
fnut-09-935099 October 20, 2022 Time: 14:38 # 1

TYPE Original Research
PUBLISHED 26 October 2022
DOI 10.3389/fnut.2022.935099

OPEN ACCESS

EDITED BY

R. Pandiselvam,
Central Plantation Crops Research
Institute (ICAR), India

REVIEWED BY

Naveen Kumar Mahanti,
Dr. Y.S.R. Horticultural University, India
Aimen El Orche,
Université Sultan Moulay Slimane,
Morocco
Marietta Fodor,
Szent István University, Hungary

*CORRESPONDENCE

Fangkai Han
hanfk11@163.com

SPECIALTY SECTION

This article was submitted to
Food Chemistry,
a section of the journal
Frontiers in Nutrition

RECEIVED 03 May 2022
ACCEPTED 20 September 2022
PUBLISHED 26 October 2022

CITATION

Han F, Ming L, Aheto JH, Rashed MMA,
Zhang X and Huang X (2022)
Authentication of duck blood tofu
binary and ternary adulterated with
cow and pig blood-based gel using
Fourier transform near-infrared
coupled with fast chemometrics.
Front. Nutr. 9:935099.
doi: 10.3389/fnut.2022.935099

COPYRIGHT

© 2022 Han, Ming, Aheto, Rashed,
Zhang and Huang. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permitted which
does not comply with these terms.

Authentication of duck blood
tofu binary and ternary
adulterated with cow and pig
blood-based gel using Fourier
transform near-infrared coupled
with fast chemometrics
Fangkai Han1*, Li Ming1, Joshua H. Aheto2,
Marwan M. A. Rashed1, Xiaorui Zhang2 and Xingyi Huang2

1School of Biological and Food Engineering, Suzhou University, Suzhou, Anhui, China, 2School of
Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China

This work aims to investigate a feasible and practical technique for the

authentication of edible animal blood food (EABF) using Fourier transform

near-infrared (FT-NIR) coupled with fast chemometrics. A total of 540 samples

were used, including raw duck blood tofu (DBT), cow blood-based gel (CBG),

pig blood-based gel (PBG), and DBT binary and ternary adulterated with

CBG and PBG. The protein, fat, total sugar, and 16 kinds of amino acids

were measured to validate the difference in basic organic matters among

EABFs according to species. Fisher linear discriminate analysis (Fisher LDA)

and extreme learning machine (ELM) were implemented comparatively to

identify the adulterated EABF. To predict adulteration levels, four extreme

learning machine regression (ELMR) models were constructed and optimized.

Results showed that, by analyzing 27 crucial spectral variables, the ELM model

provides higher accuracy of 93.89% than Fisher LDA for the independent

samples. All the correlation coefficients of the optimized ELMR models’

training and prediction sets were better than 0.94, the root mean square errors

were all less than 3.5%, and the residual prediction deviation and the range

error ratios were all higher than 4.0 and 12.0, respectively. In conclusion, the

FT-NIR paired with ELM have great potential in authenticating the EABF. This

work presents amino acids content in EABFs for the first time and built tracing

models for rapid authentication of DBT, which can be used to manage the

EABF market, thereby preventing illegal adulteration and unfair competition.
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Introduction

Animal blood is an excellent source of high-biological
value proteins, essential minerals, and vitamins (1). The global
consensus has concluded that using animal blood in foods helps
in reducing the loss of valuable nutrition sources and prevents
environmental pollution in the meat industry. Compared to
advanced biological treatments, such as protein extraction
from animal blood via membrane technology (2), the high-
cost animal blood food, known as “blood tofu,” obtained
through simple thermal processes, is widely distributed in
supermarkets and restaurants in China. There are, however,
differences in the types of animal blood that are suitable for
making blood tofu. Compared to other commonly consumed
animal blood, duck blood was more delicate and delicious
(3). Therefore, in China’s domestic market, the price of duck
blood is usually higher than that of cow blood or pork
blood (4).

Although only a few scientific papers have addressed
the issue of animal blood adulteration, it is clear from
media reports and administrative punishment cases that
the high-economic value of duck blood tofu (DBT)
being adulterated or replaced with other low-cost animal
blood remains a serious issue (3). Food frauds result in
insignificant economic losses for businesses and governments,
destroying brands and devaluing the market value of
affected products (5). Moreover, with the advancement
of novel food processing technology, it is becoming
increasingly difficult to discern the authenticity of DBT by
its appearances or textures. Therefore, there is an urgent
need for an effective and practical technique for determining
the DBT’s authenticity to promote fair trade and protect
consumers’ rights.

Until now, DNA-based technology has demonstrated a high
potential for determining the authenticity of animal blood.
Sasimanas Unajak and co-workers developed an interspecies-
specific multiplex-PCR assay using dried blood as an alternative
DNA source to classify four commercial animal species:
chicken, pig, cow, and crocodile (6). Yasser Said El-Sayed
and co-authors researched DNA markers for detecting and
discriminating human, cattle, buffalo, horse, sheep, pig, dog,
cat, and chicken blood samples using a species-specific PCR
method (7). Although the DNA-based technique is accurate,
it suffers from several setbacks, such as DNA degradation
and insufficient quantitative analysis (3). Gregory McLaughlin’s
work showed that Raman spectroscopy could be effectively
applied as a non-destructive technique for differentiating
human blood stains from abroad range of animal blood
stains, including cow, pig, chicken, etc. (8). Raman spectra
provide information about the laser scattering characteristics
of food surface substances. The detection depth is a vital
obstacle to its practical application, as different depths of
the DBT may contain varying amounts of adulteration.

Recently, species-specific peptide markers of several animal
blood samples were discovered and investigated for species
identification using ultraperformance liquid chromatography
in combination with the triple quadrupole mass spectrometry
technique (3). However, this technique is a problematic
practice due to the cumbersome measurement procedures,
false positives due to sample contamination, and other
drawbacks (4).

Fourier transform near-infrared spectroscopy is a promising
green analytical technique presented with the following
characteristics: rapid, convenient, non-destructive, and reliable
(9). It has been widely used to develop methods for the
authentication of animal source foods (10), with a particular
emphasis on meat adulteration, for example, detection of pork
adulteration in veal products (11), analysis of the minced
lamb and beef fraud (12), chicken meat authenticity (13),
quantitative detection of binary and ternary adulteration of
minced beef with pork and duck meat (14), quantification
of pork meat in other meats (15), and quantification of
beef, pork, and chicken in ground meat (16), to name
but a few. To our knowledge, however, the utilization of
FT-NIR to test the authenticity of animal blood food has
not been reported.

Hence, the present work attempts to develop a practical
technique for the authentication of the DBT binary and ternary
adulterated with cow and pig blood-based gel using FT-NIR
with fast chemometrics models constructed, thereby preventing
illegal adulteration and unfair competition.

Materials and methods

Samples prepared

Commercialized raw DBT was obtained from Henan
Huaying Agricultural Development Co. Ltd. (the largest
stockholder of the Chinese duck industry). Fresh cow and pig
blood were purchased from a local slaughterhouse in Suzhou,
China. After natural sedimentation, the cow and pig blood were
sterilized for 40 min at 100◦C to prepare blood gels, namely
cow blood-based gel (CBG) and pig blood-based gel (PBG).
All samples were homogenized and then frozen and kept at a
temperature of -20◦C for measurements.

A total of 540 samples were prepared and used, including
30 samples each of raw DBT, pure CBG, and PBG; 300 samples
for adulterated binary DBT samples, in which the DBT was
separately mixed with the CBG and PBG in a range of 10–50%
by weight at 10% steps, and 30 samples on each adulteration
level; 150 samples for the ternary adulterated DBT samples, in
which the DBT was together mixed with CBG and PBG, in range
of 10–50% by weight at 10% increments with equal amounts of
CBG and PBG, and 30 samples on each adulteration level. The
samples prepared and used are summarized in Table 1.

Frontiers in Nutrition 02 frontiersin.org

https://doi.org/10.3389/fnut.2022.935099
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-09-935099 October 20, 2022 Time: 14:38 # 3

Han et al. 10.3389/fnut.2022.935099

TABLE 1 Samples prepared and utilized.

Adulteration levels Sample sizes

Raw DBT 0% 30

Pure CBG – 30

Pure PBG – 30

DBT mixed with CBG 10%, 20%, 30%, 40%, 50% 5× 30 = 150

DBT mixed with PBG 10%, 20%, 30%, 40%, 50% 5× 30 = 150

DBT mixed with CBG
and PBG

10% (5% CBG + 5% PBG) 30

20% (10% CBG + 10% PBG) 30

30% (15% CBG + 15% PBG) 30

40% (20% CBG + 20% PBG) 30

50% (25% CBG + 25% PBG) 30

DBT, Duck blood tofu; CBG, Cow blood-based gel; PBG, Pig blood-based gel.

General organic matters analysis

The Kjeldahl method (GB 5009.5-2016) was used for the
crude protein analysis; the Soxhlet extractor method (GB
5009.6-2016) was utilized to determine fat content in EABF
samples; the Phenol-Sulfate spectrophotometry (GB/T 9695.31-
2008) was applied for total sugar analysis, and the ion-exchange
chromatography with post-column derivatization of ninhydrin
(GB 5009.124-2016) was performed for amino acids analysis.

Fourier transform near-infrared
measurements

The Antaris II Near Infrared Spectrophotometer
(ThermoElectron Company, USA) was employed to research
the FT-NIR diffuse reflectance spectroscopy analysis. Due to
the optical fiber used, it is possible to separate the spectrometer
from the measurement location over several meters. Thus,
industrial installations with a high degree of flexibility and
complete automation are possible (11). The sample was
collected separately into a standard cup and scanned three times
with a spectral resolution of 8.0 cm−1 at different points. Each
spectrum consisted of an average of 32 scans ranging from 4,000
to 10,000 cm−1, resulting in a total of 1,557 variables for each
sample (17). Chemometrics was performed using the average of
the three spectra collected from one sample (18).

Chemometrics and software

Chemometric models were constructed and optimized for
authentication of the animal blood food by analysis of FT-
NIR datasets.

The first derivative (1st Der), second derivative (2nd Der),
centralization, standard normal variate transform (SNV), and
multivariate scattering correction (MSC) (19) separately paired

with stepwise discriminant analysis (SWDA) (20) were used in
comparison for spectra denoising and screening of the crucial
spectral wavenumbers to identify the adulterated DBT.

Then, Fisher linear discriminant analysis (Fisher LDA) and
non-linear algorithm, namely extreme learning machine (ELM)
were utilized comparatively for modeling to identify adulterated
DBT mixtures. ELM is selected because of its extremely fast
learning speed, satisfactory generalization performance, and
simple neural network structure (10). ELM theory for tasks of
recognition and regression can be found in the literature by Pro.
Guangbin Huang (21, 22).

The Fisher LDA and ELM models were evaluated for their
performance in identifying DBT binary and ternary mixtures
adulterated with cow and pig blood-based gels shown in Eq. (1).

R =
N1

N2
× 100% (1)

Where R means the prediction accuracy (%) of the training
or test set; N1 means the number of correctly classified samples;
N2 means the number of all samples in the training or test set.

According to the conventional detection procedures of
FT-NIR for food adulteration, when the identification task
of adulterated blood food is completed, the next step is
to quantitatively predict the adulteration level. Similarly, the
1st Der, 2nd Der, centralization, SNV, and MSC separately
paired with competitive adaptive reweighted sampling methods
(CARS) (23) were used in comparison for spectra denoising
and screening of the crucial spectral wavenumbers to predict
the adulteration level. Extreme learning machine regression
(ELMR) models were constructed and optimized for the task of
predicting adulteration levels.

The root mean square error (RMSE) in the training set
(RMSEt) and prediction set (RMSEp), the correlation coefficients
(r) in training set (rt), prediction set (rp), the residual prediction
deviation (RPD), and the range error ratio (RER) were used to
evaluate ELM regression models’ performance. The RMSE, r,
RPD, and RER were calculated with the following formulas:

RMSE =

√√√√√ n∑
i=1

(yi −
∧
y
i
)2

n
(2)

where n means the sample size of the training or prediction set,

yi means the actual adulteration level of the ith sample, and
∧
y
i

means the predicted adulteration level of the ith sample (24).

r =

√√√√√√√√1−

n∑
i=1

(
∧
y
i
−yi)2

n∑
i=1

(y
i
−

_
y)2

(3)
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where, y means the average value of the actual adulteration levels
of the samples in the training or prediction set (24).

RPD =
Std.

RMSEp
(4)

where Std. means the standard deviation of the reference values
for the training set samples. An RPD above 3 is considered
satisfactory; a value of 5 or higher indicates that the established
model can be used for quality control. Prediction models with
an RPD value of 2–3 are considered to perform well enough for
fast screening analysis (25).

RER =
Max−Min
RMSEt

(5)

where, Max and Min mean the maximum and the minimum
values observed in the reference data (26), e.g., the adulteration
levels. RER above 10 is roughly an indicator of a model with
good predictive ability (27).

All algorithms were implemented in Matlab Version 7.14
(Mathworks, Natick, USA) with windows 10.

Results and discussions

General organic matters analysis
results

Protein, fat, and total sugars were determined to validate the
difference in basic organic matters among raw DBT, pure CBG,
and PBG used in this study. Results are shown in Table 2. It was
found that the fat content in DBT and PBG was significantly
lower than that in CBG; the total sugars content in DBT and
CBG was similar, but both significantly lower than that in PBG;
the protein content in PBG was the highest, while the protein
content in CBG was the lowest.

It could also be found that protein is the major organic
component in animal blood food used. As shown in Table 2, 16
different kinds of amino acid contents in samples were measured
to explore the differences in protein composition. The aspartic
acid and leucine content in DBT and PBG were significantly
higher than these two indicators in CBG; the phenylalanine
content in CBG and PBG was significantly less than that in DBT.
The remaining 13 kinds of amino acids differed significantly
among DBT, CBG, and PBG. It was found that the content of
threonine, glutamic acid, proline, glycine, alanine, methionine,
isoleucine, tyrosine, lysine, and arginine in DBT and PBG were
the highest and the least, respectively. The serine content in
CBG was significantly higher than that in DBT or PBG, while
the serine content in PBG was the lowest. The valine content in
the animal blood food samples increased in the following order:
CBG, DBT, and PBG; and Histidine content was CBG, PBG, and
DBT in turn.

Identification of the adulterated duck
blood tofu

Fisher LDA and ELM were utilized for modeling to identify
the adulterated DBT. All 540 samples were divided into six
categories: (1) Raw DBT, (2) Pure CBG, (3) Pure PBG, (4) DBT
mixed with CBG, (5) DBT mixed with PBG, and (6) DBT ternary
mixed with CBG and PBG, whose original FT-NIR spectral data
are shown in Figure 1.

During modeling, one-third of the samples in each group
were selected as the prediction set using the Kennard-Stone
algorithm (28), and the remaining samples were utilized as
the training set. The adopted Kennard-Stone algorithm ensures
that the samples of training and test sets remain unchanged in
the modeling process under the conditions of different spectral
preprocessing methods and selected key variables, which is
helpful to improve the stability of the model.

The 1st Der, 2nd Der, centralization, SNV, and MSC
separately paired with the SWDA were performed and
compared for spectra denoising and selecting the crucial
spectral wavenumber. Afterward, the principal component
analysis (PCA) was used to reduce the dimension and
decorrelate the variables selected. The top three principal
components (PCs) of the selected spectral variables with
different spectral pretreatment techniques were utilized because
of their cumulative contribution rates were all over 99.0%.

As for the identification of the adulterated DBT, the results
showed that the optimal Fisher LDA model obtained by selecting
27 critical spectral wavenumbers through SWDA and MSC
was the best spectral preprocessing technique. The discriminate
functions (DFs) are used as follows:

DF1 = −0.146 ∗ PC1− 0.9791 ∗ PC2− 0.1416 ∗ PC3; (6)

DF2 = −0.2469 ∗ PC1+ 0.1989 ∗ PC2− 0.9484 ∗ PC3; (7)

DF3 = 0.1181 ∗ PC1− 0.0423 ∗ PC2− 0.9921 ∗ PC3. (8)

Figure 2 depicts the scatter diagram of the discriminate
scores of the training set samples of the optimal Fisher LDA
model. Herein, 27 samples were misclassified, and the prediction
accuracy was 92.5%. In terms of the test set, 25 samples
were misclassified, giving a prediction accuracy of 86.11%. The
following samples were incorrectly classified: one sample of the
DBT was misclassified as DBT mixed with PBG; nine samples of
DBT mixed with CBG were misclassified, including four samples
as DBT mixed with PBG, three samples as DBT ternary mixed
with cow and pig blood-based gels, one sample as DBT, and one
sample as CBG; six samples from the group of DBT mixed with
PBG were misclassified, there were four samples misclassified
as DBT, and two samples as DBT ternary mixed with cow
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TABLE 2 Protein, fat, total sugars, and 16 different amino acids content (g/100 g) in the raw duck blood tofu, cow, and pig blood-based gels used.

Duck blood tofu Cow blood-based gel Pig blood-based gel

Protein 27.7± 0.507b 26.7± 0.294c 28.8± 0.438a

Fat 0.0391± 0.016b 0.126± 0.007a 0.0438± 0.002b

Total sugars 1.42± 0.164b 1.31± 0.093b 1.96± 0.513a

Amino acids Aspartic acid 2.88± 0.059a 2.62± 0.061b 2.91± 0.051a

Threonine 1.54± 0.013a 1.37± 0.026b 0.871± 0.016c

Serine 1.36± 0.012b 1.47± 0.028a 1.20± 0.022c

Glutamic acid 3.35± 0.03a 2.51± 0.051b 2.20± 0.042c

Proline 1.24± 0.049a 0.993± 0.019b 0.926± 0.035c

Glycine 1.22± 0.009a 1.08± 0.021b 1.13± 0.021c

Alanine 2.67± 0.018a 1.79± 0.034b 1.89± 0.035c

Valine 1.74± 0.007b 1.65± 0.043c 1.83± 0.036a

Methionine 0.385± 0.006a 0.203± 0.009b 0.135± 0.002c

Isoleucine 0.874± 0.011a 0.340± 0.008b 0.176± 0.006c

Leucine 3.13± 0.033a 2.79± 0.055b 3.09± 0.058a

Tyrosine 1.05± 0.023a 0.762± 0.023b 0.578± 0.008c

Phenylalanine 2.01± 0.026a 1.68± 0.021b 1.63± 0.040b

Histidine 1.72± 0.018a 1.42± 0.023c 1.60± 0.028b

Lysine 2.75± 0.027a 2.28± 0.026b 2.21± 0.031c

Arginine 1.64± 0.014a 1.13± 0.025b 1.02± 0.023c

Results are expressed as mean values± standard deviation using three significant digits, n = 9 for protein, lipids, total sugars content analysis; n = 6 for amino acids content measurement.
Values in the same line with different superscripts were significantly different (P < 0.05). Superscript a stands for the maximum value, c stands for the minimum value, and b stands
between a and c.

FIGURE 1

The original NIR spectral for the samples prepared and used. DBT, Duck blood tofu; CBG, cow blood-based gel; PBG, pig blood gel.

and pig blood-based gels, respectively; nine samples from the
group of DBT ternary mixed with cow and pig blood-based gels
were misclassified, including seven samples misclassified as DBT
mixed with PBG, and two samples as DBT mixed with CBG.
Figure 3 shows the confusion matrixes of the training set of the
Fisher LDA. Table 3 summarizes the results of all Fisher LDA
models with various spectral denoising techniques and crucial
variables selected using SWDA.

Extreme learning machine model was also constructed using
the same training and test sets with the optimal Fisher LDA
model. The ELM theory states that the number of hidden
neurons and the activation function of the hidden layers have a
significant impact on the ELM’s performance (29). Hence, three

functions were utilized in comparison as the activation function
for the hidden layers during ELM modeling, as depicted in the
following formulas:

Sigmoidal function : S(x) =
1

1+ e−x
(9)

Sine function : S(x) = sin(x) (10)

Hardlim function : S(x) =
{

1 x>0;
0 x≤0. (11)

Generally, the optimal number of hidden neurons can be
obtained via the cut-and-trial method. However, the range of
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FIGURE 2

The scatter diagram of the discriminate scores of the training set samples for the optimal Fisher LDA model. DBT, Duck blood tofu; CBG, cow
blood-based gel; PBG, pig blood gel.

FIGURE 3

The confusion matrixes of the training set of the Fisher LDA. DBT, Duck blood tofu; CBG, cow blood-based gel; PBG, pig blood gel.

the optimal hidden neurons number could be obtained with the
aid of the following empirical formula (30),

Nh =
NS

(α ∗ (Ni + N0))
(12)

where, Nh means the number of hidden neurons, Ns means the
sample size of the training set, Ni means the number of the

input neurons, and N0 means the number of output neurons,
α = [2, 10].

For this work, Ns = 360, Ni = 3, and N0 = 1. Hence, the
Nh = [9, 45], as the strategy of cut-and-trial used, the optimal
number of the hidden neurons was set at a range of [1, 50].

Figure 4 depicts the results of the ELM models with different
activation functions and hidden neuron counts. The optimal
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ELM model was obtained when the number of hidden neurons
was 41 and the Sine activation function was used, which offered
the highest identification rates of 98.61 and 93.89% in the
training and test sets, respectively. Details of the misclassified
samples in the test set are as follows: one DBT sample was

TABLE 3 Identification rates of the Fisher LDA models to classify the
adulterated duck blood tofu with different spectra preprocess
methods and wavenumbers selected.

Methods No. of the
wavenumber used

Training set
(%)

Test set (%)

None 12 91.94 83.89

Centralization 10 67.78 63.89

First derivative 56 82.5 77.22

Second derivative 66 84.17 74.44

MSC 27 92.5 86.11

SNV 12 92.78 85.00

Bold digits represent the optimal performance.

misclassified as DBT adulterated with CBG; five samples from
the group of DBT adulterated with CBG were misclassified,
including three samples as DBT ternary adulterated with cow
and pig blood-based gels, and two samples as DBT adulterated
with PBG; two samples from the group of the DBT adulterated
with PBG were misclassified as DBT adulterated with CBG; three
samples from the group of the DBT ternary adulterated with
cow and pig blood-based gels were misclassified, including two
samples as DBT adulterated with PBG, and one sample as DBT
adulterated with CBG.

The present work used FT-NIR with a spectral range
of 4,000–10,000 cm−1 for quality analysis of animal blood
food. There are differences in basic organic chemicals among
the raw DBT, CBG, and PBG used (Table 2). Variations
in radiation absorption at different wavenumbers are related
to the chemical compositions of the animal blood food
(5). As depicted in Figure 5A, each species of animal
blood-based food has a characteristic spectrum that allows
its identification and differentiation (Figure 5B). This is

FIGURE 4

The results of the ELM models with different activation functions and numbers of hidden neurons.

FIGURE 5

The raw NIR spectral and scatter diagram of the top three principal component analysis scores of the raw duck blood tofu (DBT), pure cow
blood-based gel (CBG), and pig blood-based gel (PBG).
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FIGURE 6

The multivariate scattering correction spectra of the samples prepared and used (A) and the selected wavenumbers (B) for Fisher LDA and ELM
modeling. DBT, Duck blood tofu; CBG, cow blood-based gel; PBG, pig blood gel.

FIGURE 7

The best pre-treatment technique and the crucial variables selected for the optimal ELMR models constructed. ELMR No. 1 for prediction of the
CBG content in DBT adulterated with CBG; ELMR No. 2 for prediction of the PBG content in DBT adulterated with PBG; and ELMR Nos. 3 and 4
for prediction of the CBG and PBG content in the DBT ternary mixed with cow and pig blood-based gels, respectively.

necessary to detect the DBT binary and ternary adulterated
with cow and/or pig blood-based gel using the FT-NIR
technique.

Figure 6 shows the MSC spectra (A) of the samples
prepared and used, and the selected wavenumbers (B) for

Fisher LDA and ELM modeling. It could be observed from
the spectra profile in Figure 6B that the crucial wavenumber
for identification of the adulterated DBT samples are around
4,108, 4,405, 5,238, 5,326, 5,477, 5,774, 6,241, 6,931, 7,189,
8,015, 9,399, and 9,997 cm−1. These key wavenumbers reflected
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FIGURE 8

Results of the optimal ELMR models for predicting adulteration levels. (A,B) ELMR No. 1 for prediction of the CBG content in DBT adulterated
with CBG; ELMR No. 2 for prediction of the PBG content in DBT adulterated with PBG; and (C,D) ELMR Nos. 3 and 4 for prediction of the CBG
and PBG content in the DBT ternary mixed with cow and pig blood-based gels, respectively.

the difference of hydrogen components in the raw DBT, pure
cow, and pig blood-based gels, such as 4,108 and 4,405 cm−1

corresponds to C-H+C-C and C-H+C-H combinations, which
represent CH, CH2, and CH3 groups, respectively; 5,238
and 5,326 cm−1 represents RCO2H and C = O stretch 2nd
overtone, respectively; 5,477 cm−1 represents C = O stretch
2nd overtone; 5,774 cm−1 corresponds to S-H and C-H 1st
overtone, which represents S-H, C-H, and C-H2; 6,241 cm−1

represents Ar-CH; 6,931 cm−1 represents ROH, CONH2, and
CH; 7,189 and 8,015 cm−1 corresponds to the second overtone
region, which represents CH3, CH2, ArOH, and CH; 9,399
and 9,997 cm−1 corresponds to N-H 2nd overtone, which
represents RNH2. All groups are associated with significant
amounts of protein, amino acids, fat, and sugar is shown in
Table 2.

Extreme learning machine performed better than Fisher
LDA for the identification of adulterated DBT samples. The
reason is primarily due to the relationships among the FT-
NIR data matrices of the animal blood food used were more
complex than linear as a result of the essential characteristic
of FT-NIR, which is spectral of several wavenumbers may
contain information from the same organic chemicals,
and spectral of each wavenumber may contain chemical
information from several organic chemicals in the food
materials. ELM has a significant advantage over linear
discriminant analysis algorithms for processing non-linear

problems due to its superior ability to self-learning and
self-adjusting (31).

Prediction of the adulteration levels

In this section, extreme learning machine regression
(ELMR) models were constructed and optimized for predicting
adulteration levels. Three FT-NIR datasets of those adulterated
samples, namely DBT mixed with CBG, DBT mixed with PBG,
and DBT ternary mixed with CBG and PBG were utilized to
build four ELMR models. ELMR No. 1 for prediction of the
CBG content in DBT adulterated with CBG; ELMR No. 2 for
prediction of the PBG content in DBT adulterated with PBG;
and ELMR Nos. 3 and 4 for prediction of the CBG and PBG
content in the DBT ternary mixed with cow and pig blood-based
gels, respectively.

The 1st Der, 2nd Der, centralization, SNV, and MSC
separately paired with CARS for spectra denoising and
screening of the crucial spectral wavenumber during ELMR
modeling according to four convergence criteria: RMSE,
correlation coefficients (r), RPD, and RER. The selected variables
coupled with spectral preprocess technology for ELMR Nos.
1 and 2 were also utilized to construct ELMR Nos. 3
and 4, respectively, but performances were compared and
optimized. Therefore, the optimized variables and spectral
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pretreatment method for ELMR No. 1 may be different from
those for ELMR No. 3 because the original FT-NIR datasets were
different. The same situation applies to ELMR Nos. 2 and 4.

The Kennard–Stone algorithm was also used to select one-
third of samples from each adulteration level group as the
prediction set and the remaining samples were utilized as
the training set. The Sine activation function (Eq. 10) was
used as the activation function of the hidden layers according
to the optimized ELM model for identifying adulterated
animal blood foods.

The number of hidden neurons was also optimized during
ELMR modeling. Herein, as the strategy of cut-and-trial was
used, the optimal number of hidden neurons was also set at a
range of [1, 50].

Results show that, for the prediction of CBG content
in the DBT adulterated with CBG, the optimal ELMR
model was obtained while the MSC and 68 crucial variables
were used; for the prediction of PBG content in the
DBT adulterated with PBG, the optimal ELMR model
was obtained, while the MSC and 52 crucial variables
were used; for the prediction of the CBG content in
the mixtures of DBT ternary adulterated with CBG and
PBG, the optimal ELMR model was obtained while the
centralization and 90 crucial variables were used; and for
prediction of the PBG content in the mixtures of DBT ternary
adulterated with CBG and PBG, the optimal ELMR model
obtained while SNV and 602 crucial variables were used. The
optimal spectral pretreatment method and the selected crucial
variables for constructing the ELMR models are shown in
Figure 7.

Figure 8 depicts the actual and predicted adulteration
levels of the training and test set of the optimal ELMR
models built. As demonstrated in the figure, all the
correlation coefficients of the training and prediction set
of the optimal ELMR models were higher than 0.94,
with the RMSEt and RMSEp less than 3.5%, and the
RPD and RER were over 4.0 and 12.0, respectively.
Performances of the ELMR models constructed were
satisfactory.

Conclusion

Due to the significant economic importance of DBT,
the practice of adulterating or replacing it with other low-
cost animal types of blood is still quite severe. The use
of FT-NIR in combination with fast chemometrics was
presented as a method for detecting DBT binary and
ternary adulterated with cow and pig blood-based gels.
The ELM model outperformed the Fisher LDA model in
identifying adulterated DBT, with higher identification rates
of over 93.0% in both the training and test sets. For
adulterated level prediction, all the correlation coefficients

of the training and prediction sets of the ELMR models
constructed were higher than 0.94, with the RMSEt and
RMSEp all less than 3.5%, and the RPD and RER were
all over 4.0 and 12.0, respectively. The findings of this
work show that FT-NIR paired with ELM may be utilized
to assess edible animal blood food adulteration rapidly
and conveniently.
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