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This manuscript analyzed physicochemical and structural properties of 30

different types of sorghum starches based on their apparent amylose content

(AAC). Current results confirmed that sorghum starch exhibited irregular

spherical or polygonal granule shape with 14.5 µm average particle size. The

AAC of sorghum starch ranged from 7.42 to 36.44% corresponding to relative

crystallinities of 20.5 to 32.4%. The properties of enthalpy of gelatinization

(1H), peak viscosity (PV), relative crystallinity (RC), degree of double helix (DD),

degree of order (DO), and swelling power (SP) were negatively correlated

with AAC, while the cool paste viscosity (CPV) and setback (SB) were

positively correlated with AAC. Correlations analyzed was conducted on

various physicochemical parameters. Using principal component analysis

(PCA) with 20 variables, the difference between 30 different types of sorghum

starch was displayed. Results of current study can be used to guide the

selection and breeding of sorghum varieties and its application in food and

non-food industries.

KEYWORDS

sorghum starch, amylose content, pasting properties, thermal properties, correlation
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1. Introduction

Sorghum [Sorghum bicolor (L.) Moench] is a significant cereal crop which ranks
the fifth largest cereal crop in the world after barley, corn, wheat and rice (1). Due
to its high drought tolerance, sorghum is widely cultivated in Africa and Asia, even
in the areas of salinity. Under the same water condition, sorghum has higher water-
use-efficiency compared to other types of crops, such as maize, this makes it becomes
a primary source of food in the world (2, 3). The other advantage of sorghum is its
high antioxidant activity, which is demonstrated by the high phenolic compounds in
its seed coat. And these phenolic compounds contribute to the abundant pigments in
the coat of sorghum seed (4, 5). As sorghum is rich in tannins and others substances,
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it become the main raw material for favor liquor (6). Besides
its wide application in liquor-making industry and sorghum
food due to healthy substances such as nutrition, antioxidant,
antiobesity, antidiabetic, antibacterial, and anticancer activities
(7). Due to the above advantages, sorghum has a wide range of
applications in food, feed, liquor manufacturing, hypoglycemic
medicines, and minerals (7, 8).

According to previous studies on sorghum properties,
starch is the primary component in sorghum grain, which
obtains a mass fraction from 65.3 to 81.0% with average
value of 79.5% (5). Currently, there are a growing interest in
the physicochemical properties of different sorghum starch.
The physicochemical properties of sorghum starch determine
its application. Sorghum starch is rich in slow-digesting and
resistant starch, which are often used to make hypoglycemic
and anti-obesity foods due to its poorly digested property.
Sorghum starch is the most important carbon source in white
wine fermentation, not only provides energy for the wine
bent, but also is a raw material for esters, alcohols and acid
aromatics. And the fine structure of starch largely affects the
efficiency of white wine fermentation and product quality (9).
The pasting properties of sorghum starch makes it can be used
as thickener and adhesive (10). It is clear that the researches on
the physicochemical properties of sorghum starch are important
to promote its further application.

The size of sorghum starch ranges from 10 to 16 µm,
and it is mainly found in the endosperm (11). Starch
consists of two types of polysaccharide molecules: amylose
(linear) and amylopectin (branched). In previous studies,
Chen et al. (12) stated the amylose content of sorghum
starch ranged from 0.18 to 28.21%. Their study also pointed
out the ratio of amylose and amylopectin might affect
physicochemical, thermal, and rheological characteristics of
starch. Sorghum starches showed the typical A-type crystallinity
polymorph, with strong diffraction peaks at 2θ around
15.4, 17.2, 18.2, and 23.2◦, and another weaker peak at
2θ around 20◦ (13). The crystalline structures of starch
granules are affected by the amylose-amylopectin ratio, degree
of branching, and chain length of the amylopectin (14).
Sang et al. (15) found that a high amylose content in
sorghum starch might result in low peak viscosity, peak
pasting temperature and pasting enthalpy, which revealed
that amylose content might negatively impact viscosity and
thermal properties. And it is also negatively correlated with
the water solubility index and relative crystallinity (16).
Singh et al. (17) investigated the amylose content in Indian
sorghum starch ranged from which ranging from 11.2 to
28.5%. Boudries et al. (18) compared the physicochemical,
functional, and structural properties of starch isolated from
red and white Algerian sorghum. And they discovered that
the amylose content of sorghum starch was slightly different
from corn and wheat starch, but sorghum starch exhibited

higher water holding capacity and solubility than those
of wheat starch.

Currently, most research focused on maize starch, wheat
starch, potato starch, and quinoa starch. To the best of our
knowledge, research on the physicochemical properties of
sorghum starch analysis used only a limited number of samples,
which emphasized on comparing different varieties sorghum
starch (less than 15 samples) and starch from other plant
sources (17, 18). The sorghum in this study was provided
by the Chinese Academy of Sciences, which were grown in
Gansu, Beijing, and Dongying with red, yellow, and white
appearance. In this article, sorghum species expanded sorghum
species to thirty varieties that were all cultivated in China,
which will fill up the blank in the starch database. By
analyzing the amylose contents in different sorghum starch,
the relationship between sorghum varieties and characteristics
in physicochemical and structural levels will be explored.
This research will contribute to the selection and breeding
of sorghum varieties for starch extraction by allowing for the
targeted selection of preferred sorghum types, and give food
industry a good selection of sorghum starch and develop new
product in market.

2. Materials and methods

2.1. Materials

Thirty varieties of sorghum were bred by the Chinese
Academy of Sciences and were in the Academy’s sorghum
database (Table 1). Maize amylopectin and potato amylose
were purchased from Sigma–Aldrich Chemical, Co. (Shanghai,
China). Iodine and potassium iodide were purchased from
Macklin Biochemical Co., Ltd (Shanghai, China). Sodium
hydroxide, urea and dimethyl sulfoxide were purchased from
Sinopharm Chemical Reagents Co., Ltd (Shanghai, China).

2.2. Starch isolation and purification

Thirty different kinds of sorghum were used to extract
their starches following a previous method (19) with some
modifications. The sorghum grain was immersed in a
0.25% (w/v) NaOH solution at 1:5 (w/v) ratio for 24 h. It
was cleaned and crushed for 10 min using a colloid mill
(YL90S-2, Zhejiang, China) followed by passing through
a 200 mesh screen. Then, sodium hydroxide (0.25%
w/v) was added to keep the soaking going for another
24 h. Afterward, the slurry was centrifuged for 20 min at
5,000 rpm. The precipitate was resuspended and centrifuged,
and this procedure was repeated with anhydrous ethanol
firstly and distilled water for three times. Finally, the
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TABLE 1 Product information of sorghum samples.

ID in
database

Sample code Origin Color

PI641807 S1 Gansu White

PI586454 S2 Gansu Red

PI220636 S3 Beijing Red

00013897 S4 Beijing Yellow

PI30204 S5 Gansu Red

PI152968 S6 Dongying Yellow

PI201723 S7 Gansu Yellow

PI287595 S8 Beijing Red

PI287632 S9 Dongying Yellow

PI152743 S10 Dongying Red

PI287589 S11 Gansu Red

PI287590 S12 Gansu White

PI287596 S13 Gansu Yellow

PI651495 S14 Gansu Yellow

PI454574 S15 Gansu Red

PI669332 S16 Gansu Red

PI570998 S17 Gansu Yellow

PI570987 S18 Gansu Red

PI641828 S19 Dongying Red

PI217892 S20 Dongying Yellow

PI177156 S21 Gansu Red

PI655983 S22 Gansu White

PI563094 S23 Gansu White

GW000019 S24 Gansu Yellow

PI570998 S25 Dongying Red

PI570955 S26 Dongying White

PI571134 S27 Dongying Yellow

00004640 S28 Gansu Red

00004789 S29 Dongying Red

PI260210 S30 Beijing Yellow

The starch ID was provided by the Chinese Academy of Sciences.

starch was dried at 40◦C in oven for 24 h in purpose of
future analysis.

2.3. Moisture content (MC)

The moisture content of starch was determined using a
halogen moisture analyzer (MA45C, Germany) following the
method of Li et al. (20). Sorghum starch (1 g) was weighed
and distributed in an aluminum foil dish. Samples were then
baked at 110◦C until the constant weight was obtained. The
results were expressed as a percentage of total weight basis. Each
measurement was performed in triplicate.

2.4. Apparent amylose content

The AAC was ascertained using the iodine binding-based
method (21, 22) with minor modifications. KI-I2 solution was
prepared by dissolving 0.5 g KI and 0.05 g I2 in 25 ml distilled
water, and the KI-I2 solution was kept in dark at 4◦C. Maize
amylopectin and potato amylose were used to prepare starch
standard curve with amylose content of 0, 20, 40, 60, 80, and
100%. Eight milliliters of urea-dimethyl sulfoxide solution (1:9
v/v) was added to 20 mg of starch, following by mixing using
vortex for 2 min. The mixture was incubated in an 85◦C water
bath for 30 min and shaked every 5 min. The starch solution
was cooled down to room temperature and fixed into a 25 ml
volumetric flask. Aliquots (3 ml) of starch solution was mixed
with 1 mL of KI-I2 solution to make 50 ml samples solution
with distilled water. The sample was allowed to stand at 25◦C for
15 min before measuring absorbance at 620 nm. The Amylose
content was calculated based on the regression Equation 1. x is
absorbance, y is the amylose content.

y = 0.0133x+ 0.0413 (1)

2.5. Scanning electron microscopy

Scanning electron microscopy (SEM; Hitachi SU3500,
Tokyo, Japan) was used to examine sorghum starch at a
5 kV accelerated voltage (23). The samples were gold plated
after being coated with double-sided carbon coated tape. The
microstructure of sorghum starch was then imaged using SEM.

2.6. Swelling power and water
solubility index

Swelling power (SP, g/g) and water solubility index (WSI,
%) were determined using a method modified from Tsai et al.
(24). Starch (0.15 g) was accurate weighted (±0.1 mg) and mixed
with 10 mL of distilled water in a 15 ml centrifuge tube, and the
sample was prepared in quintuplicate. The tubes were heated
in a water bath at 55, 65, 75, 85, and 95◦C, respectively. The
incubation was carried out for 1 h with frequent shaking at
first 10 min. The tubes were then centrifuged at 3,000 × g for
20 min after cooling down through room temperature water to
25◦C. After transferring the supernatant to a petri dish, then
supernatant was dried and weighed (W1). And the sediment was
weighed and recorded as Ws. The following formulas were used
to calculate WSI and SP:

WSI =
W1
W0
× 100% (2)

SP(g/g) =
Ws

W0 × (1−WSI)
(3)
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2.7. ATR-FTIR spectroscopy analysis

The short-range ordered structures of different sorghum
starches were evaluated by ATR-FTIR spectroscopy (Bruker,
V70FTIR, Berlin, Germany). The sample was set flat on the
diamond ATR crystal’s surface in a homogeneous manner, the
air background was gathered. The sample was subsequently
scanned. ATR-FTIR spectroscopy in the range of 1,100–
900 cm−1 was deconvoluted using OMNIC 9.2 software to
determine the absorbance of 1,047, 1,022, and 995 cm−1. Then,
the values of 1,047/1,022 cm−1 (DO) and 995/1,022 cm−1 (DD)
were calculated.

2.8. X-ray diffraction

The crystalline characteristics of sorghum starch were
obtained using an X-ray diffractometer (SmartLabSE, Rigaku,
Japan). The parameters were tested using 40kV and 30mA
with Cu kα radiation. The samples, with a 0.03 step size, were
measured between 5◦ and 40◦ (25). The relative crystallinity
(RC) of the sample was calculated using JADE 6.5 software based
on Kang et al. (26).

RC (%) =
Crystal area

Amorphous area+ Crastal area
(4)

2.9. Pasting analysis

Pasting properties of the samples were determined using
a rapid visco-analyzer (RVA, Perten Instruments, Australia)
based on to the method reported by Ambigaipalan et al. (27).
The samples (2.5 g) were disseminated in distilled water in an
aluminum tube (25 ml). The initial agitation speed was 960 rpm
for 10 s to ensure consistency of the diffusion, and the speed
was then slowed down to 160 rpm. The starch suspension was
held at 50◦C for 1 min, then heated up to 95◦C at 12◦C/min
and kept at 95◦C for 2.5 min. Afterwards, the suspension was
reduced to 50◦C at the same rate and held for 2 min. Pasting
parameters were determined, including pasting temperature
(PT), peak temperature (PKT), peak viscosity (PV), hot
paste viscosity (HPV), cool paste viscosity (CPV), breakdown
(BD = PV − HPV), setback (SB = CPV − HPV), stability ratio
(SR = 100×HPV/PV) and setback ratio (BR = CPV/HPV).

2.10. Differential scanning calorimetry
(DSC)

The melting curve of sorghum starch was determined using
a NETZSCH DSC analyzer (DSC- 200fc, NETZSCH, Selb,
Germany) based on to the method reported by Yang et al. (28).
Starch samples (2 mg) were mixed with 6 µl of ultrapure water

in a DSC crucible. The airtight crucible was then equilibrated at
room temperature for 12 h. The samples were heated from 30
to 120◦C at a heating speed of 10◦C/min. An empty crucible
was used as control. The onset (To), peak (Tp), conclusion
(Tc) temperatures of gelatinization, and the enthalpy change
(1H), were recorded.

2.11. Statistical analysis

The mean and standard deviation were obtained by SPSS V.
25 software, and the significance of the results was evaluated by
analysis of variance. At p < 0.05, significant differences in the
mean values were established. The correlation analysis between
starch properties was determined by SPSS software V. 25. The
principal component analysis (PCA) results were obtained in
Origin 2021 V. 9.8 software.

3. Results and discussion

3.1. Moisture content (MC) and
apparent amylose content (AAC)

The moisture content of thirty sorghum starches ranged
from 8.4 ± 0.3% in S19 to 13.5 ± 0.3% in S18 (Table 2). Starch
with water content between 9 to 12% accounted for 60% of
the total starch species in this study. The moisture content of
sorghum starch in Belhadi et al. (29) ranged from 8.44 to 11.39%,
which was close to the results of this study. AAC varied from
7.42 ± 0.21% in S4 to 36.44 ± 1.06% in S29 (Table 2), with
a mean value of 25.58%. The AAC determined by iodometric
method was reported between 5.18 and 28.5% (17, 18, 30,
31). Chen et al. (12) stated the amylose content in sorghum
starch determined by the iodometric method ranged from 0.18
to 28.21%, from which a low value of AAC was obtained.
It could be attributed to the different varieties of starch.
The amounts of iodine and potassium iodide solution were
applied in experiment might also affect the results. A variety
of alternative methods have been employed to determine the
amylose content of sorghum starch. The concanavalin A (ConA)
method was employed in the studies reported by De Oliveira
et al. (32) and Srichuwong et al. (33) to estimate AAC ranged
from 11.50 to 22.75% and 24.6 to 25.8%, respectively. A low
AAC range (0.25–27.90%) was investigated by Peiris et al. (34)
using NIR spectroscopy. The higher AAC obtained in this study
may be due to iodine-starch interactions (21). Additionally,
differences in sorghum varieties and living environments may
be responsible for the AAC gap.

The average value of AAC (25.58%) was much lower than
that of wheat starch (38.6%) (35), but higher than 21.29% of
quinoa starch (21) and 21.6% of rice starch (36). However,
the average AAC value was lower in comparison to 31.1%
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TABLE 2 Apparent amylose content, moisture content, water solubility index, swelling power, relative crystallinity, degree of order, and degree of
double helix of sorghum starch.

Sample AAC (%) MC (%) WSI (%) SP (g/g) RC (%) DO DD

S1 9.45± 0.21m 8.9± 0.1op 49.8± 0.3g 35.1± 0.2d 31.6± 0.1a 0.762± 0.009b 1.514± 0.008c

S2 9.19± 0.27m 10.2± 0.1kl 26.4± 0.9op 40.6± 0.2b 31.2± 0.1ab 0.710± 0.009efg 1.433± 0.008fg

S3 8.17± 0.32mn 11.6± 0.1gh 34.8± 0.6l 45.4± 1.2a 30.6± 0.6ab 0.766± 0.010b 1.537± 0.009b

S4 7.42± 0.21n 9.0± 0.5o 24.3± 1.8o 45.7± 0.1a 32.4± 0.5a 0.797± 0.019a 1.579± 0.016a

S5 17.05± 0.53j 8.6± 0.4pq 46± 0.2ij 45.6± 0.7a 27.4± 0.5cd 0.689± 0.009ghi 1.427± 0.008fghi

S6 15.47± 0.53k 12.0± 0.1ef 44.6± 0.9j 38.0± 1.1c 28.2± 0.9c 0.713± 0.009de 1.405± 0.008jkl

S7 11.29± 0.33l 10.7± 0.2ij 29.1± 1.2n 35.6± 0.3d 29.2± 0.4bc 0.751± 0.005bc 1.512± 0.008c

S8 20.24± 0.59i 11.7± 0.3fg 49± 2.3gh 27.1± 0.8fg 26.0± 0.8de 0.690± 0.008fgh 1.395± 0.006kl

S9 22.18± 0.08h 11.2± 0.3h 32.3± 0.8m 27.6± 1.3fg 25.7± 3.0defg 0.676± 0.005hij 1.392± 0.004l

S10 27.01± 0.69f 9.7± 0.1mn 70.6± 0.8a 25.7± 0.1h 25.8± 1.7def 0.669± 0.010ijk 1.388± 0.008lm

S11 27.72± 0.74ef 12.1± 0.1e 43.8± 0.0j 26.4± 0.5gh 25.4± 0.5defgh 0.657± 0.009jkl 1.421± 0.008ghij

S12 28.85± 1.59de 8.7± 0.1opq 22.4± 0.5p 24.2± 0.9i 23.4± 0.3ghijklm 0.665± 0.008jk 1.392± 0.006l

S13 29.56± 0.80d 11.8± 0.3efg 47.3± 2.2hi 17.8± 0.2mn 24.3± 1.2efghij 0.655± 0.009jkl 1.394± 0.007kl

S14 25.17± 0.21g 12.7± 0.1d 36.7± 0.7l 20.8± 1.1jk 23.8± 0.3efghijk 0.711± 0.009ef 1.391± 0.007l

S15 26.93± 0.16f 13.1± 0.4bc 30.9± 0.6n 20.2± 1.1jk 24.6± 0.8efghi 0.706± 0.008efg 1.440± 0.007ef

S16 29.11± 0.27de 8.8± 0.2opq 44.2± 1.6j 34.7± 0.1d 21.5± 0.2lmn 0.626± 0.008m 1.366± 0.006n

S17 24.71± 1.06g 11.6± 0.3gh 43.8± 0.2j 39.9± 0.1b 28.5± 0.7c 0.698± 0.009efg 1.462± 0.007d

S18 29.30± 1.38de 13.5± 0.3a 40.7± 0.6k 19.6± 1.1kl 22.5± 0.1ijklmn 0.666± 0.009jk 1.372± 0.008mn

S19 27.83± 0.16ef 8.4± 0.3q 39.5± 0.2k 26.5± 0.4gh 22.1± 0.5jklmn 0.695± 0.009efgh 1.443± 0.007ef

S20 28.81± 0.05de 9.8± 0.1lm 41.5± 0.6k 30.3± 0.3e 24.3± 0.8efghij 0.731± 0.010cd 1.275± 0.001p

S21 34.30± 0.80bc 9.4± 0.2n 24.3± 0.4op 20.6± 0.9jk 23.6± 0.1fghijklm 0.602± 0.009n 1.357± 0.009n

S22 34.00± 0.16bc 9.7± 0.2mn 65.2± 2.1b 19.9± 0.2kl 23.3± 0.7hijklm 0.668± 0.008jk 1.415± 0.006hij

S23 33.25± 1.44c 10.8± 0.2i 45.5± 0.2ij 28.4± 0.3f 23.9± 2.6efghij 0.642± 0.009lm 1.431± 0.007fgh

S24 33.17± 1.01c 11.6± 0.1fg 69.9± 1.4a 21.6± 1.2j 21.4± 0.1mn 0.675± 0.008hij 1.388± 0.006lm

S25 33.55± 0.58bc 13.3± 0.1ab 60.2± 0.7d 20.5± 0.1jk 21.7± 0.4klmn 0.652± 0.009kl 1.293± 0.007o

S26 33.29± 0.21c 9.9± 0.1lm 54.6± 0.4e 14.8± 0.8n 25.2± 0.2defgh 0.664± 0.009jk 1.445± 0.008ef

S27 34.98± 0.58ab 10.4± 0.2jk 29.5± 0.6n 18.7± 1.2lm 20.5± 0.2mn 0.638± 0.008lm 1.410± 0.008ijk

S28 33.74± 0.32bc 11.5± 0.2gh 52.4± 0.3f 28.5± 0.2f 21.6± 0.1klmn 0.701± 0.009efg 1.433± 0.008fg

S29 36.44± 1.06a 12.8± 0.2cd 29.7± 0.6n 25.3± 1.4hi 23.7± 0.4fghijkl 0.734± 0.009c 1.427± 0.006fghi

S30 35.09± 0.64ab 12.1± 0.1e 63± 1.4c 17.3± 0.8m 25.2± 0.3defgh 0.694± 0.009efgh 1.455± 0.007de

Values in the same column with the different letters differ significantly (p< 0.05); AAC, apparent amylose content; MC, moisture content; WSI, water solubility index at 85◦C; SP, swelling
power at 85◦C; RC, relative crystallinity; DO, degree of order; DD, degree of double helix.

of normal maize starch (37), which was obtained by the
iodometric method.

3.2. Morphological properties

No significant differences were observed in the SEM images
of 30 different types of sorghum starches (Supplementary
Figure 1). According to the different amylose content, nine
kinds of starch were selected as shown in Figure 1. The starch
granule morphology of sorghum exhibited irregular spherical

or polygonal shapes. The presence of small pores and dents
distributed on the surface of sorghum starch granules was
obvious. The same finding was reported in previous study (38).
These dents and pores extended from the outer surface of the
starch granules to the internal part, which can affect the reaction
of the granules with other substances, especially amylase (39).
The average particle size of sorghum starch (14.5 µm) was
calculated by ImageJ software, with the majority between 10 and
20 µm. The largest sorghum starch particles were approximately
24 µm while the smallest were approximately 2 µm. Sorghum
starch granules were close to 5–25 µm of corn starch (40),
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FIGURE 1

SEM images of different sorghum starch varieties. (a–i) Represent the sorghum starch samples S1 to S9.

larger than 1.21–1.95 µm of quinoa starch (41), but smaller
than 22.51–52.79 µm of potato starch (42). Varying genes and
growing environments resulted in different sizes and shapes of
starch granules from distinct plant sources (43). Physical and
chemical characteristics including swelling, pasting and enzyme
sensitivity might be impacted by the size of the starch granules.

3.3. Swelling power (SP) and water
solubility index (WSI)

According to Figure 2, the water solubility index (WSI)
and swelling power (SP) of sorghum starch varied obviously as
temperature increased. As temperature increased from 55 to 95
◦C, the water solubility index and swelling force increased from
0.51± 0.07 to 52.16± 5.12% and 2.35± 0.59 to 41.35± 4.92 g/g,
respectively. Sorghum starch had a greater water solubility index
than that of quinoa starch (41) and rice starch (16), which could
be because the particle size of sorghum starch is larger than
that of quinoa and rice starch, resulting in a larger contact area
between sorghum starch particles and water (11, 41).

The relationship between WSI and AAC of sorghum starch
would not be statistically significant (Figure 6). While the trends
of WSI at 55, 65, and 75◦C were relatively smooth (Figure 3A).

FIGURE 2

Average WSI and SP of sorghum starch. (a–d) Different letters
indicate significant differences (p < 0.05).
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FIGURE 3

(A) Trends of water solubility index of sorghum starch with amylose content. (B) Trends of swelling power of sorghum starch with amylose
content. S3–S29 are sorghum starch with gradually increasing amylose content. a–f: Different letters indicate significant differences (p < 0.05).
There was no significant difference between different starches at 55 and 65 ◦C.

FIGURE 4

(A) Deconvoluted FTIR spectra from S1 to S8. (B) Deconvoluted FTIR spectra from S9 to S16. (C) Deconvoluted FTIR spectra from S17 to S23. (D)
Deconvoluted FTIR spectra from S24 to S30.

WSI was found to be negatively correlated with AAC at 95◦C,
which could be attributed to the generation of amylose-lipid
complex at high temperatures resulting in a denser structure

(13, 44). The formation of this denser structure inhibited starch
dissolution (45–47). Figure 3B depicted a negative correlation
between SP and AAC of sorghum starch at 75, 85, and 95◦C,
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FIGURE 5

(A) X-ray diffraction from S1 to S8. (B) X-ray diffraction from S9 to S16. (C) X-ray diffraction from S17 to S23. (D) X-ray diffraction from S24 to S30.

which implied that amylose might limit starch granule swelling
(48, 49). SP was significantly negatively correlated with AAC at
85◦C (r = −0.80, p < 0.001) (Figure 6). Similar phenomenon
was stated by Kong et al. (36) and Li et al. (21).

3.4. ATR-FTIR analysis

Short-range ordered (crystalline) structures in starch
have been reported to be sensitive to ATR-FTIR (50). The
deconvoluted spectra of various sorghum starches as shown in
Figure 4, they are largely caused by C–O and C–C stretching
vibrations between 1,200 and 900 cm−1 (23, 51). This range
is quite sensitive to the starch’s physical state. Absorbance at
1,045, 1,022, and 995 cm−1 presented starch’s conformational
changes, and the ratios of 1,047 and 1,022 cm−1 were commonly
employed to quantify the degree of order/crystallinity (52). The
ratio of 1,047/1,022 cm−1 reflected the degree of order (DO) of
sorghum starch crystalline area, and the ratio of 995/1,022 cm−1

is relative to the double helix (DD). Table 2 showed that the
DO of sorghum starch ranged from 0.602 ± 0.009 in S21 to
0.797 ± 0.019 in S4, while the DD ranged from 1.275 ± 0.001
in S20 to 1.579 ± 0.016 in S4. The correlation plot in Figure 6

showed that DO and DD of sorghum starch were related
to AAC. AAC exhibited negative correlation with both DO
(r = −0.701, p < 0.001) and DD (r = −0.593, p < 0.001),
which indicated that the degree of order and double helix of the
sorghum starch were influenced by AAC. High amylose content
was associated with lower DD and DO. The present of amylose
could disrupt granular crystalline ordering and stabilization
(53). The parameters of DD and DO were associated with SP
at 85 ◦C. DO was positively correlated with SP (r = 0.585,
p < 0.001) and DD was also positively correlated with SP
(r = 0.489, p < 0.01). It showed that starch contained a high
degree of order and double helix structure resulted in higher
swelling power. The phenomenon corresponded to the findings
of Du et al. (54) and Zhong et al. (53). The swelling of starch
during heating was affected by its crystalline structure (16). DO
and DD increased the strength of the crystalline structure, which
might lead to starch granules swelling without breaking.

3.5. X-ray diffraction (XRD)

As present in Figure 5, there is no significant difference was
found on XRD patterns of sorghum starch. The characteristic
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TABLE 3 Pasting properties of sorghum starch.

Sample PV (RVU) HPV (RVU) CPV (RVU) BD (RVU) SB (RVU) PT (◦C) PKT (◦C) SR BR

S1 261.0± 10.1ab 109.9± 0.8ab 149.6± 1.9ij 151.1± 9.4bcd 39.7± 1.2i 81.6± 0.0b 90.4± 0.1a 42.1± 1.3cdefgh 1.37± 0.01k

S2 260.2± 7.6ab 111.0± 1.7ab 164± 5.8ij 149.3± 5.9bcde 53.0± 9.1hi 83.3± 0.0a 90.3± 0.0a 42.7± 0.6cdefgh 1.48± 0.08k

S3 275.5± 5.2a 119.4± 2.7a 167.8± 9.9ij 156.1± 2.5abc 48.4± 7.1i 81.6± 0.1b 89.6± 0.1ab 43.3± 0.2cdefgh 1.41± 0.05k

S4 277.5± 2.3a 107.5± 0.1bc 144.0± 1.6j 170.0± 2.2a 36.5± 1.7i 79.9± 1.2defgh 85.5± 0.0hi 38.7± 0.3hijk 1.34± 0.01k

S5 247.9± 3.6bc 83.9± 1.9fghi 172.4± 4.1hi 164.1± 1.8ab 88.6± 2.2g 80.0± 1.1cdefg 87.5± 0.6de 33.8± 0.3lm 2.06± 0.01ij

S6 248.6± 3.3bc 86.9± 3.5efghi 162.6± 3.1ij 161.8± 0.1ab 75.8± 6.5gh 80.8± 0.0bcde 88.0± 0.0cd 34.9± 0.9jklm 1.88± 0.11j

S7 261.1± 0.8ab 96.1± 0.9de 151.2± 1.0ij 165.0± 0.1ab 55.2± 0.1hi 80.9± 0.0bcd 89.2± 0.1b 36.8± 0.2ijklm 1.58± 0.01k

S8 235.3± 1.9cd 79.9± 0.4hij 201.2± 1.3fg 155.4± 1.5abc 121.3± 1.7def 80.5± 0.3bcdef 87.5± 0.1de 34.0± 0.1klm 2.52± 0.03bcdefgh

S9 235.4± 0.2cd 77.9± 1.5ij 210.9± 0.6defg 157.5± 1.3ab 133.1± 0.9bcdef 79.6± 0.1efgh 87.3± 0.1def 33.1± 0.6m 2.71± 0.04abcde

S10 192.0± 9.8ij 102.8± 8.1bcd 244.4± 5.7a 89.2± 8.3o 147.6± 3.4abcd 79.5± 1.9fghi 87.6± 0.5de 53.4± 6.7a 2.47± 0.29cdefgh

S11 201.1± 4.6hij 89.1± 1.6efghi 218.9± 0.5bcdefg 112.0± 6.2lmn 129.8± 1.1cdef 78.8± 0.6hi 86.4± 0.0fgh 44.3± 1.8cdefg 2.46± 0.04cdefgh

S12 210.1± 9.3fgh 96.8± 8.6cde 240.0± 16.5abcd 113.3± 2.7klmn 143.2± 7.9abcde 80.8± 0.1bcde 87.1± 0.0def 46.0± 1.6bcd 2.49± 0.05bcdefgh

S13 214.4± 0.8efgh 88.5± 6.6efghi 237.5± 10.6abcd 126.0± 7.4fghijkl 149.1± 12.2abc 80.8± 0.1bcde 86.4± 0.1fgh 41.3± 3.2defghi 2.7± 0.47abcdef

S14 188.5± 10.3j 82.2± 3.0ghij 232.1± 9.7abcde 106.4± 7.4mn 149.9± 10.7abc 80.7± 0.0bcde 85.6± 0.0hi 43.6± 0.8cdefgh 2.83± 0.15ab

S15 222.6± 2.8defg 87.4± 2.1efghi 220.6± 5.4bcdefg 135.3± 0.8efgh 133.3± 3.3bcdef 80.8± 0.1bcde 86.0± 0.6ghi 39.3± 0.4ghij 2.53± 0.01bcdefgh

S16 232.1± 6.7cde 92.7± 1.6defg 241.3± 11.4abc 139.5± 8.3defg 148.6± 6.0abc 79.2± 0.1ghi 88.0± 1.1cd 39.9± 1.8fghij 2.61± 0.16abcdefg

S17 214.6± 0.2efgh 96.2± 0.4de 220.3± 7.8bcdefg 118.4± 0.6ijklmn 124.1± 7.4cdef 77.4± 0.1i 84.3± 0.5i 44.8± 0.2bcdef 2.29± 0.07ghi

S18 221.7± 4.0defg 97.7± 0.3cde 218.9± 11.4bcdefg 124.0± 3.7ghijkl 121.1± 10.7ef 80.8± 0.0bcd 87.2± 0.0def 44.1± 0.7cdefg 2.24± 0.13hi

S19 212± 7.1fgh 89.5± 0.7efgh 204.5± 4.9efg 122.5± 6.4hijklm 115.0± 5.6f 78.8± 0.6hi 85.6± 1.1hi 42.2± 1.1cdefgh 2.29± 0.08ghi

S20 211.9± 1.3fgh 92.1± 5.7defg 221.5± 7.8abcdefg 119.9± 7.0hijklmn 129.4± 6.2cdef 77.3± 0.0i 85.6± 0.0hi 43.5± 2.9cdefgh 2.41± 0.02defgh

S21 215.4± 3.5efgh 89.5± 0.2efgh 234.6± 6.7abcd 126.0± 3.8fghijkl 145.2± 6.9abcde 81.2± 0.5bcd 88.8± 0.0bc 41.5± 0.8defghi 2.63± 0.08abcdefg

S22 216.6± 2.8efgh 83.4± 0.8fghi 232.1± 5.3abcde 133.2± 3.5fghi 148.7± 4.5abc 80.9± 0.0bcd 87.2± 0.0def 38.5± 0.8hijkl 2.79± 0.04abc

S23 228± 2.8def 97.1± 5.1cde 228.6± 3.8abcdef 130.9± 7.9fghij 131.6± 8.8cdef 80.8± 0.0bcde 86.4± 0.1fgh 42.6± 2.8cdefgh 2.36± 0.16fghi

S24 227.9± 3.0def 98.5± 5.0cde 233.1± 13.6abcde 129.4± 2.0fghijk 134.7± 8.6abcdef 80.8± 0.0bcd 86.0± 0.5ghi 43.2± 1.6cdefgh 2.37± 0.02efghi

S25 231.6± 4.2cde 90.7± 3.3efgh 229.7± 11.1abcdef 140.9± 7.5cdef 139.0± 6.4abcdef 81.2± 0.6bcd 86.4± 0.1fgh 39.2± 2.1ghij 2.54± 0.21bcdefgh

S26 146.4± 27.9k 71.8± 6.6j 196.7± 37.2gh 74.6± 9.3p 124.9± 10.5cdef 81.2± 0.5bc 85.5± 0.0hi 49.5± 4.9ab 2.73± 0.27abcd

S27 206.9± 1.2ghi 84.3± 4.9fghi 242.6± 0.8abc 122.5± 3.8hijklm 158.3± 4.2ab 80.8± 0.1bcde 86.9± 0.6efg 40.8± 2.2efghi 2.88± 0.16a
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peaks occurred at 15◦, 17◦, 18◦, and 23◦ had the same pattern
as normal grain starch (55). The XRD peak pattern of sorghum
starch had diffraction peaks at 15◦ and 23◦ 2θ and constant
double peaks at 17◦ and 18◦ 2θ (Figure 5). This was consistent
with the peak pattern of other sorghum starches, which were all
type A crystallization (56, 57). Although there is no difference
in the XRD pattern of sorghum starch, starches revealed
a great difference in crystallinity. Sorghum starch exhibited
large characteristic peaks (Figure 5A), which reflected the
large crystallinity. The relative crystallinity of sorghum starch
ranged from 20.5 ± 0.2% in S27 to 32.4 ± 0.5% in S4, with
significant differences (p < 0.05) between the thirty starches
(Table 2). Pearson correlation analysis revealed that the RC of
sorghum starch was highly correlated with AAC (r = −0.891,
p < 0.001). Starch made up of an ordered crystalline region and
an unordered amorphous region. Most of the noncrystalline and
crystalline regions were made up of amylose and amylopectin,
respectively (58). The relationship between AAC and RC also
supported that amylopectin was the main contributor to the
crystalline structure. The crystallinity of sorghum starch (18.86–
23.87%) reported by Li et al. (59) was lower than that in this
study. The main reason could attribute to limited number of
sorghum varieties and a single sorghum source.

Figure 6 showed that RC is significantly correlated with DO
(r = 0.706, p < 0.001) and DD (r = 0.679, p < 0.001). The
degree of short-range order and double helix of sorghum starch
suggested to be related to the degree of crystallinity, which is the
same with previous studies (60). This indicated that the starches
had microcrystalline areas made up of ordered starch molecules
(54).

3.6. Pasting properties

Great variation in pasting properties among 30 sorghum
starch samples has been observed (Table 3). BD and SR revealed
the resistance of paste to heat and shearing, while SB and BR
represent the tendency of paste to retrograde and amylose to re-
associate (36). S4 exhibited the largest PV (277.5 ± 2.3 RVU)
and BD (170.0 ± 2.2 RVU), while S26 displayed the smallest
PV (146.4 ± 27.9 RVU) and BD (74.6 ± 9.3 RVU). PV was
related to the water absorption capacity or the degree of swelling
of the particles (61). HPV ranged from 71.8 ± 6.6 RVU in S26
to 119.4 ± 2.7 RVU in S3. PKT ranged from 84.3 ± 0.5◦C in
S17 to 90.4 ± 0.1◦C in S1. According to Figure 6, AAC was
negatively related to PV, HPV, BD, and PKT. The correlation
between PV and AAC was consistent with that between SP and
AAC. These results indicated that the abilities of sorghum starch
to combine with water and the degree of swelling were enhanced
as AAC increased. BD was negatively correlated with AAC as
reported in a previous study (17, 37). The PKT was decrease
with the increase of AAC. It was because higher amount of
the AAC, the faster starch paste reached PV. At a constant
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FIGURE 6

Pearson correlation coefficients among various physicochemical properties of sorghum starch. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001.

rate of warming for RVA, starch that reaches PV faster has
smaller PKT. S29 showed the maximum CPV (244.5 ± 15.3
RVU), SB (160.7 ± 15.1 RVU), and SR (2.92 ± 0.18), while
S4 revealed the minimum values of CPV (144.0 ± 1.6 RVU),
SB (36.5 ± 1.7 RVU), and BR (1.34 ± 0.01). The CPV, SB
and BR were found to be positively correlated with AAC,
implying that the increase in AAC promoted retrogradation
of starch. Due to the essentially linear structure, the amylose
part of starch retrogrades more readily than amylopectin (36).
The straight chain structure of amylose contributed to forming
hydrogen bonds between molecules, which resulted in firm gels
generation (62). The PT of sorghum starch was 77.3–83.3◦C,
which was higher than that of sorghum from India (17) and
Algeria (18). Variables in starch pasting capabilities among
cultivars may be due to genetic and growing environment
differences.

3.7. Thermal properties

The gelatinization temperatures and enthalpy of the
endothermic peaks were presented in Table 4. The 1H value,

To, Tp, Tc, and 1T (Tc-To) ranged from 7.87 ± 0.27 to
12.92 ± 0.42 J/g, 67.3 ± 0.4 to 75.8 ± 0.3◦C, 73.5 ± 0.1 to
80.8 ± 0.1◦C, 78.5 ± 0.2 to 85.7 ± 0.1◦C, and 8.3 ± 0.3 to
12.4 ± 0.1◦C, respectively. The thermal properties were similar
with the literature reported by Singh et al. (17). The 1H value
is inconsistent with research data in some of the literature (15,
63). The differences in amylose content, starch granule size and
the presence of minor components (such as proteins and lipids)
may explain the diversity of sorghum starch in gelatinization
behaviors (64). The To, Tp, and Tc values were similar to
amaranth starch (65) and larger than quinoa starch (41). As
exhibited in Table 4, S1, S2, and S3 have larger To, Tp, and
Tc values which indicates the higher stability of these starches.
The 1H of sorghum starch is less than that of rice starch
(16, 36). The 1T value indicated the stability and uniformity
of the crystalline region in starch granule (66). A high 1T
indicates that the crystalline regions of the starch granules
contained many different crystallites (67). The 1T of sorghum
starch was less than that of sago starch (54) and quinoa starch
(41).

The To, Tp, Tc, and 1H were negatively correlated with
AAC (Figure 6). Similar finding was investigated in rice
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starch (36), and the result was opposite to that of amaranth
starch (65). During the pasting process, 1H represents the
energy needed for unwinding and melting of the double
helix structure (68). RC was positively correlated with To,
Tp, Tc, and 1H. The results indicated dissociation of the
double helix and the reduction of the order in the high
crystalline starch crystals region required more heat and
higher temperature. As shown in Figure 6, 1H is positively
correlated with RC, DO, and DD, which indicated that the
crystallinity and degree of double helix of sorghum starch
affects the enthalpy of gelatinization. PT was found to be

positively related to To, Tp, and Tc (Table 4). Therefore, the
thermal properties could be an alternative evaluation method
when it came to compare the magnitude of starch pasting
temperature.

3.8. Principal component analysis
(PCA)

Principal component analysis (PCA) plots can display
the interrelationships between starch structural properties and

TABLE 4 Thermal properties of sorghum starch.

Sample 1H (J/g) TO (◦C) TP (◦C) TC (◦C) 1 T (◦C)

S1 10.4± 0.08bcde 74.3± 0.5b 78.7± 0.5b 83.6± 0.8b 9.4± 0.4ijkl

S2 9.77± 0.51cdefgh 75.8± 0.3a 80.8± 0.1a 85.7± 0.1a 9.9± 0.4ghijk

S3 12.40± 0.23a 73.2± 0.3c 78.7± 0.2b 83.6± 0.2b 10.4± 0.5defg

S4 12.92± 0.42a 71.8± 0.1def 76.5± 0.1efg 81.3± 0.2efgh 9.5± 0.1hijkl

S5 8.78± 0.30hijk 71.5± 0.4defg 77.2± 0.7de 82.3± 0.4cd 10.9± 0.8cde

S6 11.00± 0.44b 71.8± 0.6def 77.2± 0.1def 83.0± 0.2bc 11.2± 0.8bcd

S7 10.52± 0.10bcd 72.5± 0.2cd 78.2± 0.1bc 83.3± 0.1b 10.8± 0.1cde

S8 10.35± 0.16bcde 71.5± 0.2defg 76.4± 0.3fg 82.2± 0.1cde 10.8± 0.1cdef

S9 10.23± 0.05bcdefg 70.8± 0.2fghi 76.3± 0.3fg 81.7± 0.1defg 11.0± 0.4cde

S10 9.99± 0.06bcdefg 71.6± 0.3defg 76.4± 0.5fg 81.1± 0.7fgh 9.5± 0.4hijkl

S11 8.21± 0.13k 68.4± 0.1m 73.6± 0.1k 78.6± 0.1lm 10.2± 0.0efgh

S12 8.32± 0.14jk 70.7± 0.1fghij 74.7± 0.2hi 79.2± 0.4klm 8.5± 0.2mn

S13 8.39± 0.17jk 69.9± 0.1hijk 74.0± 0.1ijk 78.2± 0.0m 8.4± 0.1mn

S14 9.26± 0.46ghij 71.1± 0.1efg 75.1± 0.1h 79.4± 0.1jkl 8.3± 0.3mn

S15 9.5± 0.13defghi 69.7± 0.1ijkl 74.3± 0.2hijk 79.1± 0.4klm 9.5± 0.5hijkl

S16 9.43± 1.79efghi 68.6± 0.1lm 73.6± 0.0k 78.5± 0.2lm 9.9± 0.1ghijk

S17 10.33± 0.18bcdef 69.0± 0.4klm 73.7± 0.2k 78.5± 0.1lm 9.5± 0.3hijkl

S18 9.86± 0.57cdefg 69.9± 1.1hijk 75.0± 0.2h 80.2± 0.5ij 10.3± 0.6efgh

S19 9.63± 0.28cdefghi 68.2± 0.1mn 73.7± 0.1jk 78.4± 0.1lm 10.3± 0.1efgh

S20 9.28± 0.08ghij 67.3± 0.4n 74.5± 0.7hij 79.7± 0.3jk 12.4± 0.1a

S21 8.69± 0.09ijk 70.8± 0.6fgh 76.0± 0.3g 82.3± 0.8cd 11.5± 0.2bc

S22 8.33± 0.10jk 69.7± 1.6hijkl 74.7± 1.2hi 79.0± 1.3klm 9.3± 0.3jkl

S23 10.15± 0.11bcdefg 70.6± 0.1ghij 75.0± 0.0h 79.7± 0.1jk 9.1± 0.1klm

S24 9.31± 0.08fghij 71.4± 0.3defg 75.8± 0.3g 80.4± 0.1hij 9.0± 0.2lmn

S25 9.62± 0.42cdefghi 71.7± 0.4defg 76.9± 0.1def 81.9± 0.6defg 10.2± 0.2efghi

S26 10.62± 0.45bc 72.1± 1.0de 77.5± 0.4cd 82.1± 0.5cdef 10.0± 0.5fghij

S27 9.43± 0.16efghi 71.4± 0.1defg 76.3± 0.4fg 82.0± 0.2defg 10.6± 0.1defg

S28 10.17± 0.38bcdefg 69.6± 0.3jkl 74.8± 0.1hi 81.4± 0.0defg 11.8± 0.3ab

S29 7.87± 0.27k 71.2± 0.1efg 77.1± 0.1def 81.0± 0.1ghi 9.9± 0.1ghijk

S30 8.67± 0.07ijk 69.7± 0.1hijkl 73.5± 0.1k 79.6± 0.1jk 9.9± 0.2ghijk

Values in the same column with the different letters differ significantly (p < 0.05); 1H, gelatinization enthalpy; TO , gelatinization onset temperature; TP , gelatinization peak temperature;
TC , gelatinization conclusion temperature; 1T, gelatinization temperature range (Tc – To).
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FIGURE 7

Principle component analysis (PCA) describing the variations in physicochemical properties of sorghum starch. (A) Loading plot of PC1-PC2. (B)
Score plot of PC1-PC2. (C) Combination of loading and score plots of PC1-PC2. (D) Scree plot for 30 sorghum starch samples.

the differences and similarities among diverse starches. (69,
70). The eigenvalues of the 17 principal components could
explain all the variances. The contributions of various structural
parameters were represented by the lengths of loading vectors
(71). The loading plot in PCA revealed the relationship
between measured attribute parameters. The properties of
positive correlation were expressed as the lines that are close
to each other on the graph, while the properties of negative
correlation have lines that go in opposing directions. The first
principal component explained 50.8% of total variance, which
mainly contributed by AAC, RC, SP, PV, CPV, SB, and BR.
AAC, RC, SP, PV, CPV, SB, and BR were distributed along
PC1 and these properties were influenced by the AAC. The
second principal component explained 12.3% of total variance,
which was mainly contributed by DO, PT, PKT, To, Tp,
and Tc.

According to Figure 7A, AAC, SB, BR, and CPV were
located on the left side of the PCA plot and clustered together.
And RC, PV, and BD were located on the right side of the PCA
plot and were also clustered together. This indicated that there
was a strong correlation between these properties, which is agree
with the correlation analysis in Figure 6.

Figure 7B showed the score plot of 30 different sorghum
starches. The degree of variance or similarity in physicochemical
qualities is related to the distance between the positions of any
two starches on the score plot. The short distance of sorghum
starch in score plot represented for similar properties (21).
As seen in Figure 7B, the distribution of starch species was
correlated with AAC. The small AAC variety was located on
the right side of the PCA plot and the large AAC on the left.
Except S2 and S14, starches were distributed near the PC1 and
PC2 axes. The deviations of S2 and S14 may be due to differences
in genes and growth environment. Some starches located in
the region surrounded by the negative direction of PC1 and
the positive direction of PC2 were close in distance, which
indicated that they have high similarity in physicochemical
properties.

4. Conclusion

In summary, starches isolated from 30 varieties of sorghum
exhibited significant differences in physicochemical properties.
In this study, the morphological properties, apparent amylose
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content, thermal properties, swelling properties, crystalline
structure and pasting properties of starch were synthetical
investigated. The correlation analysis revealed that the thermal
properties, pasting properties, crystalline properties, water
solubility index and swelling power of sorghum starch were all
related to the AAC. AAC prevented the expansion of starch
granules and decreased the thermal characteristics (To, Tp, Tc,
and 1H). The greater AAC existed in sorghum starch, resulting
in the lower the PV and BD. In addition, high level of AAC in
sorghum starch increased the HPV and SB. The RC, DO, and
DD of starch were positively correlated with AAC. The thermal
properties, pasting properties and swelling power have a strong
correlation to RC, DO, and DD. Principal component analysis
(PCA) was conducted for 20 variables, based on the differences
between 30 types of sorghum starch. The PCA1 and the PCA2
were the two most significant components, which explained
most of the variance. The results of this study can be utilized
to direct the choice and breeding of sorghum cultivars as well as
the application of sorghum starch.
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