AUTHOR=Li Zhongxin , Ding Liren , Zhu Weiyun , Hang Suqin TITLE=Determination of the Effects of Duodenal Infusion Soy Protein Hydrolysate on Hepatic Glucose and Lipid Metabolism in Pigs Through Multi-Omics Analysis JOURNAL=Frontiers in Nutrition VOLUME=9 YEAR=2022 URL=https://www.frontiersin.org/journals/nutrition/articles/10.3389/fnut.2022.838617 DOI=10.3389/fnut.2022.838617 ISSN=2296-861X ABSTRACT=

High animal protein intake increases hepatic lipid deposition and the risk of diabetes. However, the effects of high plant protein (HPP) intake on glycaemic responses and hepatic lipid metabolism in healthy people, as well as the underlying mechanisms, remain unclear. The current study explored the metabolomic and transcriptomic responses in the livers of pigs to assess the effects of HPP intake on host glucose and lipid metabolism. Sixteen pigs were infused with sterile saline or soy protein hydrolysate (SPH; 70 g/day) through a duodenal fistula twice daily during a 15 days experimental period. Hepatic metabolomic and transcriptomic analyses were performed, and the serum and hepatic biochemical parameters were measured. The results revealed that SPH infusion decreased serum glucose, hepatic triglyceride (TG), total cholesterol and low-density lipoprotein cholesterol levels, while it increased serum urea and eight hepatic amino acid levels (P < 0.05). Hepatic metabolomics displayed that SPH treatment produced seven different metabolites, four of which were related to lipid metabolism and one was related to glucose metabolism. In particular, lower (P < 0.05) glycocholic acid and glucose 1-phosphate levels and higher (P < 0.05) phosphatidylethanolamine (PE), arachidonic acid, prostaglandin F2α, l-carnitine and indole-3 acetic acid levels were observed following SPH infusion. A further metabolic pathway enrichment analysis found that these differential metabolites were mainly enriched in pathways related to lipid and glucose metabolism. Hepatic transcriptomics also demonstrated that multiple genes related to glucose and lipid metabolism were affected by SPH (P < 0.05). Together, SPH infusion reduced the hepatic TG levels by accelerating fatty acid β-oxidation and inhibiting TG synthesis. In addition, SPH infusion reduced the serum glucose levels by promoting hepatic glucose uptake and glycolysis. This study's result demonstrated that HPP intake regulated glycaemic responses and hepatic lipid metabolism in pigs without increasing the risk of hepatic lipid deposition and hyperglycaemia.