition, and reduce chronic

inflammation and TG levels in a murine model of obesity.

The phenotypic effects might be mediated by the NWLD-

induced regulation of the intestinal microflora and metabolism.

Novel weight loss diet attenuated disruptions in the intestinal

microbiota. The bacterial communities with beneficial effects

included Desulphurvibrio, Ruminococcus, Bifidobacterium,

Butyricicoccus, Gibbacter, and Gemmiger. Metabolomics

analyses illustrated that D-glutamine and D-glutamate,

nitrogen, and histidine metabolic pathways, among which the

key metabolites were L-aspartic acid and L-glutamic acid, were

the key metabolic pathways altered by NWLD in HFD-fed

mice. Although L-aspartic acid and L-glutamic acid may have

adverse effects, our findings support the beneficial health

effects of NWLD, providing a basis for further development

of anti-obesity strategies aimed at optimizing a wide range of

molecular and physiological factors.

Patents

The customized dietary formula involved in this study

has been patented (Application Number: 202111087743.3)

and accepted by the China National Intellectual Property

Administration (relevant information can be a query on

http://cpquery.cnipa.gov.cn/), and intellectual property rights

are protected.
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45. Cândido FG, Valente FX, Grześkowiak ŁM, Moreira APB, Rocha D,
Alfenas RCG. Impact of dietary fat on gut microbiota and low-grade systemic
inflammation:mechanisms and clinical implications on obesity. Int J Food Sci Nutr.
(2018) 69:125–43. doi: 10.1080/09637486.2017.1343286

46. Dongowski G, Lorenz A, Anger H. Degradation of pectins
with different degrees of esterification by Bacteroides thetaiotaomicron
isolated from human gut flora. Appl Environ Microbiol. (2000)
66:1321–7. doi: 10.1128/AEM.66.4.1321-1327.2000

47. Jensen NS, Canale-Parola E. Bacteroides pectinophilus sp. nov.
and Bacteroides galacturonicus sp. nov.: two pectinolytic bacteria
from the human intestinal tract. Appl Environ Microbiol. (1986)
52:880–7. doi: 10.1128/aem.52.4.880-887.1986

48. Koropatkin NM, Cameron EA, Martens EC. How glycan
metabolism shapes the human gut microbiota. Nat Rev Microbiol. (2012)
10:323–35. doi: 10.1038/nrmicro2746

49. Flint A, Raben A, Rehfeld JF, Holst JJ, Astrup A. The effect of glucagon-like
peptide-1 on energy expenditure and substrate metabolism in humans. Int J Obes
Relat Metab Disord. (2000) 24:288–98. doi: 10.1038/sj.ijo.0801126

50. Batterham RL, Cowley MA, Small CJ, Herzog H, Cohen MA, Dakin CL,
et al. Gut hormone PYY(3-36) physiologically inhibits food intake. Nature. (2002)
418:650–4. doi: 10.1038/nature00887

51. Holz GG. Habener JF. Pancreatic beta-cells are rendered glucose-competent
by the insulinotropic hormone glucagon-like peptide-1(7-37). Nature. (1993)
361:362–5. doi: 10.1038/361362a0

52. Corrales P, Vidal-Puig A, Medina-Gómez G. PPARs and metabolic disorders
associated with challenged adipose tissue plasticity. Int J Mol Sci. (2018)
19:2124. doi: 10.3390/ijms19072124

53. Windmueller HG, Spaeth AE. Metabolism of absorbed aspartate, asparagine,
and arginine by rat small intestine in vivo. Arch Biochem Biophys. (1976) 175:670–
6. doi: 10.1016/0003-9861(76)90558-0
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