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The geographical origin and the important nutrient contents greatly affect

the quality of red raspberry (RRB, Rubus idaeus L.), a popular fruit with

various health benefits. In this study, a chemometrics-assisted hyperspectral

imaging (HSI) method was developed for predicting the nutrient contents,

including pectin polysaccharides (PPS), reducing sugars (RS), total flavonoids

(TF) and total phenolics (TP), and identifying the geographical origin of RRB

fruits. The results showed that these nutrient contents in RRB fruits had

significant differences between regions (P < 0.05) and could be well predicted

based on the HSI full or effective wavelengths selected through competitive

adaptive reweighted sampling (CARS) and variable iterative space shrinkage

approach (VISSA). The best prediction results of PPS, RS, TF, and TP contents

were achieved with the highest residual predictive deviation (RPD) values of

3.66, 3.95, 2.85, and 4.85, respectively. The RRB fruits from multi-regions

in China were effectively distinguished by using the first derivative-partial

least squares discriminant analysis (DER-PLSDA) model, with an accuracy of

above 97%. Meanwhile, the fruits from three protected geographical indication

(PGI) regions were successfully classified by using the orthogonal partial

least squares discrimination analysis (OPLSDA) model, with an accuracy of

above 98%. The study results indicate that HSI assisted with chemometrics

is a promising method for predicting the important nutrient contents and

identifying the geographical origin of red raspberry fruits.
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Introduction

Red raspberry (RRB, Rubus idaeus L.), a woody plant of
the genus Rubus in the family Rosaceae, has recently become
a popular fruit in the market. Because of their sweet taste and
unique flavor, RRB fruits are often processed into canned food,
jam, jelly, juice, fruit wine, etc. (1). The pleasant flavor and taste
in fruits are mainly affected by the contents of reducing sugars
(RS), including fructose, sucrose, glucose, etc. (2, 3). RRB fruits
are rich in healthy nutrients, including pectin polysaccharides
(PPS) (4), total flavonoids (TF) (5), and total phenolics (TP)
(2). Also, RRB fruits have many health-promoting benefits, such
as antioxidant, anti-inflammatory (6), and anti-cancer effects
(2, 7).

Accurate and efficient evaluation of the nutrient contents
(RS, PPS, TF, and TP) is of great significance for symbolizing
the edible and nutraceutical quality of fruits. However, all
these indicators are usually evaluated with some destructive,
time-consuming, and costly chemical methods, including
high-performance liquid chromatography (HPLC) and mass
spectrometry (MS) (5, 8).

In recent years, RRB fruits are popular in some East Asian
countries, such as China, Japan, and South Korea (7, 9). In
China, Dexing County of Jiangxi Province (JXDX), Chun’an
County (ZJCA), and Lishui City (ZJLS) of Zhejiang Province
have long planting histories. Attributed to abundant rainfall
and sufficient illumination, these areas become famous for the
high quality of RRB fruits. Dexing raspberry, Chun’an raspberry,
and Lishui raspberry have won the protected geographical
indications (PGI), and the protected areas reached 10,000 hm2

in 2019, yielding about 7,500 tons of dry products for output (10,
11). In legislation, the PGI can identify products from protected
regions and ensure a high-quality reputation in the market.

However, many illegal cases such as geographical origin and
brand counterfeiting for higher profits occur frequently in the
RRB market. Unfortunately, the conventional and destructive
methods for RRB fruit origin identification, including DNA bar

Abbreviations: AHXC, Xuancheng County, Anhui Province; BPNN,
Back-propagation neural network; CARS, Competitive adaptive
reweighted sampling; CQSZ, Shizhu County, Chongqing City; DER, First
derivative; FJND, Ningde City, Fujian Province; GDMZ, Meizhou City,
Guangdong Province; GXYL, Yulin City, Guangxi Province; GZQDN,
Qiandongnan Miao and Dong Autonomous Prefecture, Guizhou
Province; HSI, Hyperspectral imaging; JXDX, Dexing County, Jiangxi
Province; MSC, Multiplicative signal correction; OPLSDA, Orthogonal
partial least squares discrimination analysis; ORI, Original spectrum;
PGI, Protected geographical indication; PLSDA, Partial least squares
discriminant analysis; PLSR, Partial least square regression; PPS, Pectin
polysaccharides; R2, Square of the curve correlation coefficient; RMSET,
Root mean square error of training set; RMSEP, Root mean square
error of prediction set; RPD, Residual predictive deviation; RRB, Red
raspberry; RS, Reducing sugars; SEC, Second derivative; SG, Savitzky-
Golay filtering; SVM, Support vector machines; TF, Total flavonoids;
TP, Total phenolics; VISSA, Variable iterative space shrinkage approach;
YNKM, Kunming City, Yunnan Province; ZJCA, Chun’an County, Zhejiang
Province; ZJLS, Lishui City, Zhejiang Province.

code and element and chemical fingerprints, suffer from a long
pretreatment cycle and high cost (8, 12).

Considering the above problems, it is urgent to develop
non-destructive, inexpensive, and time-saving methods for
predicting the nutrient contents and geographical origin of RRB
fruits, thus ensuring fruit quality. As a non-destructive and rapid
detection method, hyperspectral imaging (HSI) technology can
provide the spectral reflectance of any pixel at hundreds of
wavebands. It can assess many samples at one time without
any pre-treatment and has been widely used in fruit quality
evaluation (13–15).

By combining HSI with chemometrics, researchers have
efficiently predicted the RS content in fruits of blueberries (15)
and pomelo (16), as well as the PPS content in mulberry fruit
and orange peels (17, 18). Meanwhile, the total flavonoids (TF)
and total phenolics (TP) contents in black goji berries and
grape fruits were successfully estimated, indicating the great
potential in nutrient content prediction based on full/selected
HSI wavelengths (15, 19). Moreover, in geographical origin
traceability using HSI full/selected wavelengths combined
with chemometric models, narrow-leaved oleaster (Elaeagnus
angustifolia) fruits (13), Chinese wolfberries (20), and banana
(Musa spp.) fruits (21) were identified with high prediction
accuracies. However, to the best of our knowledge, there have
been no reports of its application to RRB fruits.

This study aimed to investigate the feasibility of detecting
the nutrient content and identifying the geographical origin
of RRB fruits using HSI combined with chemometrics. The
specific objectives were: (a) To determine the nutrient content
differences in RS, PPS, TF, and TP of RRB fruits from
multiple production regions; (b) To evaluate the performance
of predicting nutrient contents based on full/selected HSI
wavelengths, and (c) To reveal the authenticity of origins,
especially PGI status, of RRB fruits by using HSI technology
combined with chemometrics.

Materials and methods

Sample collection and preparation

RRB fruits were collected from nine provinces in August
2020, covering all ten main production regions in China
(Supplementary Table 1). In this study, 30 healthy mature fruits
(about 50 g) with uniform size and color were treated as one
subsample (30 fruits) for HSI data collection. In each production
region, 10 sampling plots were set and 5 replicates of subsamples
were collected from each plot. So that each production region
has 50 (10 plots × 5 replicates) subsamples to obtain locally
representative parallel HSI data. All the harvested subsamples
were immediately stored in ice chilled chest coolers at 4◦C
and transported as fresh food to the laboratory by aircraft at
4◦C. The samples were analyzed for completion of HSI spectra
collection within 48 h to minimize the impact from the different
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periods for transporting (22). After HSI analysis, fruits in each
of the 500 subsamples (50 subsamples × 10 regions) from
10 main production regions were immediately homogenized
into fruit pulp by a homogenizer (PB206A, Midea, Guangzhou,
China). The obtained fruit pulp from each subsample was
further treated for nutrient contents measurement through
conventional chemical methods with a spectrometer, so as to
build a reference database for evaluation of the HSI prediction
effect (23).

Hyperspectral imaging system and
spectral information extraction

A visible and short-wave/long-wave near-infrared
hyperspectral imaging spectrometer (VIS-NIR-HSI, HySpex
VNIR-1800/HySpex SWIR 384, Norsk Elektro Optikk, Oslo,
Norway) was employed to obtain spectral information for
prediction analysis. The HSI is comprised of two tungsten
halogen lamps (150 W/12 V, H-LAM Norsk Elektro Optikk,
Oslo, Norway), and VNIR (350–990 nm, H-V16, Norsk Elektro
Optikk, Oslo, Norway) and SWIR (900–2,550 nm, H-S16,
Norsk Elektro Optikk, Oslo, Norway) lenses with a spectral
resolution of about 5 nm. The distance between the lenses and
samples was 25 cm, and the moving speed of the platform was
2.5 mm/s. To avoid obvious noise fluctuations at the start and
the end of the wavelengths, only the collected effective spectral
information, including 396 bands from 410 to 950 nm and from
950 to 2,500 nm, was merged manually with the two lenses.
Furthermore, to eliminate the adverse influence of external
factors such as uneven light distribution and camera dark
current, the HSI data was corrected before further analysis with
the following correction formula:

R = (Rraw−Rd)/(Rw−Rd)

where R is the corrected spectral data, Rraw is the original
spectral data, Rw is the white reference data obtained from
the white board with a reflectivity of 99%, and Rd is the dark
reference data obtained by turning off the light and blocking the
camera lenses. The spectral information of each fruit was treated
as one region of interest (ROI) and extracted using the ENVI 5.3
software (Harris Geospatial Solutions Inc., CO, USA). Then, all
the pixel reflectance data were calculated to obtain the average
of one subsample.

Reference measurement of red
raspberry nutrients content

Measurement of pectin polysaccharides
content

According to the requirements of the extraction kit (YX-
W-ZDT, Hepeng Biological, Shanghai, China) and the phenol-
sulfuric acid method, the PPS solution extracted from the

fruit pulp was measured using the Multiskan SkyHigh-1510
microplate spectrophotometer (Thermo Fisher, MA, US) at
490 nm (4). Meanwhile, standard samples of glucose (99% in
purity, YX-W-ZDT, Hepeng Biological, Shanghai, China) at
concentrations of 1, 0.5, 0.25, 0.125, and 0.0625 mg/ml were
prepared to construct a standard curve with the square of curve
correlation coefficient (R2) value equal to 0.9992 (y = 0.0212x-
0.0103). Then, the PPS content was calculated according to
the standard curve.

Measurement of reducing sugars content
RS can reduce 3,5-dinitrosalicylic acid (DNS) reagent in

alkaline solutions, and the red-brown precipitate product can
be assessed at 540 nm with a microplate spectrophotometer.
According to the instruction of the detection kit (BC2710,
Solarbio, Beijing, China), the RS extracted from the RRB fruit
pulp was reacted with DNS, and glucose solutions (99% in
purity, YX-W-ZDT, Hepeng Biological, Shanghai, China) at
concentrations of 1, 0.8, 0.5, 0.2, and 0.1 mg/ml were used as
standard samples to construct a standard curve with R2 value
equal to 0.9997 (y = 0.0211x-0.0088). Then, the content of RS
was calculated based on the standard curve.

Evaluation of total flavonoids content
In alkaline nitrite solution, flavonoids and aluminum ions

will form a red complex with an obvious absorption at 470 nm
(4). According to the instruction of the extraction kit (BC1330,
Solarbio, Beijing, China), reference solutions of rutin (98% in
purity, BC1330, Solarbio, Beijing, China) at concentrations of
1.5, 1.25, 0.625, 0.3125, 0.15625, 0.078, 0.039, and 0.02 mg/ml
were prepared to construct a standard curve with R2 value
equal to 0.9993 (y = 0.021x-0.0099). Then, the content of TF
extracted from the RRB fruit pulp was calculated according to
the standard curve.

Assessment of total phenolics content
Under alkaline conditions, phenols can reduce

tungstomolybdic acid to produce blue compounds with a
characteristic absorption peak at 760 nm (6). According
to the instruction of the extraction kit (BC1340, Solarbio,
Beijing, China), standard samples of gallic acid (98% in
purity, BC1340, Solarbio, Beijing, China) at concentrations of
0.15625, 0.078125, 0.039, 0.02, 0.01, 0.005, and 0.0025 mg/ml
were prepared to construct a standard curve with R2 value
equal to 0.9996 (y = 0.0183x-0.0024). Then, the content
of TP extracted from fruit pulp was calculated based on
the standard curve.

Statistical and chemometrics analysis

Statistical analysis
The data of nutrient contents obtained with chemical

methods were applied to significant difference analysis between
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regions (P < 0.05). One-way analysis of variance (ANOVA)
using Duncan’s multiple comparison method was implemented
on the SPSS software (22.0 version, IBM Inc., Chicago, IL,
USA). All significant difference analysis results were expressed
as mean± standard deviation of three replicates.

Model prediction of nutrients content based on
hyperspectral imaging wavelengths

Four pretreatment methods, including the first derivative
(DER), the second derivative (SEC), multiplicative signal
correction (MSC), and Savitzky-Golay filtering (SG) with
a window size of 9, were adopted to eliminate random
interferences and improve the HSI spectral features and
performance. Three prediction models used in this study are
briefly described below, including back-propagation neural
network (BPNN), partial least square regression (PLSR), and
support vector machine (SVM).

The BPNN, as a widely used method in regression, always
has three or more neurons, including an input layer, hidden
intermediate layers, and an output layer (Supplementary
Figure 1). During the analysis, the activation function value of
the neuron is delivered through these layers in the mentioned
order. Based on the difference between actual and prediction
values, the weight values are corrected layer by layer from the
output layer to the input layer. In our BPNN model, the node
number of the hidden layers was set at 10, and the momentum
factor, initial weight, and the learning step were adjusted to
0.3, 0.95, and 0.1, respectively. The maximum training iteration
was adjusted to 100, and the minimum error was adjusted to
0.001 (23).

The PLSR model is a classical linear regression algorithm.
It can consider both matrices x (spectral data) and y (chemical
index) and find the maximal correlation between the new
variables of X and Y (24, 25). In our analysis, the leave-one-
out cross-validation method was adopted to obtain the optimal
number of important latent variables ranging from 6 to 10 in
different nutrient prediction groups using PLSR.

The SVM model is suitable for analyzing both linear and
non-linear data, and it has the advantages of less training
time, lower computation complexity, and better generalization
ability. In this research, the SVM model was constructed based
on the radial basis function, and the optimal combination
of two important parameters, i.e., the penalty factor (C,
ranging from 2−8 to 28) and the kernel parameter (γ, ranging
from 100 to 2,500), were determined through a grid-search
method. Also, the influence of sampling randomness on
model performance was greatly avoided by leave-one-out cross-
validation so as to improve the efficiency and accuracy of
parameter optimization (26).

The prediction effect of pretreatment methods combined
with regression models was evaluated based on residual
predictive deviation (RPD) and curve correlation coefficient R2

values. Usually, the R2 value from 0.61 to 0.80 and the RPD from

2.0 to 2.5 indicate that the model can be used for prediction;
the R2 value from 0.81 to 0.90 and the RPD value from 2.5 to
3.0 indicate high model performance; the R2 value higher than
0.90 and the RPD value higher than 3.0 indicate excellent model
performance (4).

Effective wavelengths selection for nutrients
content prediction

Two wavelength selection methods were adopted in
this study, including competitive adaptive reweighted
sampling (CARS) and variable iterative space shrinkage
approach (VISSA). The CARS method can evaluate the
importance of each variable. A two-step method was
adopted to select the key variables, including (a) forced
variable selection based on an exponential decline function,
and (b) competitive variable selection based on adaptive
reweighted sampling. Meanwhile, three parameters, including
the maximal principle to extract, the group number for cross-
validation, and the pretreatment method, were set to 10, 10, and
“autoscaling,” respectively.

The VISSA method has two important rules during
optimization: (a) the variable space shrinks in each step, and
(b) the core of the VISSA model is that a new variable space
is superior to the previous one. The performance of variable
space in each optimization step could be evaluated, and the
weighted binary matrix sampling method was used in this
model to generate sub-models to span the variable subspace
(27). In VISSA model selection, four parameters, including
the maximum number of latent variables, the group number
for cross-validation, the number of binary matrix sampling,
and the pretreatment method, were set to 15, 10, 500, and
“autoscaling,” respectively.

Models for geographical origin traceability of
red raspberry based on full wavelengths

In this study, two discrimination models (PLSDA and SVM)
in combination with four pre-treatment methods (DER, MSC,
SEC, and SG) were adopted for geographical origin tracing.
The PLSDA model projected the prediction variables and
observation variables into a new space to find a linear regression
for multi-origin classification. In the PLSDA model, the latent
variables ranging from 6 to 10 were determined by leave-one-
out cross-validation. The SVM model, which aims to obtain the
best hyperplane by selecting the hyperplane passing through the
maximum possible gap between points of different categories,
was used with a non-linear radial basis function to reduce
the training complexity. In SVM model, the penalty factor (C)
and kernel parameter (γ) are two important parameters for
improving the accuracy of the radial basis function, and they
were selected through a grid search algorithm (the same above
in section “Model prediction of nutrients content based on
hyperspectral imaging wavelengths”). The performance of the
models in geographical origin identification was evaluated in
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terms of sensitivity, specificity, and accuracy. These three indices
were calculated as follows:

Accuracy(%) = 100∗(TP+TN)/(TP+TN+FP+FN)

Sensitivity(%) = 100∗TP/(TP+FN)

Specificity(%) = 100∗TN/(TN+FP)

where TP, TN, FN, and FP represent the numbers of true
positives, true negatives, false negatives, and false positives,
respectively (28).

The samples from three PGI regions (ZJLS, ZJCA, and
JXDX) were pairwise compared with those from common
regions by using the OPLS-DA model based on the full HSI
wavelengths, and 200 permutation tests were conducted to
avoid any over-fitting problem. Discrimination accuracy, R2X,
R2Y, and Q2 were recorded to represent the classification
efficiency, the explanatory power for the variation in X
variables and Y variables, and the predictive capability of the
model, respectively.

In both nutrient content and origin prediction, all the RRB
samples were grouped into a prediction set and a training set
at the ratio of 3:7 using the SPXY algorithm (i.e., sample set
partitioning based on joint x-y distances) (29). Also, all the

above models were implemented by using MATLAB software
(R2020a, The MathWorks, Inc., MA, USA). The specific analysis
workflow of the study is shown in Figure 1.

Results

Analysis of nutrients content for red
raspberry fruits from different
geographical origins

The measured PPS, RS, TF, and TP contents of RRB
fruits are listed in Supplementary Table 1. The PPS content
ranged from 63 mg/g (GZQDN) to 227 mg/g (AHXC). The
RS content ranged from 119 mg/g in the JXDX region to 339
mg/g in the ZJLS region. As for the TF content, the maximum
and minimum values were 34.0 mg/g (AHXC) and 3.0 mg/g
(GXYL), respectively. Besides, the maximum (14.2 mg/g) and
the minimum values (10.0 mg/g) of the TP content were found
in the JXDX region and the ZJLS region, respectively. The
results showed that the mean contents of the four nutritional
indicators had a significant difference (P < 0.05) among the
most different production regions (Supplementary Table 1).
Overall, PPS and RS contents account for 10–20 and 20–30

FIGURE 1

The specific process of the analysis. The workflow includes four parts, i.e., data collection, indicators prediction, effective wavelengths selection,
and results analysis. Four pretreatment methods were considered, including the first derivative (DER), multiplicative signal correction (MSC), the
second derivative (SEC), and Savitzky-Golay filtering (SG). Three regression models, including back-propagation neural network (BPNN), partial
least square regression (PLSR), and support vector machines (SVM), were used for contents prediction. Three classification models, including
orthogonal partial least squares discrimination analysis (OPLSDA), partial least squares discriminant analysis (PLSDA), and support vector
machines (SVM), were used for origins prediction. Two wavelength selection methods were considered, including competitive adaptive
reweighted sampling (CARS) and variable iterative space shrinkage approach (VISSA).
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in RRB fruits, respectively, and both represent the total sugar
content in the fruits. The TF and TP contents account for 1–3
and 1–2% of the total weight, respectively.

Prediction of nutrients content based
on full wavelengths

In this part, three regression models (BPNN, PLSR, and
SVM) were combined with pretreatment measures including
DER, MSC, SEC, and SG, respectively, to predict the nutrient
contents. The results showed that some combinations of
pretreatment and regression models performed well on the
prediction sets (Supplementary Tables 2–5). In PPS prediction,
the PLSR model obtained desirable results, with RPD values of
2.5–3.0. Meanwhile, the DER-SVM group showed a good ability
for PPS prediction, with an RPD value of 2.55 (Supplementary
Table 2). As for RS prediction, the DER-PLSR, MSC-PLSR, SEC-
PLSR, and SG-PLSR groups exhibited an excellent ability, with
R2 values above 0.90 and RPD values above 3.0 (Supplementary
Table 3). In TF content prediction, only the DER-PLSR and
MSC-PLSR groups performed well, with RPD values of 2.51
and 2.55, respectively (Supplementary Table 4). As for TP
prediction, the groups of DER-PLSR, MSC-PLSR, SEC-PLSR,
and SG-PLSR showed an excellent ability, with R2 values

above 0.90 and RPD values higher than 3.0. The DER-SVM
group also had an excellent ability for TP content prediction,
with an R2 value above 0.90 and an RPD value of 3.11
(Supplementary Table 5).

Prediction of red raspberry nutrients
content based on selected
hyperspectral imaging wavelengths

In this part, according to the prediction results based on
full HSI wavelengths, some models with good or excellent
prediction effects were further adopted to select important
variables. Specifically, the models were ORI-PLSR, DER-PLSR,
MSC-PLSR, SEC-PLSR, SG-PLSR, and DER-SVM (RPD > 2.5)
for PPS prediction (Supplementary Table 2), DER-PLSR,
MSC-PLSR, SEC-PLSR, and SG-PLSR (RPD > 3) for RS
prediction (Supplementary Table 3), DER-PLSR and MSC-
PLSR (RPD > 2.5) for TF prediction (Supplementary Table 4),
and DER-PLSR, MSC-PLSR, SEC-PLSR, SG-PLSR, and DER-
SVM (RPD > 3) for TP prediction (Supplementary Table 5).
Meanwhile, two strategies of CARS and VISSA with different
characteristics were used for wavelength selection.

The nutrient content prediction using selected wavelengths
via the CARS method (Table 1) obtained higher RPD values (in

TABLE 1 Nutrient content prediction based on the effective wavelengths selected by the CARS method.

Nutrients Wavelengths number Models Training set Prediction set

R2 RMSET R2 RMSEP RPD

PPS 86 ORI-PLSR 0.926 12.21 0.899 12.26 3.66

80 DER-PLSR 0.925 12.28 0.912 13.30 3.39

113 MSC-PLSR 0.939 11.08 0.883 15.27 2.87

85 SEC-PLSR 0.902 14.10 0.879 13.14 3.36

83 SG-PLSR 0.907 13.67 0.880 12.99 3.47

80 DER-SVM 0.959 9.54 0.881 15.10 2.82

RS 92 DER-PLSR 0.939 8.27 0.904 12.17 2.90

83 MSC-PLSR 0.954 7.21 0.949 8.78 3.95

80 SEC-PLSR 0.939 8.32 0.926 10.20 3.47

94 SG-PLSR 0.904 10.40 0.905 12.17 2.91

TF 104 DER-PLSR 0.913 2.49 0.851 3.11 2.47

93 MSC-PLSR 0.923 2.35 0.866 2.94 2.67

TP 83 DER-PLSR 0.963 0.195 0.958 0.238 4.69

118 MSC-PLSR 0.973 0.167 0.961 0.229 4.85

102 SEC-PLSR 0.961 0.198 0.956 0.245 4.56

100 SG-PLSR 0.964 0.162 0.959 0.239 4.72

83 DER-SVM 0.996 0.064 0.954 0.251 4.42

CARS, competitive adaptive reweighted sampling method for wavelength selection. PPS, RS, TF, and TP indicate pectin polysaccharides, reducing sugars, total flavonoids, and total
phenolics, respectively. R2 , square of curve correlation coefficient; RMSET, root mean square error on the training group; RMSEP, root mean square error on the prediction group; RPD,
residual predictive deviation. RPD values in bold represent the improvement of model performance compared with that from the full wavelengths group. Also, the RPD values with
underline indicate the best model group for this nutrient content regression. ORI, original spectrum; Four pretreatment methods include DER, first derivative; SEC, second derivative;
SG, Savitzky-Golay filtering; MSC, multiplicative signal correction; Three regression models include BPNN, back-propagation neural network, PLSR, partial least square regression; SVM,
support vector machines. The same abbreviations are used below.
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bold, 13 out of 17 groups) than those from the full wavelength
groups. Specifically, the RPD values were improved from the
level (from 2.5 to 3.0) indicating a good ability to the best level
(>3.0) indicating an excellent ability in PPS content prediction
(Table 1). As for using the VISSA method in wavelength
selection, the good results showed that the RPD values increased
in about 10 out of 17 groups (RPD values in bold, Table 2).

Generally, compared with full wavelength groups, CARS-
ORI-PLSR and CARS-MSC-PLSR were the most successful
methods for PPS and RS content prediction, with the highest
RPD values of 3.66 and 3.95 respectively, indicating an excellent
ability in prediction (RPD values with underline, Table 1). The
CARS-MSC-PLSR was the most efficient method for TP content
prediction, with the highest RPD value of 4.85, indicating
an excellent ability in prediction (RPD values with underline,
Table 1). As for TF content prediction, the most suitable
model VISSA-DER-PLSR obtained the highest RPD value of
2.85, indicating a good ability in prediction (RPD values with
underline, Table 2).

Identification of the geographical
origin of red raspberry fruits using
hyperspectral imaging full wavelengths

The PLSDA and SVM models combined with pre-treatment
methods were used in the geographical origin discrimination
of RRB fruits (Table 3). Overall, the PLSDA model combined
with pre-treatment methods had a better classification effect

than the SVM group, and the total discrimination accuracy
was higher than 89% on both the training and prediction
sets (Table 3). In the PLSDA group with pre-treatment, all
discrimination accuracy was improved when compared with
that of the ORI group without pretreatment (Table 3). In
this study, the DER-PLSDA model exhibited the highest total
discrimination accuracy of 99.7 and 97.3% in the training and
prediction groups, respectively (Table 3 and Figure 2). As shown
on the training set (Figure 2A) and prediction set (Figure 2B),
the sensitivity, specificity, and discrimination accuracy of the
two PGI regions of ZJCA and JXDX were all 100%, while those
of the ZJLS region were 100, 96.7, and 96.7 on the training set
(Figure 2A) and 94.7, 90.0, and 90.0% on the prediction set,
respectively (Figure 2B).

Then, the RRB fruits from PGI status regions (ZJLS, ZJCA,
and JXDX) were classified using the OPLSDA model based on
the full HSI wavelengths, and the prediction accuracy is shown
in Table 4 and Supplementary Figures 2–4. The parameter
of Q2 indicates the predictive ability, where 0.9 > Q2 > 0.5
represents a good ability for prediction, and Q2

≥ 0.9 indicate
an excellent predictive ability (30). In the groups of ZJLS vs.
the others, the discrimination accuracy was 100%, and the Q2

values were all higher than 0.9, except for the groups of ZJLS
vs. ZJCA with Q2 equal to 0.887 (Table 4 and Supplementary
Figure 2). In the discrimination of ZJCA samples, the accuracy
was 100%, and the Q2 values were all higher than 0.9 (Table 4
and Supplementary Figure 3). However, several misjudgment
cases occurred in discrimination of JXDX samples (Table 4 and
Supplementary Figure 4). In the groups of JXDX vs. AHXC,

TABLE 2 Nutrient content prediction based on the effective wavelengths selected by the VISSA method.

Nutrients Wavelengths number Models Training set Prediction set

R2 RMSET R2 RMSEP RPD

PPS 110 ORI-PLSR 0.871 16.11 0.868 16.45 2.74

121 DER-PLSR 0.922 12.58 0.874 15.87 2.79

146 MSC-PLSR 0.905 13.88 0.849 17.29 2.50

102 SEC-PLSR 0.903 13.99 0.881 15.86 2.89

118 SG-PLSR 0.903 13.98 0.866 16.51 2.71

121 DER-SVM 0.973 7.92 0.885 14.79 2.83

RS 110 DER-PLSR 0.950 7.50 0.933 9.80 3.75

90 MSC-PLSR 0.907 8.68 0.933 12.14 2.68

112 SEC-PLSR 0.930 8.90 0.906 11.75 3.03

88 SG-PLSR 0.927 9.10 0.909 11.61 2.92

TF 120 DER-PLSR 0.947 1.94 0.882 2.75 2.85

97 MSC-PLSR 0.894 2.75 0.801 3.60 2.16

TP 127 DER-PLSR 0.952 0.222 0.917 0.350 3.16

114 MSC-PLSR 0.927 0.271 0.909 0.368 2.82

125 SEC-PLSR 0.961 0.200 0.935 0.295 3.77

110 SG-PLSR 0.957 0.208 0.942 0.287 3.87

127 DER-SVM 0.999 0.028 0.918 0.341 3.19

VISSA, variable iterative space shrinkage approach for wavelength selection.
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TABLE 3 Multi-origin discrimination of fruits using PLSDA and SVMmodels.

Pretreatments PLSDA SVM

Training (%) Prediction (%) Training (%) Prediction (%)

ORI 81.1 78.1 64.6 59.3

DER 99.7 97.3 85.4 66.7

MSC 95.3 92.9 62.0 56.0

SEC 96.9 89.1 82.6 70.7

SG 93.4 90.7 50.3 44.0

PLSDA, partial least squares discriminant analysis; SVM, Support vector machines.

FIGURE 2

Geographical origins discrimination for RRB fruits using the DER-PLSDA model based on full wavelengths. Training set (A), Prediction set (B).
The number in blue color represents the total discrimination accuracy on the training and prediction sets, and the yellow color represents the
groups with discrimination errors. The results of sensitivity and specificity are shown in the bottom row and the right column, respectively.

JXDX vs. CQSZ, JXDX vs. GXYL, JXDX vs. GZQDN, and JXDX
vs. YNKM, discrimination errors were observed, the accuracy
ranged from 98 to 99%, and the Q2 values ranged from 0.80
to 0.90. In the groups of JXDX vs. FJND and JXDX vs. GDMZ,
the discrimination accuracy was both 100%, and the Q2 values
were 0.960 and 0.841, respectively (Table 4 and Supplementary
Figure 4).

Discussion

Fruit nutrients such as PPS, RS, TF, and TP are important
indicators in quality evaluation. Similar studies have been
reported on the nutrient content prediction of fruits using a
fast and non-destructive method, providing evidence of good
prediction effects when HSI was combined with chemometric
methods. For example, NIR-HSI combined with the PLSR model
was successfully applied to the prediction of RS content in
pomelo fruits (16) as well as the PPS content in mulberry fruits
(18) and orange peels (17), and low RMSE values and high

R2 values were obtained. Meanwhile, in a former report, the
TP and TF contents from black goji berries were effectively
determined using HSI full wavelengths combined with PLSR
and SVM models (15).

Selecting some key wavelengths instead of using the
full wavelengths can reduce model complexity and improve
prediction accuracy and robustness. Similar to our results,
many relevant reports demonstrated that the nutrient content
prediction results in fruits based on the selected HSI wavelengths
are similar to or better than those from the full-band group. For
example, in the prediction of the TF and TP contents in black
goji berries based on the effective wavelengths selected via CARS
and successive projections algorithm (SPA) methods, the R2 and
RPD values were the same as those from the full-band group
(15). In the prediction of total anthocyanin content in mulberry
fruits (31) and sugar content in pomelo fruits (32), better
prediction results were obtained in effective wavelength groups.

In this study, the correlation between selected bands and
predicted nutrients was analyzed. The effective absorption at
1,000–1,100 nm and 1,150–1,300 nm (Figure 3A) may be
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TABLE 4 Pairwise discrimination of fruits from PGI regions using the OPLSDA model.

Groups R2X R2Y Q2 Accuracy (%)

ZJLS vs. AHXC 0.825 0.975 0.973 100

ZJLS vs. CQSZ 0.933 0.981 0.981 100

ZJLS vs. FJND 0.904 0.955 0.949 100

ZJLS vs. GDMZ 0.989 0.975 0.973 100

ZJLS vs. GXYL 0.937 0.972 0.968 100

ZJLS vs. GZQDN 0.989 0.977 0.975 100

ZJLS vs. JXDX 0.959 0.972 0.970 100

ZJLS vs. YNKM 0.924 0.97 0.969 100

ZJLS vs. ZJCA 0.975 0.917 0.887 100

ZJCA vs. AHXC 0.920 0.977 0.973 100

ZJCA vs. CQSZ 0.870 0.973 0.968 100

ZJCA vs. FJND 0.837 0.947 0.938 100

ZJCA vs. GDMZ 0.912 0.973 0.968 100

ZJCA vs. GXYL 0.938 0.976 0.974 100

ZJCA vs. GZQDN 0.929 0.976 0.974 100

ZJCA vs. JXDX 0.924 0.976 0.973 100

ZJCA vs. YNKM 0.939 0.977 0.973 100

JXDX vs. AHXC 0.992 0.933 0.898 99

JXDX vs. CQSZ 0.944 0.863 0.858 99

JXDX vs. FJND 0.960 0.965 0.960 100

JXDX vs. GDMZ 0.979 0.881 0.841 100

JXDX vs. GXYL 0.770 0.842 0.829 99

JXDX vs. GZQDN 0.982 0.894 0.846 98

JXDX vs. YNKM 0.984 0.848 0.819 99

PGI, protected geographical indication; OPLSDA, orthogonal partial least squares discrimination analysis. R2X and R2Y are recorded to exhibit the explanatory power for the variation
in X variables and Y variables, respectively. Q2 represents the predictive capability of the model. 0.9 > Q2 > 0.5 indicates a good ability for prediction, and Q2

≥ 0.9 indicates an excellent
predictive ability. vs., versus.

related to the second harmonic of O-H and the first harmonic
of C-H combination in the polysaccharides, respectively (33).
As for RS analysis (Figure 3B), the wavelengths at 1,385 nm
corresponded to the C-H second overtone and combination
as well as the wavelengths at 605 and 540 nm corresponded
to the fourth and fifth overtone regions of –O-H from RS,
respectively (34, 35). Meanwhile, the effective wavelengths of
TF were almost consistent with former published studies, where
1,100 to 1,140,nm and 1,650 to 1,690 nm corresponded to the
first overtone region and second overtone region of –CH3 from
flavonoids, respectively (Figure 3C) (34). Also, the 1,430 to
1,450 nm corresponded to the second overtone region of –CH
from polyphenols (36), and wavelengths intervals of 425–520
and 725–995 nm corresponded to the most abundant phenolic
compounds of ferulic acid in RRB (Figure 3D) (37).

Additionally, the prediction of different nutrients may have
a unique model tendency. One example is that potato starch
content was predicted based on the selected HSI bands, and
the same results showed that the selection methods of CARS,
iterative variable subset optimization (IVSO), and VISSA have
different prediction effects. The preferred CARS-SVM model
achieved the best performance with the highest R2 and RPD
values (27). In this study, the necessary work was conducted

to compare and choose the most appropriate model for the
prediction of different types of nutrients from RRB fruits.

In this study, the combination of HSI technology with the
PLSDA model achieved a better result in the origin prediction
of RRB fruits. Similar results were obtained in narrow-leaved
oleaster (Elaeagnus angustifolia) fruit traceability by using
HSI technology, and the PLSDA model achieved a higher
discrimination accuracy (>99%) than that of the SVM group
(13). Besides, a similar study on origin classification of Rhizoma
Atractylodis Macrocephalae obtained the highest classification
accuracy of 97.3% by using the PLSDA model (38). In the
PGI origin discrimination of this study based on the HSI
full wavelength, the OPLSDA model was suitable for pairwise
comparison of origin traceability. Meanwhile, the good results
in region discrimination by using the OPLSDA model from
previous reports were listed, including Thai Hom Mali rice
traceability (39) as well as the origin prediction of Huangjing
from the PGI regions of Qingyang City, China (40).

During data collection using HSI technology, the random
noises caused by equipment status and material characteristics
such as uneven sizes and colors could be effectively eliminated
by using pretreatment methods (30, 41). Also, the spectral
derivatization noises can be well eliminated by DER, SEC,
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FIGURE 3

Selected wavelengths for best prediction in nutrient contents of RRB fruits. The selected wavelengths are shown in red dots. (A) Selected
wavelengths in PPS prediction (CARS-ORI-PLSR); (B) selected wavelengths in RS prediction (CARS-MSC-PLSR); (C) selected wavelengths in TF
prediction (VISSA-DER-PLSR); (D) selected wavelengths in TP prediction (CARS-MSC-PLSR).

and SG methods (42). MSC is commonly used to remove the
undesirable scatter effect caused by uneven sample sizes and
morphologies (43). In fact, it is difficult to know which kind
of noise plays a dominant role in this analysis. Therefore, there
are no definite criteria, and trying-out is required in the specific
application to select the best method for error elimination. In
addition, the representativeness and uniformity of samples are
very important for model prediction. For origin discrimination
errors, one possible reason may be that inconsistent maturity,
freshness, and surface cleanliness of RRB samples from JXDX
regions led to the low sample representativeness and therefore
the misjudgment in geographical origin classification.

Conclusion

The nutrient content (PPS, RS, TF, and TP) indicated that
the quality of RRB fruits had a significant difference (P <

0.05) related to the planting regions and could be predicted
by using full HSI wavelengths assisted with chemometrics.
These nutrient contents could be well predicted with the HSI
effective wavelengths selected via CARS and VISSA methods,
and the prediction effects were even better than those from
full wavelength groups, indicating the potential application in
fruit quality control. The combination of HSI technology with

chemometrics was a promising method for RRB fruit traceability
from multiple regions, and the samples from three PGI regions
were efficiently classified through pairwise comparison with
the OPLSDA model. All these findings show the promising
application of HSI technology in the future as a rapid and
nondestructive method to achieve quantification of nutrient
contents and determination of origins for RRB fruits. Future
studies will collect RRB samples from more diverse regions
and consider more influential factors, including varieties, fruit
maturity and freshness, as well as the regional cultivation
practices, to find out their contribution to and influence on the
origin traceability and quality prediction.
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