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In this study, the physicochemical properties, thermal characteristics, and in vitro

hypoglycemic activity of dietary fibers extracted from four bamboo shoots were

characterized and compared. The results showed that Dendrocalamus brandisii

Munro (C-BSDF) had the highest dietary fiber content (6.1%) and the smallest

particle size (222.21 µm). SEM observations found that C-BSDF exhibited a loose and

porous microstructure, while FTIR and XRD confirmed that C-BSDF had a higher

degree of decomposition of insoluble dietary fiber components and the highest

crystallinity, resulting in a better microstructure. Furthermore, C-BSDF exhibited

excellent physiochemical properties with the highest water hold capacity, water

swelling capacity, and preferable oil holding capacity. Thermal analysis showed

that C-BSDF had the lowest mass loss (64.25%) and the highest denaturation

temperature (114.03◦C). The hypoglycemic activity of dietary fibers from bamboo

shoots were examined in vitro and followed this order of activity: C-BSDF>D-

BSDF>A-BSDF>B-BSDF. The inhibition ratios of GAC, GDRI and α-amylase activity

of C-BSDF were 21.57 mmol/g, 24.1, and 23.34%, respectively. In short, C-BSDF

display excellent physicochemical and functional properties due to its high soluble

dietary fiber content, small particle size with a high specific surface area, and loose

microstructure. Thus, D. brandisii Munro can be considered a promising new source

of dietary fiber for hypoglycemic health products.

KEYWORDS

bamboo shoot, dietary fiber, physicochemical property, microstructure, hypoglycemic
activity

1. Introduction

Dietary fibers have many physiological functions, such as lowering blood sugar and fat
levels, inducing weight loss, regulating intestinal microorganisms, and preventing diabetes, and
intestinal cancer (1, 2). These fibers are known as the “seventh nutrient” of human beings, and
their role in maintaining body weight and regulating health has attracted increasing attention.
Studies have found that consuming large quantities of dietary fibers can play a positive role in
human health (3). Studies have shown that dietary fibers can reduce the risk of type 2 diabetes
by reducing energy intake and controlling glycemia. Moreover, fibers can also reduce blood
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glucose fluctuations and reduce insulin response (4). Blood glucose
control is mainly affected by delayed gastric emptying, small
intestinal transit time, and digestion and absorption of large amounts
of nutrients (5). Indeed, dietary fibers have been widely used in
developing and utilizing health care products.

Plants are an important source of dietary fiber and are
often characterized by high yield and low utilization rates. Plant
dietary fibers mainly include cellulose, hemicellulose, lignin and
galactomannan, derived from plant roots, stems (6), leaves (7),
fruits (8, 9), and buds (10). The physicochemical properties of
these fibers, such as their water-holding and oil-holding capacities
have been widely investigated by numerous researchers. Moreover,
their functional properties, such as reducing blood sugar and blood
fat, improving intestinal flora, preventing constipation and colon
cancer have been explored to clarify the mechanisms through which
dietary fibers exert their beneficial effects. Therefore, there has been
increasing interest over recent years in developing additional dietary
fiber resources.

The use of natural sources of bioactive compounds, especially
substances extracted from plants, for food fortification has attracted
much attention (11, 12). Bamboo shoots are nutritious forest food,
rich in dietary fiber, protein, vitamins, phenolic compounds, and
phytosterols (13). The Bamboo shoot dietary fiber (BSDF) os mainly
composed of cellulose, hemicellulose, lignin, and polysaccharides.
It has better water and oil retention than other dietary fibers (14).
However, the properties of BSDF vary in different regions, while
many the physicochemical and functional properties of many BSDF
remain unexplored. More importantly, the mechanism behind the
differences in physicochemical properties and functions of different
types of BSDF is still unclear.

The Yunnan province is located in southwest China, at the
junction of three very different natural geographical regions (15).
Yunnan creates favorable conditions for the collection, diffusion and
differentiation of bamboo plants due to its unique environment.
Indeed, it has become a region with abundant bamboo species,
ecological types and natural bamboo forests, containing cold- and
hot-temperature bamboo forests in high-altitude areas. The bamboo
resources in Yunnan are characterized by a wide variety of bamboo
shoots of good quality. Bamboo shoot resources development
prospect is broad and their varieties have an irreplaceable market
competitive advantage. Among the numerous bamboo species in
Yunnan, more than half of them can be used as bamboo shoots
and many are high-quality varieties unique to Yunnan or rare in
other places, which are superior to other parts of the world in
terms of quantity and quality (16). Therefore, it is necessary to
study representative bamboo shoots in different regions of Yunnan,
especially with regard to the physical and functional properties of
BSDF to provide useful information for the development of high-
quality bamboo shoot by-products in Yunnan.

Dietary fiber extracted from different sources has a different
chemical compositions, structures, and functional properties (17). In
this study, we aimed to evaluate the physicochemical and structural
characteristics, as well as the hypoglycemic activity of different
BSDF. First, BSDF were extracted from four bamboo shoots collected
from four different regions of the Yunnan Province. Then, the
composition, physicochemical properties, and microstructure of four
different BSDF samples were analyzed. Finally, their hypoglycemic
activity in vitro, including glucose adsorption capacity (GAC), α-
Amylase activity inhibition ratio (α-AAIR), and glucose dialysis
retardation index (GDRI), were compared. The results of this study

can provide a scientific basis for the development of bamboo shoot
products for food and nutrition applications.

2. Materials and methods

2.1. Materials

Four kinds of bamboo shoots with different families were
collected from different regions of the Yunnan province, China
(Figure 1A). Dendrocalamus brandisii Munro was collected from
the Jinghong Dai Autonomous Prefecture of Xishuangbanna,
Phyllostachy sulphurea was collected from the Yunnan Kunming
Academy of Forestry and Grassland Sciences Arboretum, Qiongzhuea
tumidinoda was collected from the Daguan County of Zhaotong,
Pleioblastus amarus Keng was collected from the Xinping Yi
Autonomous County.

Sodium hydroxide, ethanol, phosphoric acid, sulfuric acid,
hydrochloric acid, and boric acid were analytically purchased from
Zhiyuan Chemical Reagent Co., Ltd. (Tianjin, China). Soybean
oil and potato starch were purchased from local supermarkets
at Kunming. The glucose detection kit was supplied by Solarbio
Technology Co., Ltd. (Beijing, China). Protease, α-amylase, and
glucosidase were obtained from Yingxin Laboratory Equipment Co.,
Ltd. (Shanghai, China).

2.2. Dietary fiber extraction procedure

Bamboo shoot dietary fiber was extracted according to the
method of Zhang et al. (17) with modifications. Bamboo shoots were
put into an electrothermal drying oven to dry, were crushed with
a pulverizer, and passed through a 40-mesh sieve. Bamboo shoot
powder (100 g) was soaked in 1 L 0.5 mol/L NaOH and heated at
50◦C for 1 h in a water bath. After cooling to room temperature, the
precipitate was collected by centrifugation at 6,800 g for 30 min to
obtain insoluble dietary fiber. The supernatant was precipitated with
four times the volume of 95% ethanol and allowed to stand at room
temperature for 1 h. Then the suspension was centrifuged at 6,800 g
for 15 min, and the precipitate was collected as soluble dietary fiber.
Soluble and insoluble dietary fibers were mixed evenly and freeze-
dried. The dietary fiber of P. sulphurea, Q. tumidinoda, D. brandisii
Munro, and P. amarus Keng were named A-BSDF, B-BSDF, C-BSDF,
and D-BSDF, respectively.

2.3. Composition analysis of extracted
dietary fibers

The composition and content of BSDF were determined
according to the following methods. Moisture and ash contents were
determined using the AOAC method 925.40 (2005): samples were
dried at 105◦C (moisture) and 500◦C (ash), respectively, until a
constant weight was achieved. Crude protein content was determined
by the Kjeldahl method. The nitrogen conversion factor was 6.25
according to the AOAC method 955.04 (2000). The crude fat content
of fiber samples were estimated by Soxhlet extraction with petroleum
ether as solvent according to the AOAC method 920.39 (2005). The
contents of soluble dietary fiber and insoluble dietary fiber were
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FIGURE 1

Geographical locations of different bamboo shoot samples in Yunnan province of China (A), extraction process of bamboo shoot dietary fiber (BSDF) (B).

determined by the AOAC method 991.43 (1994) (18), and the amount
of total dietary fiber was calculated.

2.4. Particle size analysis

Particles were measured using a laser particle size analyzer
(Mastersizer 2000, UK) and the method described by Wang et al. (19).
The precipitation of different varieties of BSDF samples was adjusted
to 0.01% (m/v) and tested at an ambient temperature of 25◦C. The
refractive indices of the dispersant and the sample were 1.33 and
1.53, respectively, and the shading parameter was 1–2%. The particle
size distribution is represented as d0.1 (µm), d0.5 (µm), d0.9 (µm),
and the Sauter mean diameter is represented as D [4,3] (µm) and D
[3,2] (µm).

2.5. Scanning electron microscopy (SEM)

The microstructure of different BSDF was observed by a
TM3030Plus SEM (Hitachi, Tokyo, Japan) at an accelerating voltage
of 15.0 kV (20). A double-sided adhesive was adhered to the
cylindrical aluminum table, and the sample was evenly coated on
it. Subsequently, the sample was placed in the instrument for gold
plating (10 min, 2 mbar). Finally, the surface morphology of the
sample was observed. The picture scanning multiple was 200×.

2.6. Fourier transform infrared
spectroscopy (FTIR)

Samples were analyzed using a fourier transform infrared
spectroscope (FTIR, Thermo Scientific Nicolet iS50) as previously
reported by Jiang et al. (21). The sample was ground with KBr (1:100,
w/w) and pressed into slices. Then, the spectrum in the range of
4,000–400 cm−1 was obtained with a resolution of 1 cm−1. The
chemical structure of each BSDF was obtained.

2.7. X-ray diffraction (XRD)

The crystalline region of BSDF was observed by X-ray
diffractometer (X’Pert PRO MPD, PANalytical BV., the Netherlands).

The specific conditions were set as: tube voltage of 40 kV, incident
current of 40 mA and scan range of 5–70◦. The step size and scan
rate were 0.05 and 0.21◦/s, respectively. The MDI Jade 5 software
(Materials Data, Inc., Livermore, CA, USA) was employed to calculate
the peak area and crystallinity of the dietary fiber (22) using the
following formula:

DC % =
AC

Ac+Aa
× 100 (1)

Where Ac is the area of the crystalline region in the XRD pattern,
and Aa is the area of the amorphous region in the XRD pattern.

2.8. Chemical characteristics

2.8.1. Thermogravimetric analysis (TGA)
Thermogravimetric analysis of fiber samples was carried out

using (DSC/TGA Discovery SDT 650). The sample (10 mg) was
heated from 20 to 800◦C at a speed of 10◦C/min.

2.8.2. Differential scanning calorimetry (DSC)
Samples were analyzed for differential scanning calorimetry as

previously reported by Wen et al. (23). First, 10 mg samples were
weighed and placed in a high-purity alumina crucible and the
temperature of the thermo gravimetric analyzer was adjusted to
23∼600◦C. The temperature was raised at a rate of 10◦C/min under
nitrogen protection. The flow rate of nitrogen was 100 mL/min
during continuous heating.

2.8.3. Color measurement
The chromaticity was conducted according to the procedure used

by Felisberto et al. (24). It was composed of: brightness (L∗, where
L∗ = 0 is black, L∗ = 100 is white) and redness (a∗, where a∗ > 0
indicates red, a∗ < 0 means green) and yellowness (b∗, where b∗ > 0
indicates yellow, b∗ < 0 indicates blue).

2.9. Physical properties

2.9.1. Water holding capacity
The water holding capacity was determined according to the

method of Du et al. (25). Each BSDF sample was weighed (1 g) and
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mixed evenly in 30 mL of deionized water. Samples was stirred at
room temperature for 24 h, centrifuged at 4,000 g for 15 min, and the
pellet dried in an oven at 105◦C. WHC was calculated according to
the following equation:

WHC/
(
g · g−1)

=
m2−m1

m1
(2)

Where m2 is the weight of sample residue containing water
after centrifugation (g); m1 is the weight (g) of the sample dried to
constant weight.

2.9.2. Water swelling capacity
The water swelling capacity was determined by the method

described by Huang et al. (26). Each BSDF sample was weighed (1 g),
mixed with 20 mL of deionized water in a 25 mL graduated test tube
and allowed to stand at room temperature for 20 h. The expansion
volume of the sample was recorded as follows:

WSC/
(
ml · g−1)

=
v2−v1

m0
(3)

Where v2 is the volume (mL) of the sample after water absorption;
v1 is the volume of the sample before water absorption (mL); m0 is the
mass of the sample before water absorption (g).

2.9.3. Oil holding capacity
The oil holding capacity was determined according to the method

of Yu et al. (27). Each BSDF sample was weighed (0.5 g), mixed with
30 mL soybean oil in a centrifuge tube, and allowed to stand at room
temperature for 20 h. After centrifugation at 4,000 g for 15 min, the
upper layer of oil was poured out and OHC was calculated as follows:

OHC/
(
g · g−1)

=
m4−m3

m3
(4)

Where m4 is the mass (g) after oil absorption saturation; m3 is the
mass before oil absorption (g).

2.10. In vitro hypoglycemic activity

2.10.1. Glucose adsorption capacity (GAC)
Glucose adsorption capacity (GAC) was determined according to

the method of Ma et al. (22). Each BSDF sample was weighed (1 g),
mixed with 100 mL of 100 mmol/L glucose solution and water bathed
at 37◦C for 6 h. Samples were centrifuged at 5,000 g for 15 min. GAC
represents the millimolar number of glucose retained per gram of
BSDF:

GAC mmol · g−1
=

(c0−c1) · v
w

(5)

Where c0 is the glucose concentration (mmol/L) in the original
solution before adsorption; c1 is the concentration of glucose in
the supernatant (mmol/L) after adsorption equilibrium; v is the
supernatant liquid volume (L); w is the weight of BSDF sample (g).

2.10.2. Glucose dialysis retardation index (GDRI)
The glucose dialysis retardation index (GDRI) was prepared

according to the procedure used by López et al. (28). Each BSDF
sample was weighed (0.5 g), put into a 15 mL 100 mmol/L glucose
solution and fully mixed. The mixed solution was added to a dialysis

bag with 14,000 Da molecules. Then the mixture was dialyzed
with 200 mL distilled water and placed in a 37◦C thermostatically
controlled water bath. After 30, 60, 90, and 120 min, 1 mL of dialysate
was collected and its glucose content was measured. A control
experiment was conducted without adding BSDF. GDRI is calculated
as follows:

GDRI % = 100−
c2

c3
× 100 (6)

Where c2 is the glucose diffused from the sample; c3 is glucose
diffused from the control group.

2.10.3. α–amylase activity inhibition ratio (α-AAIR)
The determination of α-amylase activity inhibition ratio (α-

AAIR) referred to the method of Benitez et al. (29). Each BSDF
sample was weighed (1 g), mixed with 4.0 mg α-amylase (40 U/mg)
and 40 mL 4% starch solution, and incubated at 37◦C for 1 h. Then,
BSDF samples were centrifuged at 4,000 g for 20 min, and the glucose
content in the supernatant was measured using a glucose detection
kit. A control experiment was conducted without adding BSDF.
α-AAIR is calculated using the following formula:

α−AAIR (%) =
(C4−C5)

C4
× 100 (7)

Where c4 is the control glucose concentration; c5 is the glucose
concentration of the BSDF sample.

3. Results and discussion

3.1. Composition and content analyses of
different bamboo shoot dietary fibers

Basic components of BSDF extracted from P. sulphurea, Q.
tumidinoda, D. brandisii Munro, and P. amarus keng are shown in
Table 1. The protein content of extracted BSDF was significantly
different across the bamboo varieties studied. There was no
significant difference in fat content, except in D-BSDF. The ash
content of different varieties of BSDF was classified from lowest to
highest: C-BSDF<A-BSDF<D-BSDF<B-BSDF, in which the lowest
value was 7.14% for C-BSDF. The moisture content of BSDF from
highest to lowest was: A-BSDF>D-BSDF>B-BSDF>C-BSDF, in
which the highest value was 13.53% ± 0.11% for A-BSDF. The
highest protein content was found in C-BSDF (16.12% ± 0.18%),
which was 1.93 times that of D-BSDF–the fat content of D-BSDF was
0.20%± 0.01%. C-BSDF had the highest soluble dietary fiber content
(6.1 %± 0.19 %), followed by D-BSDF, B-BSDF, and A-BSDF, which
were higher than values found for walnut powder (0.88–6.53%) (30)
and rice bran (1.5%) (23). There was no significant difference between
other varieties.

3.2. Particle size distribution of dietary
fiber from different bamboo shoots

The particle size distribution is shown in Table 2 and Figure 2.
The peak shape of A-BSDF, C-BSDF, and D-BSDF was sharper
than that of B-BSDF (Figure 2), which indicated that the particle
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TABLE 1 Basal composition and content of different bamboo shoots.

Basal
component
(%)

A-BSDF B-BSDF C-BSDF D-BSDF

Ash 10.92± 0.25b 11.78± 0.16c 7.14± 0.08a 11.07± 0.44b

Moisture 13.53± 0.11c 11.26± 0.81a 11.17± 0.12a 12.35± 0.42b

Protein 10.70± 0.09b 12.60± 0.34c 16.12± 0.18d 8.33± 0.09a

Fat 0.14± 0.03a 0.13± 0.01a 0.13± 0.02a 0.20± 0.01b

Total dietary
fiber

63.91± 0.76a 63.64± 1.24a 64.97± 0.89a 67.6± 0.79a

Insoluble dietary
fiber

59.57± 0.98ab 60.01± 1.13ab 58.84± 0.08a 61.82± 0.5b

Soluble dietary
fiber

4.34± 0.07b 4.03± 0.06a 6.13± 0.19d 5.78± 0.07c

Different lowercase letters in the same row indicate significant differences between groups
(p < 0.05).

size distribution of A-BSDF, C-BSDF, and D-BSDF was more
concentrated and uniform. Compared with B-BSDF, the main peak of
A-BSDF, C-BSDF and D-BSDF shifted to the left and the particle size
decreased. Table 2 shows the d0.1, d0.5, d0.9, D [4,3], and D [3,2] of
BSDF. The d0.1, d0.5, and d0.9 represent the diameters corresponding
to 10, 50, and 90% of the cumulative particle size distribution,
respectively. D [4,3] and D [3,2] are the volume and surface area
average diameter, respectively.

The d0.1, d0.5, d0.9, D [4,3], and D [3,2] of C-BSDF and D-BSDF
were lower than those of A-BSDF and B-BSDF, especially d0.1, D
[4,3], and D [3,2], indicating that C-BSDF and D-BSDF have the
smallest particle size among all samples. As depicted in Table 2, the
difference between D [4,3] and D [3,2] of C-BSDF was the largest,
indicating that the specific surface area of C-BSDF was the largest
among groups. Dietary fiber has a larger specific surface area, which
may yield a better effect on physical and chemical properties, such
as WHC, OHC, and swelling capacity (26). Therefore, D. brandisii
Munro or P. amarus keng have the potential to be candidates for
obtaining high-quality dietary fibers for functional foods.

3.3. Structure characterization of different
bamboo shoot dietary fibers

3.3.1. Microstructure of different bamboo shoot
dietary fibers

The microstructure of dietary fiber is related to its pore
characteristics and effective surface properties (31). The surface
morphological characteristics of different varieties of BSDFs are

FIGURE 2

Size distribution chart.

shown in Figure 3. All samples showed irregular sheet distribution. It
was obvious that there were many cracks and holes on the surface of
the fibers. This may be because the sodium hydroxide solution used
in the chemical extraction process destroyed the network structure
of dietary fiber (32). Compared with other BSDFs, C-BSDF, which
had the smallest particle size, also had a more porous and looser
microstructure. The loose structure of dietary fiber may expose more
groups, which is beneficial to its physicochemical properties. These
results showed that different sources of origin may induce different
functional properties of BSDF.

3.3.2. FTIR analysis of different bamboo shoot
dietary fibers

Fourier transform infrared spectroscopy provides the group
composition of the BSDF structure. Here we used FTIR to analyze
BSDF prepared from different varieties of bamboo shoots and the
results are shown in Figure 4A. The spectral profile and peak shape of
all BSDFs were similar, while the chemical composition was the same.
However, the absorbance and wavenumber of some characteristic
bands changed.

All BSDFs showed a broad absorption peak at about 3,286 cm−1,
which can be attributed to the stretching vibration of -OH bond
(21). Compared with other BSDFs, a blue shift of B-BSDF from
3,286 to 3,327 cm−1 was observed, which may be due to different
degrees of hydrogen bond damage caused by the small specific
surface area of B-BSDF (33). The wave number of C-BSDF decreased
from 3,286 to 3,320 cm−1, and a red shift occurred. This may be
because the structure of this dietary fiber was changed to some
extent and the molecule was more stable (34, 35). This may be

TABLE 2 Particle size distribution of different varieties of bamboo shoot dietary fibers.

Samples Particle size distribution (µ m)

d0.1 (µm) d0.5 (µm) d0.9 (µm) D [4,3] (µm) D [3,2] (µm)

A-BSDF 279.03± 3.91c 593.39± 14.62b 1190.42± 42b 670.84± 18.85b 478.37± 10.12b

B-BSDF 413.10± 6.48d 788.45± 7.22c 1406.41± 5.38c 851.97± 6.40c 627.76± 51.41c

C-BSDF 222.21± 7.35a 560.29± 23.62ab 1140.53± 24.40b 626.70± 18.95a 309.17± 10.92a

D-BSDF 249.22± 12.49b 548.20± 22.42a 1026.10± 60.68a 593.95± 29.73a 300.90± 16.99a

Different lowercase letters in the same row indicate significant differences between groups (p < 0.05).
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FIGURE 3

Scanning electron microscopy images (200x) of dietary fiber from different bamboo shoots. A-BSDF (A), B-BSDF (B), C-BSDF (C), D-BSDF (D).

FIGURE 4

FT-I R of DF from different bamboo shoots (A), X-ray diffraction of dietary fiber from different bamboo shoots (B), TG of DF from different bamboo
shoots (C), DTG of DF from different bamboo shoots (D), DSC of DF from different bamboo shoots (E), color index of dietary fiber in different bamboo
shoots (F).
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the reason for the formation of hydrogen bonds (36). At the same
time, the absorption peak intensity of C-BSDF and D-BSDF at
3,286 cm−1 were stronger than those of A-BSDF and B-BSDF,
indicating that there are more intramolecular hydrogen bonds
between hemicelluloses.

The weak absorption band at 2,920 cm−1 originates from the
vibration of the C-H group, indicating the existence of the typical
structure of polysaccharide compounds. The peak near 1,634 cm−1

is related to the characteristic absorption of the C = O bond of
uronic acid, indicating that samples contained uronic acid, while the
weak characteristic peak may be because sodium hydroxide destroys
the structure of uronic acid (37). The peak near 1,425 cm−1 is
related to the vibration of COO-, while the peak at 1,566 cm−1

is the characteristic absorption peak of lignin in hemicellulose
(38). In addition, the wavelength below 1,300 cm−1 is called the
fingerprint region, where 950–1,200 cm−1 is the characteristic region
of carbohydrates, 1,019 cm−1 is the vibration of oxygen-containing
functional groups of C-O-C carbon skeleton (37). The peak located
at about 880 cm−1 is related to the deformation vibration of β-CH of
the β-glycosidic bond. The lower C-BSDF peak intensity at 880 cm−1

may be related to hemicellulose decomposition, exposing more dipole
forms, which may result in a high hydration capacity (35). The change
of characteristic peaks in C-BSDF may be related to increased water-
soluble polysaccharides, which may contribute to the enhancement
of functional properties (39).

3.3.3. XRD analysis of different bamboo shoot
dietary fibers

The XRD patterns of A-BSDF, B-BSDF, C-BSDF, and D-BSDF
are shown in Figure 4B. BSDF has a regular wide peak between 16
and 23◦, indicating that there are amorphous or cellulose I crystals
and amorphous structures in the crystal region of BSDF (17). The
BSDF peaks of 14.98 and 24.44◦ disappeared, which may be attributed
to the denaturation of cellulose by NaOH (40). In addition, the
crystallinity of A-BSDF, B-BSDF, C-BSDF and D-BSDF were 33.07,
26.4, 35.63, and 32.2% respectively. The crystallinity of C-BSDF was
slightly higher than that of other BSDFs. These results showed that
the crystal structure of C-BSDF was stable, which was consistent with
FTIR (Figure 4A).

3.4. Physicochemical properties of
different bamboo shoot dietary fibers

3.4.1. Thermal characteristic analysis of different
bamboo shoot dietary fibers

Thermogravimetric analysis results are shown in Figures 4C,
D. The distribution process of pyrolysis products between gas and
solid phases can be investigated by analyzing the curve trend. In
Figures 3C, D, with the increase in temperature, BSDF had two
obvious weight loss processes. The first weight loss process occurred
at 25–150◦C, which is due to dehydration. There was a rapid curve
decrease, and the mass loss of BSDF exceeded 10%. The second
weight loss process occurred at 215–450◦C, which can be attributed
to the decomposition of organic compounds (41). In this range, a
significant peak appeared on the DTG curve (Figure 4D) near 250◦C,
indicating that the weight loss rate of the four samples was faster,
which may be related to the pyrolysis of hemicellulose and soluble
pectin, or the pre-carbonization process of cellulose (17). It can be

clearly seen that the peak intensity of B-BSDF was the largest and its
weight loss was the fastest. After 450◦C there is a slow decomposition
process, mainly involved in substances difficult to pyrolyze, such
as lignin and other compounds, which is a thermal weight loss
process that produces ash and other residues (42). According to
Figure 4C, among the four BSDFs, C-BSDF showed the lowest mass
loss (64.25%), followed by A-BSDF (65.03%), D-BSDF (66.31%), and
B-BSDF (69.88%). The residual mass of C-BSDF was higher than that
of A-BSDF, B-BSDF and D-BSDF, indicating that its thermal stability
was better, which may be related to its high crystallinity of 35.63%
(10) (Figure 4B).

In general, the mass change of the sample during thermal
decomposition can be investigated by analyzing the TGA curve, and
the energy change of the sample during thermal decomposition can
be investigated by analyzing the differential scanning calorimetry
(DSC) curve. Mass and energy changes often co-exist in the
thermal decomposition process of the sample. However, crystal
transformation and melting induce energy, but not mass, change.
Therefore, more comprehensive information can be obtained by
examining the DSC curve (43). It can be seen from the DSC
curve (Figure 4E) that all samples had an obvious endothermic
peak near 100◦C, which may be due to water evaporation (38),
and the endothermic peak transition range was 25–150◦C. The
endothermic peak of A-BSDF, B-BSDF, C-BSDF and D-BSDF were
approximately 104.38, 102.73, 114.03 and 107.09◦C, respectively,
which were consistent with the results reported by Slavov et al. (44).
C-BSDF showed the highest denaturation temperature at 114.03◦C
due to its high crystallinity (10) (Figure 4B), which indicated C-BSDF
was relatively more stable. In the range of 220–270◦C, an exothermic
peak was observed, which is mainly caused by the oxidation of the
molecular side chain (45, 46). In addition, FTIR results (Figure 4A)
corroborate that C-BSDF contained more hydrogen bonds, thus
more energy was needed to destroy its crystal structure.

Altogether, C-BSDF had smaller particles and showed better
thermal stability than other BSDF.

3.4.2. Chromaticity analysis of dietary fibers from
different bamboo shoots

Color is one of the main characteristics of food, and it is also the
first evaluation index that consumers can get. Strong colors are widely
used in food, and the application prospect is wide. The L∗, a∗, and
b∗ of different varieties of BSDF are shown in Figure 4F. The values
of L∗, a∗, and b∗ represent the brightness, redness, and yellowness
of BSDF, respectively. The highest a∗ and b∗ values were found in
D-BSDF, while the lowest were found in C-BSDF. L∗ of C-BSDF and
D-BSDF were significantly lower than that of A-BSDF and B-BSDF.
These results showed that the color of D-BSDF was darker than the
other three bamboo shoots. Therefore, the use of D-BSDF in the
animal food industry (including pet food) can increase the richness
of food color and promote animal appetite and feed intake.

3.4.3. Water holding capacity
Evaluating the water holding capacity of dietary fibers is of great

significance in maintaining human health. Increased the stronger the
water holding capacity of dietary fibers means that a larger volume
of feces is discharged after eating these fibers. Since dietary fibers can
induce the penetration of intestinal microorganisms in food residues
for fermentation, they reduce rectal and urinary system pressure and
prevent constipation and colon cancer (47). As shown in Figure 5A,
the water holding capacities of C-BSDF and D-BSDF were 13.04 and
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12.58 g/g, respectively, which were higher than those of A-BSDF
and B-BSDF. Such higher water holding capacity of C-BSDF and
D-BSDF may be attributed to their smaller particle size and larger
specific surface area (Table 2). These results are similar to those of
Wuttipalakorn et al. (48). In summary, although the water holding
capacity of extracted fiber samples was significantly different, it was
higher than that of defatted cumin dietary fiber (7.28 g/g) (22),
bamboo shoot shell dietary fiber (8.27 g/g) (49), and pear pomace
(5.77 g/g) (8).

3.4.4. Water swelling capacity
The swelling capacity refers to the ratio of the volume of dietary

fiber to the actual weight of dietary fiber after immersion in water.
Dietary fibers may interact with water through two mechanisms:
water in the capillary structure due to the surface tension strength,

and through the formation of hydrogen bonds and dipoles (26).
Figure 5B summarizes the swelling capacity of four varieties of
BSDF. Compared with other BSDF samples, the specific surface area
of C-BSDF was larger, because it had smaller particles, ultimately
resulting in more hydrophilic groups exposed and increased swelling
capacity (50). Meanwhile, the swelling capacity of B-BSDF was the
lowest, which was parallel with its water holding capacity.

3.4.5. Oil holding capacity
The ability of dietary fiber to retain oil is important for food

applications. For example, dietary fibers with high oil holding
capacity can reduce oil loss and absorb or bind cholesterol and bile
acids during food processing, which helps reduce blood cholesterol
(51). Figure 5C summarizes the oil holding capacity of four varieties

FIGURE 5

Water holding capacity of dietary fiber in different bamboo shoots (A), water swelling capacity of dietary fiber in different bamboo shoots (B), and oil
holding capacity of dietary fiber i n different bamboo shoots (C), GAC (D), GDRI (E), α-AAIR (F) of dietary fiber from different bamboo shoots. Different
letters represent significant differences (p < 0.05).
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of BSDF. The four BSDFs can be arranged as follows: B-BSDF>C-
BSDF> A-BSDF>D-BSDF. In particular, B-BSDF had the strongest
oil holding capacity (10.42 g/g), which was significantly higher than
that of D-BSDF. It was reported that oil holding capacity is related
to surface characteristics, hydrophobicity and total charge density
of fiber particles (52). Interestingly, the oil holding capacity of all
samples was higher than that of pear residue dietary fiber (2.77 g/g)
(8), enzymatic modified potato powder (2.89 g/g) (6), bamboo shoot
shell dietary fiber (5.79 g/g) (49), and Maca residue fiber (5.79 g/g)
(53).

3.5. Effects of different varieties of
bamboo shoot dietary fibers on in vitro
hypoglycemic activity

3.5.1. Glucose adsorption capacity (GAC)
Previous studies have shown that dietary fiber from different

sources adsorbs glucose in a dose-dependent manner (51). As shown
in Figure 5D, the ability of four BSDFs to adsorb glucose can be
ranked as: C-BSDF (21.57 mmol/g) > D-BSDF (19.48 mmol/g) > A-
BSDF (15.24 mmol/g) > B-BSDF (13.97 mmol/g). The results showed
that C-BSDF had a stronger hypoglycemic effect in vitro, which
may be due to its small particle size and large specific surface area,
resulting in an increased glucose adsorption (53). This is beneficial
to select sources of high-quality BSDF that enhance the absorption of
glucose during gastrointestinal transport, and inhibit hyperglycemia.

3.5.2. Glucose dialysis retardation index (GDRI)
The glucose retardation index is an important indicator to predict

the reduction and delay of gastrointestinal glucose absorption of
dietary fibers. As shown in Figure 5E, the maximum GDRI value
of BSDFs appears at 30 min. The retardation of glucose molecules
by fiber particles and the retention of glucose molecules in the fiber
network may explain the delay in glucose diffusion (28). The results
showed that the GDRI values of different varieties of BSDF were
significantly different, which may be due to different particle sizes
and the amount of SDF. C-BSDF showed a relatively high GDRI value
likely because of its improved delay effect on glucose diffusion.

3.5.3. α–amylase activity inhibition ratio (α-AAIR)
α-amylase is a major enzyme in the process of starch digestion. It

helps starch digestion and can cause postprandial hyperglycemia in
diabetic patients. Inhibition of α-amylase can hinder the hydrolysis
and digestion of carbohydrates in food, reduce the digestion of sugars
and effectively control postprandial hyperglycemia. The inhibitory
effect of four BSDFs on α-amylase is shown in Figure 5F. There were
significant differences, in which C-BSDF showed the greatest α-AAIR
probably due to its high dietary fiber content (Table 1) and increased
specific surface area (29).

4. Conclusion

In this study, four different bamboo shoots were used to
extract their dietary fiber, and analyze their physicochemical
properties, structural characteristics, and in vitro hypoglycemic
activity. Compared with A-BSDF and B-BSDF, C-BSDF showed
the highest dietary fiber content, smallest particle size with a large

specific surface area, and a porous and loose microstructure. This
is consistent with FTIR and XRD data. Therefore, compared with
other BSDFs, C-BSDF exhibited the best physiochemical properties,
including thermal characteristics, water holding capacity, water
swelling capacity and oil holding capacity, that translated into
increased glucose adsorption and delayed diffusion.

Postprandial hyperglycemia is one of the main symptoms of
type II patients. Strict control of blood glucose levels, especially
postprandial blood glucose levels, is an effective measure to delay
disease progression. Therefore, our findings unveil the potential
hypoglycemic mechanism of BSDF and provide valuable information
for exploring high-quality sources of BSDF. D. brandisii Munro may
be a promising variety to obtain high-quality BSDF and has the
potential to be added to food and hypoglycemic health products as
a functional component.
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