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Copper is a vital tracemetal in human body, which plays the significant roles in amounts of

physiological and pathological processes. The application of copper-selective probe has

attracted great interests from environmental tests to life process research, yet a few of

sensitive Cu2+ tests based on on-site analysis have been reported. In this paper, a novel

fluorescein-based fluorescent probe N4 was designed, synthesized, and characterized,

which exhibited high selectivity and sensitivity to Cu2+ comparing with other metal ions

in ethanol–water (1/1, v/v) solution. The probe N4 bonded with Cu2+ to facilitate the

ring-opening, and an obvious new band at 525 nm in the fluorescence spectroscopy

appeared, which could be used for naked-eye detection of Cu2+ within a broad pH

range of 6–9. Meanwhile, a good linearity between the fluorescence intensity and the

concentrations of Cu2+ ranged 0.1–1.5 eq. was observed, and the limit of detection of

N4 to Cu2+ was calculated to be as low as 1.20µm. In addition, the interaction mode

between N4 and Cu2+ was found to be 1:1 by the Job’s plot and mass experiment.

Biological experiments showed that the probe N4 exhibited low biological toxicity and

could be applied for Cu2+ imaging in living cells. The significant color shift associated

with the production of the N4-Cu2+ complex at low micromolar concentrations under

UV light endows N4 with a promising probe for field testing of trace Cu2+ ions.

Keywords: trace metal, fluorescent probe, copper ion, test strips, cells imaging

INTRODUCTION

Trace elements are present in living body in small amounts, but they are important for the growth,
development, maintenance, and recovery of health (1–3). Either insufficient or excessive intake
of trace elements could cause several diseases (4). Copper is a vital trace metal in the human
body, which plays the significant roles in amounts of physiological and pathological processes
including body circulation, ATP production, and bone formation as well as protecting the cell
from oxygen free radicals (5–7). An aberrant concentration of copper may cause the imbalance in
organisms, resulting in a series of pathological illnesses such as liver and kidney damage, cancer, and
neurodegenerative disorders including Parkinson’s, Wilson’s, and Alzheimer’s (8–10). In addition,
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Cu2+ pollution in water and soil mainly comes from the metal-
containing wastes caused by industrial production. Due to the
pollution of water environment and soil environment, Cu2+

can gradually be accumulated in animals and plants, thereby
affecting human health (11, 12). Resulting ground the absence
and overloading of Cu2+ has been found to adversely affect all
the biological systems including humans (13–15). As a result, it
is vital to develop efficient methods for tracking and quantifying
the anomalous of the concentrations and distributions of Cu2+

to comprehend the transportation, metabolic mechanism, and
interaction roles of Cu2+ in linked physiological and pathological
processes (16–20).

In the past decades, many copper quantification methods
including inductively coupled plasma mass spectrometry (ICP-
MS) (21, 22), atomic absorption spectrometry (AAS) (23, 24), and
fluorescent probes (25–27) have been reported. These methods
offer sensitivity but usually suffer from complexity and costly.
Fluorescent probe technique enjoys the advantages of simplicity,
high selectivity, and sensitivity as well as convenient visual
imaging with excellent spectroscopic properties (28–35). Among
the reported probes, the colorimetric fluorescent probes of Cu2+

exhibit the potential advantages of naked-eye detection without
complicated sample preparation or expensive instruments, which
represent a rapid, sensitive Cu2+ testing method (25, 26). In
addition, the development of new techniques makes it easy
to quickly detect and quantify harmful levels of Cu2+ at low
micromolarity through field tests.

To date, many colorimetric fluorescent probes consisted of
large π-conjugated system such as fluorescein (36), rhodamine
(37), coumarin (38, 39), anthracene (40), and BODIPY (41, 42)
with obvious spectra absorption or strong fluorescence have
been successfully synthesized (43). Among those probes, the
fluorescein family dyes have excellent spectroscopic properties,
such as long absorption and emission wavelengths, high
extinction coefficients, high quantum yields, and excellent
photostability, which are always introduced to construct optical
sensors for metal ions (44). The sensing mechanism of these
probes is based on the coordination sites to bind metal ions
(45). However, the interaction between Cu2+ and fluorescein
was rarely confirmed, which blocks our understanding of its
interaction mode.

In this work, we designed and synthesized a novel fluorescent
probe N4 based on a fluorescein derivative for rapid, selective,
and sensitive response to Cu2+ in aqueousmedia. The fluorescent
probe N4 exhibited the naked-eye detection of Cu2+ and a
limit of detection (LOD) of 1.20µm, indicating promise in-field
applications. The solution color of N4 changes from colorless
to green after the addition of Cu2+, with a noticeable new
band at 525 nm observed under UV light. The coordination
process can be detected efficiently, and the sensing mechanism
is also illustrated by Job’s plot, FT-IR, and mass spectra.
Furthermore, biological application experiments indicated that
the probes can detect Cu2+ in living cells, which might not only
provide effective tools for Cu2+ imaging in biological samples,
but also promote the understanding of the pathological and
pharmacological effects of Cu2+ and its related enzymes in
various diseases.

MATERIALS AND METHODS

Materials and Reagents
Ethyl acetate, petroleum ether, ethanol, sodium hydrate,
hydrochloric acid, fluorescein, and hydrazine hydrate were
purchased from Tianjin Fuyu Fine Chemicals Co., Ltd (Tianjin,
China). 5-Bromoindole-3-formaldehyde, copper sulfate, and
dimethyl sulfoxide were purchased from Aladdin Reagent Co.,
Ltd (Shanghai, China). All of the reagents were of analytical grade
and were utilized straight away (without further treatment). A
Milli-Q system was used to create ultrapure water for all of
the solutions.

Apparatus and Instrumentation
Fluorescence analysis was carried on a HITACHI F-4500
fluorescence spectrophotometer. IR spectra were performed on
a Bruker Tensor 27 spectrometer. NMR spectra were obtained
on a Varian INOVA-400 MHz spectrometer (400 MHz). A
Bruker micro-TOF-Q II ESI-TOF LC/MS/MS spectroscopy
was used mass spectra test. Living cells imaging experiments
were performed on an Olympus FV1000 confocal microscopy.
Cytotoxicity analysis was recorded with the SoftMax Pro software
in Spectra max190-Molecular Devices.

Synthesis of the Probe N4
Fluorescein hydrazine was synthesized from fluorescein and
hydrazine according to the literature (45). Fluorescein hydrazine
(3.48 g, 10.04 mmol) and 5-bromoindole-3-carbaldehyde (1.50 g,
6.69 mmol) were dissolved in 50ml of ethanol, refluxed for 6 h,
cooled to room temperature after the reaction. The precipitate
was filtered out and washed several times with absolute ethanol,
and the pale yellow solid was obtained and placed in a dark place
at 4◦C for use; yield 43.27%, melting point 259–261◦C. 1H NMR
(400 MHz, TMS, CD3OD) δ 9.31 (s, 1H), 8.01 (d, J = 1.2Hz,
1H), 7.94 (dd, J = 6.0, 1.4Hz, 1H), 7.62 (td, J = 6.6, 1.3Hz, 2H),
7.49 (s, 1H), 7.24-7.16 (m, 3H), 6.74 (d, J = 2.3Hz, 2H), 6.46
(dt, J = 8.6, 5.5Hz, 4H); 13C NMR (100 MHz, TMS, DMSO-
d6) δ 165.9, 163.2, 158.9, 158.7, 153.2, 152.9, 152.0, 149.79, 148.9,
136.2, 133.8, 133.0, 132.8, 131.6, 129.8, 129.5, 128.9, 128.7, 128.4,
126.0, 125.6, 124.9, 124.4, 123.9, 123.2, 122.8, 114.1, 113.9, 112.6,
112.5, 112.3, 111.3, 110.4, 103.0, 102.9, 66.2, 65.1, 40.7, 40.5, 40.3,
40.1, 39.8, 39.6, 39.4, 19.0; IR (KBr, cm−1): 3,554, 3,402, 3,111,
1,654, 1,612, 1,503, 1,449, 1,339, 1,298, 1,265, 1,236, 1,175, 1,110,
1,078, 993, 885, 861, 792, 752, 687, 584, 529; (ESI) m/z calcd for
C29H18BrN3O4 (M+Na)+: 574.0373. found: 574.0357.

Cell Toxicity Study
Cell toxicity was tested by CCK-8 assay. Cells were cultured in
96-well plates and cultured at 37◦C for 24 h, and then, different
concentrations of probe (0.0, 2.5, 5.0, 10.0, 20.0, and 40.0µmol/L)
were added to the wells and cultured for 24 h. CCK-8 was
added to each well, and the plate was incubated for another
2 h. Absorbance was measured at 450 nm. All experiments
were repeated three times, and the data were presented as the
percentage of control cells.
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FIGURE 1 | (A) Emission spectra of probes before and after treatment with Cu2+. (B) The time-dependent fluorescence intensity (525 nm) of probe N4 (20.0µm)

upon addition of Cu2+ (20.0µm). λex = 440 nm.

Colorimetric Detection of Cu2+

The stock solution of probe N4 (1mm) was prepared in
EtOH. The solutions of biologically relevant analytes stock
solutions (1mm) were prepared in deionized water. During
the titration experiments, different amounts of Cu2+ and
1.0ml of 200µm probes were mixed and filled up with
phosphate-buffered saline (PBS) to 10ml in volumetric tubes.
During the interference experiments, 20µm of Cu2+, 1.0ml
of N4 (200µm), and 1.0ml of testing species (400.0µm)
were mixed and filled up with PBS to 10ml in volumetric
tubes. During the titration experiments of ethylenediamine,
1.0ml of 200.0µm probes, 1.0ml of 400.0µm Cu2+, and
different amounts of ethylenediamine were mixed and filled up
with PBS to 10.0ml in volumetric tubes. About 1ml aliquots
were pipetted into a 1-cm cuvette for spectral measurements.
About 5 nm bandpasses were used for both excitation and
emission wavelengths. For all measurements, the absorbance was
recorded at 440 nm and the fluorescence intensity was recorded
at 525 nm.

Detection Limit of Probe N4
The detection limit was calculated based on the fluorescence data.
To determine the δ/S ratio, the emission intensity or absorbance
of N4 (20.0µm) without Cu2+ was measured 10 times, and the
standard deviation of the blank measurements was determined.
Under the present conditions, a good linear relationship between
the relative emission intensity (525 nm) and Cu2+ concentration
could be obtained in the 0.0–30.0µm. The detection limit is then
calculated with the equation: detection limit = K × δ/S, where δ

is the standard deviation of blank measurements; S is the slope
between intensity vs. sample concentration. The fluorescence
analysis results are as follows: linear equation: y = 49.559x-91.3
(R2 = 0.9922), δ = 19.823 (N = 10), S = 49.559, K = 3; LOD =

K× δ/S= 3× 19.823/49.559= 1.20 µm.

RESULTS AND DISCUSSION

Spectral Studies of Probe N4 for Sensing
Cu2+

First, the optical study of the probe N4 was investigated in PBS
buffer (10.0mm, pH = 7.4)/ EtOH (1:1, v/v). As shown in the
Supplementary Figure S1 and Figure 1A, when the probe was
treated with Cu2+(20.0µm), the fluorescence intensity at 525 nm
was rapidly enhanced, which was attributed to the opening of the
loop of the probe spironolactone caused by Cu2+. Meanwhile,
the color of the probe solution changed from colorless to green
under visible light, indicating that probe N4 can be used for
visual detection of Cu2+. As shown in Figure 1B, the enhanced
fluorescence intensity at 525 nm was recorded after the addition
of Cu2+ (20.0µm) and reached a plateau after 160 s, indicating
that probe N4 can detect Cu2+ rapidly.

Next, the titration study was carried out by adding different
concentrations of Cu2+ (0–100.0µm) into the solutions of the
probe N4 (20.0µm). As shown in Figure 2, the fluorescence
intensity at 525 nm increased significantly with increasing Cu2+

concentration and reached the maximum value when the
Cu2+ concentration up to 5.0 eq. In addition, a good linear
relationship was observed between fluorescence intensity and
Cu2+ concentration in the range of 0.0–1.5 eq., and the detection
limit of probe N4 for Cu2+ was calculated to be 1.2µm. All the
results showed that the probe N4 exhibited good sensitivity and
the ability to quantitatively detect Cu2+ in related samples.

Selectivity and Competition Studies of
Probe and Effect of the pH
To further evaluate the selective and anti-interference ability
of the probe N4 against Cu2+, we performed selectivity and
competition studies of the probe in PBS buffer (10mm, pH
= 7.4)/ EtOH (1:1, v/v). As shown in Figure 3, with the
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FIGURE 2 | (A) Fluorescence titration of probe N4 (20.0µm) upon addition of different concentration of Cu2+ (0.0–100.0µm); (B) the linear correlation between the

maximum fluorescence intensity (525 nm) and the concentration of Cu2+; λex = 440 nm.

addition of Cu2+, it exhibited an obvious increase in fluorescence
spectroscopy at 525 nm which associated with the ring opening
of the spirocyclic. In comparison, no obvious fluorescent
changes were observed when other ions added. Moreover, the
fluorescence properties of the probe with different ions were
investigated, and the competition experiment also showed that
all of the competing metal ions had no interference on the Cu2+-
selective recognition process. In addition, the probe N4 had good
selectivity for Cu2+ in the physiological pH range of 6.0 to 9.0
(Supplementary Figure S2).

Proposed Mechanism
To understand the interaction between probe N4 and Cu2+,
the mechanism was investigated by Job’s plots, FT-IR, and MS
analysis. The stoichiometric ratio of 1:1 between probe N4 and
Cu2+ was gained by Job’s plots (Figure 4A).

The FT-IR spectra showed that the peak change from 3,553
(–OH) to 1,711 cm−1 (C=O) after the reaction of probe N4
and Cu2+, which was attributed to the conversion of phenolic
hydroxyl group to carbonyl group. The absorption peak of probe
N4 at 1,654 cm−1 disappeared, indicating that the amide group
was coordinated with Cu2+ (Figure 4B).

In addition, a new peak at m/z 651.1717
[C29H18BrClCuN3O4(M+CuCl)]+ in mass spectra was founded
for the complex of probe N4 with Cu2+, which further illustrated
the 1:1 complexation (Supplementary Figure S8). Thus, it can
be supposed that the coordination of Cu2+ to the nitrogen atom
of the Schiff base moiety and the oxygen atom of the amide
carbonyl group in fluorescein as well as a free chlorine atom
resulted in the Cu2+ induced reversible ring-opening process
(Figure 4C).

Test Strips
To further extend the field detection capability of the probe in
real samples, we prepared probe-loaded test strips. They were
subsequently immersed in different metal ion solutions (K+,

Na+, Li+, Ca2+, Ag+, Mg2+, Cd2+, Mn2+, Ni2+, Cu2+, Ba2+,
Zn2+, Pb2+, Pd2+, Hg2+, Sn4+, Cr3+, Fe3+, Fe2+, Al3+). It was
interesting that only aqueous solutions of Cu2+ caused color
changes that could be seen by the “naked eye” especially under
UV light (Figure 5).

Fluorescence Imaging
Based on the excellent performance of the probe N4, we explored
the effect of probe N4 on the detection of Cu2+ in cell. First,
the cytotoxicity of the probe to MCF-7 cells was investigated
using the method of MTT. As shown Supplementary Figure S3,
MCF-7 cells were incubated with different concentrations of
the probe N4 (0.0–40.0µm) for 24 h, which indicated the low
cytotoxicity of the probe. To further test the bioimaging ability
of probe N4 in living cells, the MCF-7 cells were cultured with
the probe N4 for 30min, and no intracellular fluorescence was
observed. Then, the cells were treated with Cu2+ (40.0µm) for
1 h at 37◦C, and significant fluorescence from the intracellular
area was found. In addition, the bright field images of cells were
also seen clearly which further confirmed that the probe has good
biocompatibility (Figure 6), indicating the ability of probe for
tracking of Cu2+ in living cells.

CONCLUSIONS

In conclusion, a novel “turn-on” fluorescent probe N4 was
designed and synthesized for detecting Cu2+, and the probe
exhibited better selectivity and sensitivity for Cu2+ over other
ions. Meanwhile, the binding mode between probe N4 and Cu2+

was studied by Job’s plot, FT-IR, andmass experiment, suggesting
that the Cu2+ coordination to the Schiff base moiety and the
amide carbonyl group of fluorescein induced the fluorescent
emission. The probe N4 could detect Cu2+ in water qualitatively
by test paper. More importantly, the probe was successfully used
to detect Cu2+ in cells and was verified to have low toxicity, which
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FIGURE 3 | (A) Fluorescence spectrum of N4 (20µm) in the presence of various metal ions K+, Na+, Li+, Ca2+, Ag+, Mg2+, Cd2+, Mn2+, Ni2+, Ba2+, Zn2+, Pb2+,

Pd2+, Hg2+, Sn4+, Cr3+, Fe3+, Fe2+, Al3+, and Cu2+ (40.0µm) in PBS buffer (10mm, pH = 7.4)/EtOH (1:1, v/v), λex = 440 nm. (B) Fluorescence intensity (525 nm)

selectivity and competition of probe N4 (20µM) in the presence of various metal ions. The pillars in the front row are: probe N4 (20.0µM) + various metal ions. The

rear pillars are: probe N4 (20.0µM) + Cu2+ (40.0µm) + various metal ions. λex = 440 nm.

FIGURE 4 | (A) Job’s plot of probe N4 and Cu2+. The total concentration of probe N4 and Cu2+ was 40.0µm. λex = 440 nm; (B) the FT-IR spectra and complex

N4-Cu2+; (C) the proposed sensing mechanism of probe N4 with Cu2+.
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FIGURE 5 | Photographs of test strips immersed in different analyte aqueous solutions under ambient light (A) and hand-held UV lamp at 365 nm (B).

FIGURE 6 | Fluorescent images of MCF-7 cells after incubation with probe N4 (40.0µm) in the absence and the presence of Cu2+ (40.0µm).
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presented a fantastic candidate for mapping of Cu2+ in related
biological samples and processes.
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