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To prepare peptides with high angiotensin-converting enzyme (ACE) inhibitory

(ACEi) activity, Alcalase was screened from five proteases and employed to

prepare protein hydrolysate (TMH) of skipjack tuna (Katsuwonus pelamis) milts.

Subsequently, 10 novel ACEi peptides were isolated from the high-ACEi activity

TMH and identified as Tyr-Asp-Asp (YDD), Thr-Arg-Glu (TRE), Arg-Asp-Tyr

(RDY), Thr-Glu-Arg-Met (TERM), Asp-Arg-Arg-Tyr-Gly (DRRYG), Ile-Cys-Tyr

(ICY), Leu-Ser-Phe-Arg (LSFR), Gly-Val-Arg-Phe (GVRF), Lys-Leu-Tyr-Ala-Leu-

Phe (KLYALF), and Ile-Tyr-Ser-Pro (IYSP) with molecular weights of 411.35,

404.41, 452.45, 535.60, 665.69, 397.48, 521.61, 477.55, 753.91, and 478.53 Da,

respectively. Among them, the IC50 values of ICY, LSFR, and IYSP on ACE were

0.48, 0.59, and 0.76 mg/mL, respectively. The significant ACEi activity of ICY,

LSFR, and IYSPwith a�nities of−7.0,−8.5, and−8.3 kcal/molmainly attributed

to e�ectively combining with the ACEi active sites through hydrogen bonding,

electrostatic force, and hydrophobic interaction. Moreover, ICY, LSFR, and IYSP

could positively influence the production of nitric oxide (NO) and endothelin-

1 (ET-1) secretion in human umbilical vein endothelial cells (HUVECs) and

weaken the adverse impact of norepinephrine (NE) on the production of NO

and ET-1. In addition, ICY, LSFR, and IYSP could provide significant protection

to HUVECs against H2O2 damage by increasing antioxidase levels to decrease

the contents of reactive oxide species and malondialdehyde. Therefore, the

ACEi peptides of ICY, LSFR, and IYSP are beneficial functional molecules for

healthy foods against hypertension and cardiovascular diseases.

KEYWORDS

skipjack tuna (Katsuwonus pelamis), milt, peptide, antihypertensive function,

angiotensin-I-converting enzyme (ACE), antioxidant activity

Frontiers inNutrition 01 frontiersin.org

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://doi.org/10.3389/fnut.2022.957778
http://crossmark.crossref.org/dialog/?doi=10.3389/fnut.2022.957778&domain=pdf&date_stamp=2022-07-22
mailto:lisa8919@163.com
mailto:wangbin@zjou.edu.cn
mailto:wangbin4159@hotmail.com
https://doi.org/10.3389/fnut.2022.957778
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnut.2022.957778/full
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Suo et al. 10.3389/fnut.2022.957778

Introduction

Hypertension, also known as high blood pressure, is the

most critical factor influencing the morbidity and mortality

of cardiovascular disease (CVD) and renal disease (1–3).

The prevalence of hypertension is about 1.3 billion, and

this population may grow to 1.56 billion by 2030, which

will cause a global economic burden of $274 billion (4).

Oral medication is the conventional therapeutic intervention

in hypertension management, and finding new drug is the

priority to effectively control and manage the hypertensive

population (5, 6). Angiotensin-converting enzyme (ACE) plays

a vital physiological function in controlling blood pressure by

converting angiotensin (Ang) I to Ang II by deactivating the

vasodilator bradykinin (7, 8). In consequence, the synthetic ACE

inhibitors [captopril (Cap), lisinopril, enalapril, etc.] have been

used to curing hypertension, diabetic nephropathy, stabilization

of antioxidant responses, and endothelial dysfunction (6, 7).

Unfortunately, commercially available ACE inhibitors are like

any other synthetic drugs and present many serious side effects

that need to be careful in their prescription administration (6,

9, 10). Therefore, it has become an inevitable trend to find safer,

affordable, and effective ACEis from natural resources to replace

synthetic drugs for the treatment of hypertension and CVD.

Currently, some natural ACE inhibitors, including peptides,

flavones, terpenoids, alkaloids, and steroids, have been purified

from different plants, animals, and microorganisms (6, 11–

13). Among them, ACEi peptides have attracted wide interest

due to their high nutritional value and significant biological

activity (14–19). In addition, global fish production reached

around 179 million tons, and approximately 50% of catches

become byproducts during factory processing (20–23). Those

fish byproducts result in burdensome disposal problems, and

unreasonable treatment will give rise to serious environmental

pollution (24–26). For making full use of these fish byproducts,

many ACEi peptides were prepared from different processing

byproducts, such as tuna bone (27, 28), skate (Okamejei

kenojei) skin (29), mackerel skin (30), Nile tilapia skin (31)

and skeleton (32), sea cucumber (Stichopus japonicus) gonad

(33), smooth-hound (Mustelus mustelus) viscera (34), Atlantic

salmon skin (35), Alaska pollack skins (36), and rainbow trout

(Oncorhynchus mykiss) viscera (37). Those sea-food derived

ACEi peptides exhibit high potential application value in terms

of diet and clinical therapeutics on anti-hypertension (5, 38, 39).

Tuna is one of the world’s foremost commercial deep-

sea fish, with about 7.9 × 106 tons of catches in 2018, and

it is crucial for the balanced nutrition and optimal health

because it provides a variety of high-quality nutritional and

functional ingredients (23, 40, 41). Skipjack tuna (Katsuwonus

pelamis) is the most productive and low-value species of tuna,

with catches of 3.2 × 106 tons (23). In the manufacturing

process of canned fish, about half tuna materials are taken for

byproducts (42–46). To make the most of these byproducts,

bioactive peptides were produced from tuna byproduct proteins,

such as dark muscles (47–49), bone/frame (25, 27), scale (50),

roe (45, 51), and head and viscera (52, 53). In our previous

study, 13 antioxidant oligopeptides were prepared and identified

from the Neutrase hydrolysate of skipjack tuna milts (46).

Among them, SMDV, SVTEV, PHPR, VRDQY, and GHHAAA

presented significant cytoprotection on H2O2-damaged human

umbilical vein endothelial cells (HUVECs) (46). Furthermore,

to make more efficient use of this resource, the objectives of

this research were to isolate, identify, and evaluate the activity

of ACEi peptides from protein hydrolysate of skipjack tuna

milts. Moreover, the ACEi mechanism of isolated peptides was

illustrated by the molecular docking experiment.

Materials and methods

Materials

Skipjack tuna milts were provided by Ningbo Today Food

Co., Ltd (China). The Nitric Oxide (NO) Assay Kit (A012-1)

and Endothelin-1 (ET-1) ELISA Kit (HM10108) were bought

from Nanjing Jiancheng Bioengineering Institute (China).

Alcalase (CAS No.: 9014-01-1), glutathione (GSH) (CAS No.:

70-18-8), trypsin (CAS No.: 9002-07-7), trifluoroacetic acid

(TFA) (CAS No.: 76-05-1), N-[3-(2-furyl)acryloyl]-Phe-Gly-

Gly (FAPGG) (CAS No.: 64967-39-1), 2-[4-(hydroxyethyl)-1-

piperazinyl]ethanesulfonic acid (HEPES) (CAS No.: 7365-45-9),

pepsin (CAS No.: 9001-75-6), papain (CAS No.: 9001-73-4),

Cap (CAS No.: 62571-86-2), and ACE (CAS No.: 9015-82-1)

were purchased from Sigma-Aldrich (Shanghai) Trading Co.,

Ltd. (China). Norepinephrine (NE) (CAS No.: 51-41-2), 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)

(CAS No.: 298-93-1), and Neutrase (CAS No.: 9068-59-1) were

bought from Beijing Solarbio Science & Technology Co., Ltd

(China). Peptides of TP1–TP10 (purity> 95%) were synthesized

in Shanghai Peptide Co. Ltd. (China).

Determination of ACEi activity

The ACEi activity was tested using the method described by

Zhao et al. (8). In brief, 50 µL FAPGG solution as a substrate

(1mM) in HEPES-HCl buffer (0.5mM, pH 8.3, containing

300mM salt) was mixed with 40 µL sample (5, 10, 20, 40

mg/mL) and 10 µL of ACE solution. The mixture was pre-

incubated at 37◦C for 5min. Then, 50 µL of 1.0 mol/L FPAGG

solution was added to the mixture to initiate the reaction and

incubated at 37◦C for 30min. The control was prepared using

80mM HEPES-HCl buffer containing 300mM NaCl (pH 8.3),

instead of the sample. The sample group and control group were

run in the samemanner. After that, the absorbance of the sample
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solution was measured at 340 nm. All samples were measured

as described before, respectively. The IC50 value was defined as

the concentration of inhibitor required to inhibit 50% of the

ACE activity. The ACEi activity was calculated by using the

following equation:

ACEi activity(%) = (1− B0 − B30/A0 − A30)× 100

A0 and B0 represent the initial absorbance of the control group

and the sample group; A30 and B30 represent the absorbance

after 30min for the control group and the sample group.

Preparation of protein hydrolysate of
tuna milts

Tuna milts were degreased using isopropanol as per the

reported method (46). In brief, isopropanol was added to the

milt homogenate with a liquid/solid ratio of 4:1 (v/w), and the

mixed solution was homogenized and kept at 20 ± 2◦C for

60min. Afterward, the mixed solution was centrifuged at 6,000

rpm for 0.5 h, and the resulted residue was defatted at room

temperature for 1.5 h using isopropanol with a liquid/solid ratio

of 4:1 (v/w). Finally, the resulted residue was dried at 35 ± 2◦C.

After that, the defatted milt powders were dispersed in buffered

solution (0.2M, w/v) and separately hydrolyzed using Alcalase

(55◦C, pH 9.5), trypsin (37.5◦C, pH 7.8), pepsin (37.5◦C, pH

2.0), papain (55◦C, pH 7.0), and Neutrase (55◦C, pH 7.0),

respectively, with enzyme dose of 2% (w/w). According to the

designed hydrolysis time (1–6 h), proteases were inactivated at

a 95◦C water bath for 20min and centrifuged at 9,000 rpm

for 15min. The supernatant was desalted, freeze-dried, and

deposited in −20◦C. Milt hydrolysate generated by Alcalase

showed the highest ACEi activity and referred to TMH.

Separation process of ACEi peptides from
TMH

Ultrafiltration

TMH (100.0 mg/mL) was processed with 1, 3.5, and 5 kDa

molecular weight (MW) cutoff membranes, and four fractions

including TMH-I (<1 kDa), TMH-II (1–3.5 kDa), TMH-III

(3.5–5 kDa), and TMH-IV (>5 kDa) were enriched and freeze-

dried in vacuum. TMH-I exhibited the maximum ACEi ability

among four prepared fractions.

Gel permeation chromatography (GPC)

TMH-I solution (5mL, 50.0 mg/mL) was purified with

the Sephadex G-25 column (3.6 × 150 cm) and eluted with

phosphate-buffered solution (PBS, 0.2M) at a flow rate of 0.6

mL/min. The eluate was monitored at 214 nm and collected one

tube per 1.8mL. In consequence, four subfractions (GH-1–GH-

4) were isolated from TMH-I, and GH-3 with the maximum

ACEi activity was selected for next purification.

Reversed-phase high-performance liquid
chromatography (RP-HPLC)

GH-3 solution (20 µL, 100.0µg/mL) was finally separated

by RP-HPLC on a Zorbax 300SB-C18 column (4.6 × 250mm,

5µm), with a linear gradient of acetonitrile (containing 0.06%

TFA) from 0 to 100 % in 0 to 30min. The eluate with

a flow rate of 1.5 mL/min was monitored at 214 nm. At

last, 10 ACEi peptides (TP1–TP10) were prepared on their

chromatographic peaks.

Identification of sequence and MWs of ACEi
peptides

The sequences of TP1–TP10 were analyzed using an Applied

Biosystems 494 protein sequencer (Perkin Elmer, USA) (22).

Edman degradation was performed according to the standard

program supplied by Applied Biosystems (Shimazu, Kyoto,

Japan). The MWs of TP1–TP10 were determined by using a Q-

TOF mass spectrometric device combined with an ESI source

(47). Nitrogen was maintained at 40 psi for nebulization and

9 L/min at 350◦C for evaporation temperature. The data were

collected in the centroid mode from m/z 200 to 2,000.

Molecular docking experiment of TP6, TP7, and
TP10

This assay of TP6, TP7, and TP10 was performed

according to the previous method (54) and commissioned to

Shanghai NovoPro Biotechnology Co., Ltd (China). The crystal

structures of the human ACE–lisinopril complex (1O8A.pdb)

and captopril were acquired from the RCSB PDB Protein

Data Bank (PDB code: 1UZF) (https://www.rcsb.org/). The

interaction between ACE and MCO was analyzed to determine

the position and size of the binding pocket using Chimera

software. All non-standard residues in the 1UZF model were

deleted, and AutodockTools was used to convert PDB files

into PDBQT files (adding Gasteiger charge and setting key

distortion). Peptide molecules were converted into a SMILES

format by PepSMI tool, 3D models were drawn by Discovery

Studio program, and energy minimization was done using

steepest descent and conjugate gradient techniques. Molecular

docking and free energy calculation were carried out using a

flexible docking tool of AutoDock Vina. Finally, the interaction

between ACE and peptide molecules was analyzed by Chimera

software. According to the binding energy value and scores of

TP6, TP7, and TP10, their best ranked docking poses in the

active site of ACE were acquired.
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E�ects of TP6, TP7, and TP10 on HUVECs

Cytotoxic assay

The cytotoxic assay was carried out as per the previous

method (54). HUVECs were cultured at a density of 1 × 104

cells/cm2 to confluence in DMEM at 37◦C in a humidified

5% CO2 atmosphere (8). The cytotoxicity of TP1–TP10 on

HUVECswasmeasured usingMTT assay (8). In short, HUVECs

in 96-well plates at a density of 1× 104 cells/cm2 were separately

treated with 20 µL samples at 50 and 200µM, respectively, and

cultured for 24 h. Then, 20µLMTT solution (5 mg/mL) was put

in and incubated for 4 h. In the end, DMSO was joined in each

well plate, and the absorbance (A) at 490 nm was determined.

Cell viability(%) = (Asample/Acontrol)× 100.

Determination of nitric oxide (NO) and
endothelin-1 (ET-1) production

HUVECs were cultured in 96-well plates at a density of 1

× 104 cells/cm2 and treated with Cap (1µM), NE (0.5µM), or

ACEi peptides (100–200µM) for 24 h, or incubated with both

NE (0.5µM) and 200µM ACEi peptides for 24 h. NO and ET-

1 contents of HUVECs were determined after 24 h according to

the NO and ET-1 assay kits as manufactures’ protocol (54).

Cytoprotection of TP6, TP7, and TP10 on
H2O2-damaged HUVECs

The cytoprotective assay was carried out using the described

methods (55, 56). In short, HUVECs were cultured in a 96-well

plate at a density of 1 × 104 cells/cm2 for 24 h. Afterward, the

supernatant was aspirated, and 20 µL of ACEi peptides (TP6,

TP7, and TP10) with the final concentrations of 100 and 200µM

were added to the protection groups, respectively. ACEi peptides

(TP6, TP7, and TP10) were removed after 8 h, and H2O2 with

the final concentration of 400µMwas added to the damage and

protection groups and incubated for 24 h. GSH was used as the

positive control.

The level of ROS was determined on the method described

by Cai et al. (55) and expressed as % of blank control; the levels

of MDA, SOD, and GSH-Px were measured using assay kits in

accordance with the manufacturer’ protocols and expressed as

U/mg prot.

Data analysis

All data are expressed as mean ± SD (n = 3) and analyzed

by SPSS 19.0. The ANOVA test with the Dunnett or Tukey test

was employed to analyze the significant difference of samples at

different levels (P < 0.05, 0.01, or 0.001).

FIGURE 1

E�ects of protease species and hydrolysis time on ACEi activities

of protein hydrolysates from skipjack tuna milts at 2.5 mg/ml.

Results and discussion

Preparation of milt protein hydrolysate

Protein hydrolysates of tuna milts were separately generated

using five proteases (Figure 1). The data indicated that the ACEi

rates of prepared hydrolysates from tuna milts were significantly

affected by protease species and enzymatic time. At the same

hydrolysis time, the ACEi rate of Alcalase hydrolysate was

markedly higher than that of other four generated hydrolysates

(P < 0.05). In addition, the ACEi rate of Alcalase hydrolysate

produced at 4.0 h was 64.81 ± 2.16%, which was markedly

higher than that of hydrolysates produced at other designed

time (P < 0.05).

Compared with microorganism fermentation and chemical

degradation processes, proteolytic hydrolysis method has

been widely used because of its advantages of easy control,

environmental friendliness, no residual chemical reagents, or

no harmful substances (20, 57, 58). The biological activities

of protein hydrolysates are closely contacted with the bio-

peptide composition, and specificity of enzymes is the key factor

affecting those properties (59, 60). Therefore, various proteases

and their combinations are designed to produce hydrolysates

(20, 61, 62). The results in Figure 1 indicated that Alcalase

hydrolysate (TMH) of tuna milts for 4.0 h was most suitable to

be selected for the next step of purification.

Preparing ACEi peptides from TMH

Ultrafiltration

According to Figure 2, the ACEi activity of TMH-I was 43.78

± 1.56% at 1.0 mg/mL, which was observably higher than that of

TMH (35.26 ± 0.95%) and other three ultrafiltration fractions,

including TMH-II (38.66 ± 2.04%), TMH-III (25.33 ± 0.95%),

and TMH-IV (26.72 ± 1.68%) (P < 0.05). Large polypeptides
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FIGURE 2

ACEi rates of ultrafiltration peptide fractions (TMH-I to TMH-IV)

of protein hydrolysates (TMH) of skipjack tuna milts at a

concentration of 1.0 mg/mL. a−cValues with same letters

indicated no significant di�erence (P > 0.05).

are difficult to get in and combine with the key site of ACE,

leading to decreased inhibitory activity (7, 63). Therefore, a

short peptide fraction is often isolated from protein hydrolysates

by ultrafiltration technology (20, 22, 64). The present results

are consistent with those of the literature that the lowest MW

peptide fractions fromM. mustelus (65), Antarctic krill (8), tuna

frame (27),O. kenojei (9), andCyclina sinensis (66) presented the

strongest ACEi activities. As a result, TMH-I with the smallest

MW was selected for the next step isolation.

GPC of TMH-I

Figure 3 shows that the ACEi rate of GH-3 at 1.0 mg/mL

was 49.52 ± 2.38%, which was far (P < 0.05) higher than that

of TMH-I (35.26 ± 0.95%) and other three GPC fractions,

including GH-1 (34.69 ± 2.41%), GH-2 (40.21 ± 1.65%), and

GH-4 (20.36 ± 0.97%). Gel filtration is an effective way to

fractionate bioactive molecules in mix ingredients into fractions

with particular MW dimensions and is applied frequently for

group isolation of protein hydrolysates from different sea foods,

such as C. sinensis (66), monkfish (Lophius litulon) muscle (67),

miiuy croaker (22, 62), skipjack tuna byproducts (53–57), red

stingray (Dasyatis akajei) cartilages (68), and Antarctic krill

(8). GH-3 showed the strongest activity, but it does not have

the lowest MW. These finding manifested that other factors in

addition to MW also significantly affect the ACEi capability of

peptides (7, 20, 65).

RP-HPLC purification of GH-3

According to the RP-HPLC profiles of GH-3 at 214 nm

(Figure 4), 10 ACEi peptides were separately collected on

their retention time of 11.24min (TP1), 12.65min (TP2),

13.70min (TP3), 14.76min (TP4), 16.48min (TP5), 17.53min

FIGURE 3

Chromatogram profiles of TMH-I isolated by Sephadex G-25 (A)

and ACEi rates of prepared subfractions (GH-1–GH-4) from

TMH-I at a concentration of 1.0 mg/mL (B). a−dValues with the

same letters indicated no significant di�erence (P > 0.05).

(TP6), 18.64min (TP7), 19.24min (TP8), 19.60min (TP9), and

20.27min (TP10) (Table 1).

Peptide sequence and MW determination

Using a protein/peptide sequencer, peptide sequences of

TP1–TP10 were identified as Tyr-Asp-Asp (YDD, TP1), Thr-

Arg-Glu (TRE, TP2), Arg-Asp-Tyr (RDY, TP3), Thr-Glu-Arg-

Met (TERM, TP4), Asp-Arg-Arg-Tyr-Gly (DRRYG, TP5), Ile-

Cys-Tyr (ICY, TP6), Leu-Ser-Phe-Arg (LSFR, TP7), Gly-Val-

Arg-Phe (GVRF, TP8), Lys-Leu-Tyr-Ala-Leu-Phe (KLYALF,

TP9), and Ile-Tyr-Ser-Pro (IYSP, TP10). The MWs of the 10

ACEi peptides (TP1–TP10) were determined as 411.35, 404.41,

452.45, 535.60, 665.69, 397.48, 521.61, 477.55, 753.91, and

478.53 Da, respectively (Figure 5), which agreed well with their

theoretical MWs (Table 1).

ACEi activity and molecular docking analysis

The IC50 values of TP6, TP7, and TP10 on ACE were 0.48±

0.03, 0.59± 0.05, and 0.76± 0.04 mg/mL (Table 1), respectively,

which were markedly lower than those of other seven ACEi

peptides (P < 0.05). Moreover, the IC50 values of TP6, TP7,

and TP10 were less than those of ACEi peptides from Salmo
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FIGURE 4

Elution profile of subfraction GH-3 by RP-HPLC using a gradient of acetonitrile containing 0.06% trifluoroacetic acid at 214nm.

TABLE 1 Amino acid sequences, molecular weights (MWs), and ACEi activity (IC50 value) of 10 isolated ACEi peptides (TP1–TP10) from protein

hydrolysates of skipjack tuna milts (TMH).

Retention time (min) Amino acid sequence Observed MW/theoretical MW (Da) ACEi activity (IC50, mg/mL)

TP1 11.24 Tyr-Asp-Asp (YDD) 411.35/411.36 1.26± 0.11a

TP2 12.65 Thr-Arg-Glu (TRE) 404.41/404.42 3.73± 0.14b

TP3 13.70 Arg-Asp-Tyr (RDY) 452.45/452.46 4.35± 0.21c

TP4 14.76 Thr-Glu-Arg-Met (TERM) 535.60/535.61 1.29± 0.09a

TP5 16.48 Asp-Arg-Arg-Tyr-Gly (DRRYG) 665.69/665.70 5.74± 0.26d

TP6 17.53 Ile-Cys-Tyr (ICY) 397.48/397.49 0.48± 0.03e

TP7 18.64 Leu-Ser-Phe-Arg (LSFR) 521.61/521.61 0.59± 0.05e

TP8 19.24 Gly-Val-Arg-Phe (GVRF) 477.55/477.56 1.08± 0.07 a

TP9 19.60 Lys-Leu-Tyr-Ala-Leu-Phe (KLYALF) 753.91/753.93 3.41± 0.19f

TP10 20.27 Ile-Tyr-Ser-Pro (IYSP) 478.53/478.54 0.76± 0.04g

a−gValues with same letters indicated no significant difference (P > 0.05).

salar (YP: 1.54 mg/mL) (69), Antarctic krill (VD: 5.61 mg/mL;

FRKE: 6.97 mg/mL) (8), Ctenopharyngodon idella (VAP: 1.71

mg/mL) (1), skate (LGPLGHQ: 4.22 mg/mL) (29), Katsuwonus

pelamis (MLVFAV: 2.36 mg/mL) (70), and stone fish (EHPVL:

1.68 mg/mL) (2). The present results demonstrated that TP1–

TP10, especially TP6, TP7, and TP10, had prominent ACEi

ability and could be used as function components in reducing

blood pressure products.

The molecular docking experiment served to illustrate the

action mechanisms of TP6, TP7, and TP10 in inhibiting ACE

(Figure 6). Figure 6A proves that TP6 (ICY) formed hydrogen

bonds with His353, Asp377, and Thr282 residues of ACE,

of which TP6 (ICY) formed hydrogen bonds with the active

pocket of S2 (His353). In addition, TP6 (ICY) interacted

with His383, Phe457, Phe527, and Val380 residues of ACE

through a hydrophobic effect, and contacted with Asp453,

Glu376, and Tyr523 residues of ACE through an electrostatic

force. Figure 6B proves that TP7 (LSFR) built hydrogen bonds

with Ala354, Glu384, Thr282, Ser284, His353, Tyr523, and

His513 (S2) residues of ACE, among which TP7 (LSFR) formed

hydrogen bonds with active pockets of S1 (Ala354, Glu384,

and Tyr523) and S2 (His353 and His513). In addition, TP7

(LSFR) contacted with Val380, His383, Phe512, and Val518

residues of ACE through a hydrophobic effect and contacted

with Glu376, Asp415, Asp453, and Lys511 residues of ACE

through an electrostatic force. Figure 6C reveals that TP10

(IYSP) built hydrogen bonds with Ala354, Thr282, Met278, and

Asn277 residues of ACE, among which TP10 (IYSP) formed

hydrogen bonds with the active pocket of S1 (Ala354). In

addition, TP10 (IYSP) interacted with Val380, Val379, Phe527,

Thr166, and Tyr523 residues of ACE through a hydrophobic

effect and contacted with Glu376 and Asp453 residues of ACE

through electrostatic force. The experiment illuminated that

TP6, TP7, and TP10 exhibited strong ACEi ability attributing to

effective binding with the key sites of ACE by hydrogen bonding,

electrostatic force, and hydrophobic interaction. In addition,

the activity of TP6, TP7, and TP10 was correlated with the

interaction with S1 and S2 pockets of ACE.

In addition, the affinity of TP6, TP7, and TP10 with ACE

was−7.0,−8.5, and−8.3 kcal/mol, which were close to those

of SP (5.7 kcal/mol), VDRYF (9.7 kcal/mol), and YSK (−7.9

kcal/mol) from tuna muscle (54) and rice bran (72).
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FIGURE 5

Mass spectrogram of 10 ACEi peptides (TP1–TP10) from protein hydrolysate of skipjack tuna milts (TMH). (A) TP1, (B) TP2, (C) TP3, (D) TP4, (E)

TP5, (F) TP6, (G) TP7, (H) TP8, (I) TP9, and (J) TP10.
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FIGURE 6

Molecular docking results of TP6, TP7, and TP10 with ACE. (A1) 2-D details of ACE and TP6 interaction. (A2) 3-D interaction details for TP6; (B1)

2-D details of ACE and TP7 interaction. (B2) 3-D interaction details for TP7; (C1) 2-D details of ACE and TP10 interaction. (C2) 3-D interaction

details for TP10.

Molecular size significantly impacts the affinity between

peptides and ACE because large peptides cannot pass through

the narrow binding channel of ACE (7, 71). For example,

VPP and IPP could conveniently pass through the ACE

channel and combine with Zn2+, but 7–11 peptides, including

TTMYPGIA, AVVPPSDKM, GPAGPRGPAG, and ALPMHIR,

revealed weak affinity with ACE (34). In the experiment, TP6,

TP7, and TP10 are tripeptides or tetrapeptides, and their small

MWs increase their chances of getting close to the binding

channel of ACE, and this was proved by their affinities with

ACE (−7.0, −8.5, and −8.3 kcal/mol for TP6, TP7, and

TP10, respectively).
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FIGURE 7

Cell viability of HUVECs treated with TP6, TP7, and TP10 for

24h, respectively.

Amino acids, especially the C- and N-terminal amino acids,

are crucial to the ACEi activity of oligopeptides (5, 7). The

aromatic (Tyr and Phe) and branched-chain (Leu and Ile) amino

acids were the key residues in the C terminus of oligopeptides

(72, 73). Amino acid residues containing a positive charge,

such as Lys and Arg, the C terminus could be conducive to

heighten the ACEi activity (74). Hayes et al. demonstrated

that hydrophobic amino acids are favorable to bind to the key

site of ACE (75). The Pro residue was the critical residue in

the C terminus of KDEDTEEVP, ADVFNPR, LPILR, VGLYP,

and VIEPR. Moreover, the Pro residue was proved that it

could improve the resistant ability of oligopeptides against the

digestion of the gastrointestinal tract (5, 73). Therefore, Tyr, Arg,

and Pro at the C terminus of TP6, TP7, and TP10 are specially

vital for their ACEi activity, and this was also proved by the

results in Figure 6.

In addition, the role of N-terminal amino acids is also

emphasized and discussed. Moayedi et al. reported that

branched aliphatic Val, Leu, and Ile residues at its N terminus

could exert strong inhibitory ability against ACE (76). Auwal

et al. reported a similar result that branched aliphatic amino

acids in the N terminus could improve the ACEi ability of

peptides (2). Therefore, the Leu residue at N-terminal TP7 and

Ile residue at N-terminal TP6 and TP10 play vital effects on their

ACEi ability.

E�ects of TP6, TP7, and TP10 on HUVECs

E�ects of TP6, TP7, and TP10 on cell viability

The influences of TP6, TP7, and TP10 on the viability of

HUVECs at 50–200µM are presented in Figure 7, and their cell

viability ranged from 98.76 ± 2.09% to 104.65 ± 2.19%. These

data indicated that TP6, TP7, and TP10 have no significant

toxicity to HUVECs.

Endothelial cells (HUVECs) constitute the inner cellular

lining of blood vessels and play an important role in serial

physiopathological processes, for instance, infection, repair in

trauma, angiogenesis, and atherosis (5, 7). Then, HUVECs

are currently considered to be one of the model cells in

curing the disease of the cardiovascular system (8, 54, 77).

The cell proliferation and death generally keeps an appropriate

balance in normal tissues, and the active substances with strong

inhibiting ability on cell proliferation illustrate their possible

cytotoxicity risk to the life body and are deemed to be inadequate

to develop healthy products with antitumor functions (7, 78).

These current findings proved that TP6, TP7, and TP10 were do

not render obvious toxicity to endothelial cells and should suite

to developing anti-blood pressure health products.

E�ects of TP6, TP7, and TP10 on NO
production and ET-1 secretion

Figure 8A shows that the NO levels in HUVECs incubated

with TP6, TP7, and TP10 were significantly increased in

comparison with the control group (P < 0.001), and the NO

levels of TP6, TP7, and TP10 groups increased to 50.63 ±

1.95, 45.91 ± 1.68, and 46.78 ± 2.47 µmol/gprot at 200µM.

In addition, NE could markedly downregulate the level of NO

(22.91 ± 1.26 µmol/gprot) in comparison with the control

group (P < 0.001), but the NO content decreased by NE was

separately compensated to 42.21 ± 2.66, 35.18 ± 1.2, and

39.27 ± 1.96µmol/gprot in TP6, TP7, and TP10 groups at

200µM (P < 0.001).

Figure 8B indicates that TP6, TP7, and TP10 could

dramatically decrease the ET-1 secretion of HUVECs (P <

0.001), and the ET-1 levels of TP6, TP7, and TP10 groups

reduced to 92.57 ± 2.68, 101.49 ± 2.05, and 96.15 ± 1.35

pg/mL at 200µM. Compared to the control group, NE could

prominently enhance the ET-1 secretion (148.35 ± 3.87 pg/mL)

(P < 0.001), but this negative effect on ET-1 secretion was

partially supplemented by TP6, TP7, and TP10 treatment and

lowered to 105.18 ± 3.29, 110.36 ± 1.76, and 109.12 ± 2.95

pg/mL at 200µM (P < 0.001).

In pathologic situations, NO deficiency will give rise to the

risks of cardiovascular diseases, and improving the production

of endothelial NO represents a good therapeutic approach for

atherosclerosis (8, 54). Therefore, some ACEi peptides, such as

KYIPIQ (79), WF (8), GRVSNCAA, TYLPVH (80), SP (54),

and MKKS and LPRS (81), play their hypotensive activity by

enhancing the production of NO in HUVECs. As a functional

factor similar to Ang II, ET-1 can lead to endothelial dysfunction

correlated with coronary heart disease and hypertension (8).

VVLYK from palm kernel expeller could dose-dependently

inhibit the secretion of intracellular ET-1 in EA.hy926 cells

(73). GRVSNCAA and TYLPVH from Ruditapes philippinarum

lowered blood pressure by markedly lowering ET-1 generation

(80). In addition, oligopeptides of SP, YRK, MKKS, FQK, FAS,
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FIGURE 8

Contents of nitric oxide (NO) (A) and endothelin-1 (ET-1) (B) of

HUVECs treated with TP6, TP7, and TP10 for 24h, respectively.

The cell group treated with captopril (Cap) was designed as the

positive control. ***P < 0.001 vs. control; ###P < 0.001 and ##P <

0.01 vs. captopril; 111P < 0.001 vs. norepinephrine (NE).

and LPRS from tuna muscles and Antarctic krill displayed

a similar function of decreasing the ET-1 level (8, 54, 81).

According to this finding, ACEi peptides of TP6, TP7, and

TP10 prominently promote NO production while restricting

ET-1 secretion in HUVECs. Moreover, TP6, TP7, and TP10 can

reverse the negative effect of NE upon NO- and ET-1-producing

processes in HUVECs.

Antioxidant functions of TP6, TP7, and
TP10 on H2O2-damaged HUVECs

Influence of TP6, TP7, and TP10 on viability of
H2O2-damaged HUVECs

Figure 9A indicates that H2O2 concentration from 100 to

600µM had a significant effect on the viability of HUVECs

(P < 0.05). The literature indicates that the concentration of

H2O2 induced the cell viability of about 50%, which is optimal

for establishing an oxidative damage cell model (78). Therefore,

the H2O2 concentration of 400µM induced the cell viability of

50.48± 1.96% of the blank group, which was applied to establish

FIGURE 9

E�ects on the viability of di�erent H2O2 concentration

(100–600µM)-treated HUVECs (A) and TP6-, TP7-, and

TP10-treated H2O2-damaged HUVECs (B). (A) a−fValues with

same letters indicate no significant di�erence (P > 0.05); (B) ***P
< 0.001 vs. control; #P < 0.05, ##P < 0.01, and ###P < 0.001 vs.

model; 1P < 0.05 and 111P < 0.001 vs. GSH.

the cell model of oxidative damage. Oxidative stress can cause

the excessive accumulation of ROS, which results in damage

to HUVECs and further leads to the injury to vascular barrier

function, the occurrence of atherosclerosis, high blood pressure,

and other cardiovascular diseases (7, 20). Thus, H2O2-induced

HUVECs are preferably applied to explore cellular protective

mechanisms of ACEi peptides.

Figure 9B presents the cytoprotective effects of TP6, TP7,

and TP10 on the H2O2-damaged HUVECs at 100 and 200µM.

TP6, TP7, and TP10 showed the significantly protective effects

on the H2O2-damaged HUVECs in a dose-dependent fashion,

and the cell viabilities of TP6, TP7, and TP10 groups at 200µM

were increased to 69.76± 3.06, 59.15± 2.81, and 61.58± 3.04%,

respectively, which were significantly higher than those of model

groups (50.48 ± 1.96%) (P < 0.01 or 0.001). However, the cell

viability of TP6, TP7, and TP10 groups was inferior to that of

the GSH group (75.69 ± 3.52%) (P < 0.05 or 0.001). Then,

TP6, TP7, and TP10 could dramatically increase cell viability

and give a strong protection to H2O2-induced HUVECs.

Zheng et al. found that VIEPR and ADVFNPR from oil palm

kernel expeller could exert an antihypertensive effect through

scavenging excessive ROS and protect vascular endothelial cells
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FIGURE 10

E�ects of TP6, TP7, and TP10 on the ROS (A) and MDA (B) levels

of H2O2-damaged HUVECs. ***P < 0.001 and **P < 0.01 vs.

control; ###P < 0.001 vs. model; 1P < 0.05 and 111P < 0.001 vs.

GSH.

from excessive ROS-induced damage (73). Umami peptides of

CC, CCNK, and HCHT could dose-dependently increase the

NO concentration and decrease the ET-1 content in HUVECs.

Moreover, CC, CCNK, andHCHT showed cytoprotective effects

by reducing the ROS content (82). Therefore, TP6, TP7, and

TP10 showed a similarly cytoprotective effect on HUVECs with

those reported ACEi peptides.

Influences of TP6, TP7, and TP10 on ROS, MDA,
and antioxidases (SOD and GSH-Px) in
H2O2-damaged HUVECs

Figure 10A indicates that the ROS levels were markedly

lowered after pretreating with TP6, TP7, and TP10 compared

with the model group (213.54± 4.62%) (P < 0.001). At 200µM,

the ROS levels of TP6, TP7, and TP10 groups were observably

dropped to 143.29 ± 2.66, 168.37 ± 4.68, and 158.78 ± 2.59 of

the blank control group, respectively. In addition, TP6 showed

the strongest ability on scavenging ROS among TP6, TP7, and

TP10 groups.

Figure 10B reveals that the MDA levels were markedly

lowered after pretreating with TP6, TP7, and TP10 compared

with the model group (29.72± 1.23 nmol/mg prot) (P < 0.001).

FIGURE 11

E�ects of TP6, TP7, and TP10 on the SOD (A) and GSH-Px (B)

levels of H2O2-damaged HUVECs. All values are means ± SD (n

= 3). ***P < 0.001 and **P < 0.01 vs. control; #P < 0.05, ##P <

0.01, and ###P < 0.001 vs. model; 11P < 0.01 and 111P < 0.001

vs. GSH.

At 200µM, the MDA levels of TP6, TP7, and TP10 groups were

dramatically decreased to 17.08 ± 0.96, 20.68 ± 1.06, and 19.11

± 0.88 nmol/mg prot, respectively. TP6 showed the strongest

ability on decreasing the MDA content among TP6, TP7, and

TP10 groups, but its ability was still inferior to that of GSH

(15.28± 0.61 nmol/mg prot).

Figure 11A shows the activities of SOD and GSH-Px

incubated with TP6, TP7, and TP10 at 100 and 200µM were

gradually increased. At the concentrations of 100 and 200µM,

the SOD levels in the TP6 group were 168.77 ± 5.32 and 184.06

± 7.19 U/mg prot; the activities in TP7 groups were 141.79

± 3.96 and 158.79 ± 5.93 U/mg prot; and the activities in

TP10 groups were 154.35 ± 3.68 and 172.93 ± 6.58 U/mg prot.

Moreover, the SOD activities in TP6, TP7, and TP10 groups were

markedly higher than those (119.31 ± 9.48 U/mg prot) of the

model group (P < 0.001).

The changes of GSH-Px levels showed the same trend with

the levels of SOD (Figure 11B). At 100 and 200µM, the GSH-

Px levels in the TP6 group were 42.69 ± 1.32 and 51.28 ±

3.16 U/mg prot; the activities in the TP7 group were 35.61

± 1.23 and 40.93 ± 2.15 U/mg prot; and the activities in

the TP10 group were 38.91 ± 1.17 and 44.69 ± 2.09 U/mg
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prot. The GSH-Px activity of peptide groups were observably

higher than that of the model group (30.24 ± 1.61 U/mg prot)

(P < 0.05 or 0.001).

For maintaining the optimal healthy state of cells,

endogenous antioxidant defense systems can timely and

efficiently get rid of excessive ROS (78, 83, 84). Also, MDA

is a key peroxidation product of the cell membrane lipid and

serves as a well-known indicator for estimating the oxidative

damage degree (85, 86). Collagen peptides of GASGPMGPR

and GLPGPM from yak bones could prominently lower

the accumulations of ROS and MDA by strengthening the

levels of SOD and CAT in worms (87). FPYLRH, FWKVV,

and FMPLH could dose-dependently enhance the levels

of SOD and GSH-Px to weaken the damage to DNA and

the contents of ROS and MDA in H2O2-induced HUVECs

(55, 78). Peptides from hazelnut byproduct can protect

HUVECs against oxidant damage induced by angiotensin

II by upregulating the activity of SOD and HO-1 to control

ROS generation (88). LKPGN and LQP from Antarctic krill

hydrolysate could enhance the activity of SOD and GSH-

Px to eliminate superfluous ROS, which further reduces

DNA damage and MDA content in H2O2-induced Chang

liver cells (56). Moreover, the antioxidant mechanisms of

GPA (89), KVLPVPEK, APKGVQGPNG (90), ICRD, and

LCGEC (51) indicated that they could activate the Nrf2

pathway in the oxidative damage cell model to induce the

overexpression of GSH-Px, heme oxygenase-1 (HO-1), and

SOD to decrease the oxidative damage of ROS. The current

findings demonstrated that the protective activities to H2O2-

damaged HUVECs of TP6, TP7, and TP10 were similar to

those of previous reported peptides, and the mechanism

should be related to activating the Nrf2 pathway to improve

antioxidase levels.

Conclusion

In conclusion, 10 novel ACEi peptides were isolated from

the protein hydrolysate of skipjack tuna milts and identified

as YDD, TRE, RDY, TERM, DRRYG, ICY, LSFR, GVRF,

KLYALF, and IYSP, respectively. Among them, ICY, LSFR, and

IYSP displayed noticeable hypotensive activity by inhibiting

ACE activity, increasing NO production and decreasing ET-1

secretion in HUVECs, and protecting HUVECs from H2O2-

induced oxidative damage. Moreover, ICY, LSFR, and IYSP

exhibited significant ACEi activity attributing to their effective

interaction with the active sites of ACE by hydrogen bonding,

electrostatic force, and hydrophobic interaction. Therefore,

this study not only develops technical support for utilizing

skipjack tuna milts to produce novel ACEi peptides but also

contributes to dispose the environmental pollution problems of

tuna byproducts. More importantly, 10 novel ACEi peptides,

especially ICY, LSFR, and IYSP, might be used as natural

functional ingredients for developing noticeable hypotensive

products. However, investigating the antihypertensive activities

of ICY, LSFR, and IYSP in mouse models should be explored

in future studies, which will provide better insights into their

potential in the management of hypertension.
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