AUTHOR=Noronha Natália Yumi , Barato Mariana , Sae-Lee Chanachai , Pinhel Marcela Augusta de Souza , Watanabe Lígia Moriguchi , Pereira Vanessa Aparecida Batista , Rodrigues Guilherme da Silva , Morais Déborah Araújo , de Sousa Wellington Tavares , Souza Vanessa Cristina de Oliveira , Plaça Jessica Rodrigues , Salgado Wilson , Barbosa Fernando , Plösch Torsten , Nonino Carla Barbosa TITLE=Novel Zinc-Related Differentially Methylated Regions in Leukocytes of Women With and Without Obesity JOURNAL=Frontiers in Nutrition VOLUME=9 YEAR=2022 URL=https://www.frontiersin.org/journals/nutrition/articles/10.3389/fnut.2022.785281 DOI=10.3389/fnut.2022.785281 ISSN=2296-861X ABSTRACT=Introduction

Nutriepigenetic markers are predictive responses associated with changes in “surrounding” environmental conditions of humans, which may influence metabolic diseases. Although rich in calories, Western diets could be linked with the deficiency of micronutrients, resulting in the downstream of epigenetic and metabolic effects and consequently in obesity. Zinc (Zn) is an essential nutrient associated with distinct biological roles in human health. Despite the importance of Zn in metabolic processes, little is known about the relationship between Zn and epigenetic. Thus, the present study aimed to identify the epigenetic variables associated with Zn daily ingestion (ZnDI) and serum Zinc (ZnS) levels in women with and without obesity.

Materials and Methods

This is a case-control, non-randomized, single-center study conducted with 21 women allocated into two groups: control group (CG), composed of 11 women without obesity, and study group (SG), composed of 10 women with obesity. Anthropometric measurements, ZnDI, and ZnS levels were evaluated. Also, leukocyte DNA was extracted for DNA methylation analysis using 450 k Illumina BeadChips. The epigenetic clock was calculated by Horvath method. The chip analysis methylation pipeline (ChAMP) package selected the differentially methylated regions (DMRs).

Results

The SG had lower ZnS levels than the CG. Moreover, in SG, the ZnS levels were negatively associated with the epigenetic age acceleration. The DMR analysis revealed 37 DMRs associated with ZnDI and ZnS levels. The DMR of PM20D1 gene was commonly associated with ZnDI and ZnS levels and was hypomethylated in the SG.

Conclusion

Our findings provide new information on Zn's modulation of DNA methylation patterns and bring new perspectives for understanding the nutriepigenetic mechanisms in obesity.