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Introduction: Considering the emergence of the concept of personalized nutrition

in recent years and its importance in the treatment of diseases, the purpose of this

study was to investigate the interaction of paraoxonase (PON)1 rs662 polymorphism

and vitamin C/E intake on coronary artery disease (CAD) severity and lipid profile in

patients undergoing diagnostic angiography.

Methods: This cross-sectional study was carried out on 428 patients undergoing

angiography. The PON-1 genotypes were detected by the polymerase chain

reaction-restriction fragment length polymorphism technique. Dietary intake was

obtained using a valid questionnaire.

Results: After adjustment for potential confounders, R allele carriers (RR + RQ) have

lower HDL-C levels than non-carriers (QQ) (P ≤ 0.05). On the other hand, higher

consumption of vitamin C was associated with a reduced risk of high total cholesterol

(OR: 0.42, 95% CI 0.23–0.75, P = 0.003) and low-density lipoprotein cholesterol

(OR: 0.49, 95% CI 0.25–0.96, P = 0.038) and an increased risk of low high-density

lipoprotein cholesterol (OR: 1.88, 95% CI 1.03–3.42, P = 0.037). Furthermore, a

significant interaction was observed between vitamin C intake and genotypes of rs66

polymorphism on LDL-C (P = 0.050). In detail, the R-allele carriers with lower vitamin

C intake had higher LDL-C levels thanQQgenotype carriers. No significant interaction

was found between vitamin E intake and rs662 polymorphism genotypes on the

Gensini and SYNTAX scores and lipid profile (P > 0.05).

Conclusion: The novel finding of the present study was the existence of a

significant interaction between rs662 polymorphism and vitamin C intake on LDL-C.

More specifically, R allele carriers with lower vitamin C intake were susceptible to

higher LDL-C.
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Introduction

Coronary artery disease (CAD) is the third leading cause of

disability and death worldwide, killing about 17.8 million people

annually (1). The disease puts a heavy economic burden on healthcare

services (2) and causes irreparable physical and mental damage to the

individual (3). CAD is a complex multifactorial disease that results

from the interaction of genetic background and environmental

factors (4). Atherosclerosis is the main cause of CAD, chiefly caused

by high total cholesterol (TC) and low-density lipoprotein cholesterol

(LDL-C) levels and low high-density lipoprotein cholesterol (HDL-

C) levels (5). Along with medical therapy, nutritional interventions

are considered one of the main treatments for controlling risk factors

(6). For example, several studies have shown that a higher intake

of antioxidant vitamins E and C has a protective effect against lipid

disorders and as a result, CAD (7–9). On the other hand, the role

of genetic factors in CAD has been well documented (10, 11). One

of the genes whose association with CAD and lipid profile has

been extensively investigated is the high-polymorphic paraoxonase

1 (PON1), which is located on the long arm of chromosome 7

(q21.3–22.1). Several meta-analyses have shown that the PON1

rs662 polymorphism (Q192R) is highly associated with CAD and

its risk factors (12–14). Although the role of nutrition and genetic

background in the development and treatment of CAD is well known,

the results of studies are contradictory, which may be due to not

considering the interaction of genetic and environmental factors

(e.g., nutrition). In the new concept of gene-diet interaction, the

different metabolic responses of people to active dietary molecules

are justified and can be attributed to genetic differences (15). So

far, few studies have been conducted on the interaction of PON1

rs662 polymorphism with dietary components (16). In a study on

ischemic stroke, an interaction between vegetable consumption and

rs662 was observed. Carriers of the A allele benefited more from

consuming vegetables and were more effectively protected from

stroke than carriers of the G allele (16). In another study, an

interaction between folate intake and PON1 rs662 polymorphism

was seen in the white population. In this study, the risk of incident

ischemic stroke increased with increasing folate intake in the R allele

carriers (17).

Although the independent association of PON1 rs662

polymorphism as well as vitamin E and C intake with the risk

of CAD and lipid profile, has been investigated in previous studies,

there are still disagreements that could be caused by gene-dietary

components interaction. In other words, although vitamins C and E

have an antioxidant nature, the response of all individuals to them

is not the same, and their higher consumption may increase the

risk of disease in some genetic variants. Due to the importance of

individual nutrition in recent years and the lack of investigation

of the simultaneous effect of the rs662 polymorphism and vitamin

C/E intake, the present study was conducted to investigate the

interaction of PON1 rs662 polymorphism with vitamin C/E

intake on CAD severity and lipid profile in patients undergoing

diagnostic angiography.

Materials and methods

Participants

The present cross-sectional study was approved by the ethics

committee of Isfahan University of Medical Sciences (Ethical

approval code: IR.MUI.RESEARCH.REC.1400.200), Iran and was

part of a larger research that its protocol was approved by the

ethics committee of Shahid Sadoughi University of Medical Sciences,

Yazd, Iran. Patients aged 25–75 years with increasing chest pain

(angina) or acute-onset angina, who were identified as candidates

for angiography after the initial examination (exercise stress testing

or electrocardiogram (ECG) or computed tomography (CT) scan)

by a cardiologist, were included in the study. Eventually, among the

patients admitted under diagnostic coronary angiography in Afshar

Hospital in Yazd, based on inclusion and exclusion criteria, 463

patients were recruited. Patients with the following criteria were

not included in the study: (1) history of cancer, heart failure, heart

attack, percutaneous coronary intervention (PCI), coronary artery

bypass grafting (CABG), chronic kidney disease stage 3 and above,

specific liver disease or receiving medication for liver disorders,

immunodeficiency, AIDS; (2) people with severe obesity (body mass

index (BMI) above 40); (3) pregnant and lactating women; (4) people

who for any reason have limited food intake by mouth; (5) have a

special diet. Non-response to many of food frequency questionnaire

items and not detecting the type of genotype led to the patient’s

exclusion from the study. Finally, data from 428 persons were

analyzed (Supplementary material: participant flowchart). Written

informed consent was taken from eligible persons. The study was

carried out per the Declaration of Helsinki.

Assessment of the CAD severity

The severity of CAD was determined by Gensini and SYNTAX

scores. For this purpose, the coronary angiogram was interpreted

by an experienced cardiologist blinded for demographic and clinical

data except for sex and age. Gensini and SYNTAX scores were

computed randomly for several patients by the second cardiologist.

The Gensini score calculation starts by allocating a severity score

to each identified coronary stenosis as follows: 1 point for ≤25%

narrowing, 2 points for 26–50% narrowing, 4 points for 51–75%

narrowing, 8 points for 76–90% narrowing, 16 points for 91–99%

narrowing, and 32 points for total occlusion (100%). After that, each

lesion score is multiplied by a factor that takes into account the

importance of the coronary arteries and the lesion’s position in the

coronary circulation (5 for the left main coronary artery, 2.5 for the

proximal segment of the left anterior descending coronary artery,

2.5 for the proximal segment of the circumflex artery, 1.5 for the

mid-segment of the left anterior descending coronary artery, 1.0

for the right coronary artery, the distal segment of the left anterior

descending coronary artery, the posterolateral artery, and the obtuse

marginal artery, and 0.5 for other segments). Finally, the Gensini

score was acquired by summating of the coronary segment scores.

A higher Gensini score demonstrates a more intensive disease (18–

20). The patients were categorized into two groups based on Gensini

score: low Gensini score (< 20) and intermediate-high Gensini score

(≥ 20) (21).

The SYNTAX score was computed through the internet-based

SYNTAX calculator version 2.0 (www.syntaxscore.com). SYNTAX

score algorithm containing consecutive and interactional self-guided

questions focusing on functional and anatomical parameters of the

lesions with ≥50 % stenosis in arteries with a diameter of ≥1.5mm.

The final SYNTAX score was acquired by summation of all lesion

scores. The participants were classified into two groups based on

SYNTAX score: low SYNTAX score (<23) and intermediate-high
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SYNTAX score (≥23). A higher SYNTAX score represents a more

intensive disease (22, 23).

Dietary intakes assessments

The usual dietary intakes of patients during the past year were

evaluated using the valid and reliable 182-item semi-quantitative

food frequency questionnaire (FFQ) and face-to-face interviews with

trained nutritionists. The FFQ used in this study was a modified

version of a 178-item FFQ, which was previously validated to assess

the dietary intake of Yazidis adults (24). Patients were asked to

report the frequency (number of times per month, week, or day

the food was consumed) and the amount of each food item that

was consumed every time in the past year (portion size based on

the standard serving sizes commonly consumed by Iranians). The

reported values of each food item were converted to g/day using

household measures of consumed foods. Then, nutrient intake was

calculated using Nutritionist IV software (25).

Anthropometric and blood pressure
measurements

In this study, a nutritionist measured weight using a portable

digital scale and the body analyzer (Omron Inc. Osaka, Japan),

with an accuracy of 0.1 kg, with minimal coverage and without

shoes.. Height was measured with an accuracy of 0.1 cm, using a

wall-fixed measuring tape in a standing position with shoulders

in normal alignment and no shoes. BMI was calculated as body

weight (kg) divided by height squared (m2). Waist circumference was

assessed by a flexible inelastic tape measure (i.e., the tape measure

should not stretch when taking the measurement) in the standing

position to the nearest 1 cm. The narrowest area between the iliac

crest and the last rib was measured (26). The percentage of muscle

mass, total body and visceral fat were also assessed using a body

composition analyzer (Omron, Japan model: BF511) (27). Blood

pressure was also measured using a bedside automated monitor, and

the patient’s average blood pressure during the day was recorded by

nurses working at the cardiovascular care unit (CCU) before patients

underwent angiography.

Biochemical assessment

To determine the levels of triglyceride (TG), TC, HDL-C and

LDL, after 10–12 h of overnight fasting, a 4ml blood sample was

drawn from the patients. 2ml of blood samples were centrifuged at

2,500 rpm for 3 mins to separate the serum from the blood cells.

Buffy coats and remaining whole blood samples were stored at−80◦C

for DNA extraction and other biochemical tests. TG, TC, LDL-C

and HDL-C concentration are measured using Pars Azmon company

kits in the Yazd School of Health laboratory. Then, lipid profile were

categorized into normal TG (<150 mg/dl) or high TG (≥150 mg/dl),

normal TC (<200 mg/dl) or high TC (≥200 mg/dl), normal LDL-C

(<130 mg/dl) or high LDL-C (≥130 mg/dl), normal HDL-C (≥40

mg/dl for men and ≥50 mg/dl for women) or low HDL (<40 mg/dl

for men and <50 mg/dl for women), per the Adult Treatment Panel

III (28) and the 2013 American College of Cardiology/American

Heart Association guidelines (29).

DNA extraction and genotyping

DNA samples were isolated from the white blood cell genome

of the complete blood sample of the participants using the

SimBiolab Blood Kit, according to the manufacturer’s protocol.

The rs662 polymorphism (major allele: Q, minor allele: R), a

fragment of 520 base pairs (bp) in exon 6 of the PON1 gene, was

genotyped by the polymerase chain reaction-restriction fragment

length polymorphism (PCR-RFLP) method. The PCR mixture was

provided in a total volume of 20 µl containing 2 µl of genomic

DNA, 10 µl of Master Mix (Amplicon, Denmark), 6 µl of water

and 1 µl (10 pmol) of each oligonucleotide primer. Forward and

reverse primer consists of AAACCCAAATACATCTCCCAGAAT

and GCTCCATCCCACATCTTGATTTTA, respectively. PCR is

performed by repeating three steps. First, DNA templates were

denatured at 95◦C for 5min; amplification consisted of 45 cycles at

95◦C for 15 s, annealing at 60◦C for 30 s, extension at 72◦C for 30 s,

with a final extension at 72◦C for 5min. Amplified DNA (10ml) was

digested with 5U restriction enzyme HinfI (Fermentase, Germany)

at 37◦C, overnight. All products were visualized by electrophoresis in

2% agarose gel (SinaClon, Iran) at 90V for 2.5 h.

Assessment of other variables

General demographic data including age, gender, smoking

status, multivitamin intake, vitamin C and E supplements intake,

the medication used, and medical history were collected using

valid and reliable questionnaires. Physical activity was assessed

using International Physical Activity Questionnaire (IPAQ). Physical

activity level was calculated based on metabolic equivalent task—

minutes per week (30). Persian translation validation of IPAQ has

previously been confirmed by Moghaddam et al. (31).

Statistical analysis

Subjects were divided into two genotype groups: R-allele carriers

(QR/RR) and non-carriers (QQ). Pearson’s chi-square test was

used for the Hardy-Weinberg Equilibrium (HEW). Vitamin C and

E intake was categorized into two categories based on median

intake (higher and lower than the median). Gensini score, SYNTAX

score, TG, TC, LDL-C and HDL-C were also categorized into two

categories. Continuous and categorical variables were expressed as

mean ± standard deviation (SD) and frequencies (percentages),

respectively. The normality distribution of continuous variables

was checked by the Kolmogorov- Smirnov test. Chi-squared test

and independent samples t-test were used for comparing baseline

categorical and continuous variables between genotypes (QQ, QR

+ RR) and categories of vitamin intake, respectively. The Gensini

score, SYNTAX score, HDL-c, LDL-c, TC and TG as both categorical

and continuous response variables based on conducted statistical

analysis were treated. The covariance (ANCOVA) test under the

generalized linear model (GLM) framework was used to analyze the
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independent and interaction effects of PON1 rs662 genotypes and

vitamin intake on Gensini and SYNTAX scores and lipid profile. The

adjusted means were estimated after controlling for age, gender, total

energy intake, physical activity, smoking status, alcohol consumption,

multivitamin intake, vitamin C and E supplements intake, BMI and

medication used (antihypertension drugs, antidiabetic drugs and

antihyperlipidemic drugs). Logistic regression was used to examine

the joint effect of vitamin C/E intake and rs662 genotypes (QQ

and QR/RR) for predicting being at higher risk of CAD and lipid

disorders. The association analyses were done in adjusted logistic

regression models and adjustment was made for age, gender, total

energy intake, physical activity, smoking status, alcohol consumption,

BMI, multivitamin intake, vitamin C and E supplements intake and

medication used (antihypertension drugs, antidiabetic drugs, and

antihyperlipidemic drugs). The analyses were performed using SPSS

software version 24 (IBM Corp., Armonk, NY, USA). P ≤ 0.05 were

considered significant.

Results

Study population characteristics

Data from 428 patients (aged 25–75 years) were analyzed. The

prevalence of PON1 rs662 polymorphism genotypes was QQ (47.4%),

QR + RR (52.6%). Table 1 presents the characteristics and dietary

intake of study participants according to PON1 genotypes and

vitamin C and E intake. The mean intake of energy and fat was

higher in R-allele carriers, while the average carbohydrate intake

was lower than in the non-carriers. Age, BMI, gender, physical

activity, medication used (antihypertension and antihyperlipidemic

drugs), smoking status, alcohol consumption, mean energy intake,

carbohydrate, fat, cholesterol and vitamin C supplement intake was

different between the two categories of vitamin E intake. Vitamin

E consumption was higher in younger people with higher physical

activity. On the other hand, vitamin E intake was higher in men

than in women. Also, the average energy and fat intake was higher in

people with higher vitamin E intake. On the other hand, BMI, gender,

smoking, alcohol consumption, and dietary intake were significantly

different in the two categories of vitamin C intake. In people with a

higher intake of vitamin C compared with individuals who received

less than the median, the consumption of energy, carbohydrates,

and folate was higher, while the cholesterol and saturated fatty acids

intake were lower.

The e�ects of PON1 rs662 polymorphism,
vitamin C/E intake and the interaction of the
two variables on Gensini and SYNTAX scores
and lipid profile markers

Table 2 shows the mean values of Gensini and SYNTAX scores

and lipid profile across PON1 genotypes (QQ and QR/RR) based

on higher and lower than median vitamin E and C intake. After

adjustment for age, gender, total energy intake, physical activity,

smoking status, alcohol consumption, multivitamin intake, vitamin C

and E supplement intake, BMI, and medication used, R allele carriers

(RR + RQ) have lower HDL-C levels than non-carriers (QQ) (P ≤

0.05). On the other hand, a higher vitamin C intake was associated

with lower LDL-C (P = 0.007) and HDL-C levels (P = 0.010).

Vitamin E intake was not significantly associated with any studied

variables (P ≥ 0.05).

The e�ect of the PON1 genotypes, vitamin C
and E intake and the interaction of the two
on CAD severity and lipid disorders

The odds of the association of vitamin C and E intake, PON1

rs662 genotypes (RR+RQ vs. QQ), and the interaction of the

two variables with CAD severity and lipid disorders based on

adjusted logistic regression are reported in Table 3. After adjustment

for potential confounders, higher consumption of vitamin C was

associated with a reduced risk of high TC (OR: 0.42, 95% CI 0.23–

0.75, P = 0.003) and LDL-C (OR: 0.49, 95% CI 0.25–0.96, P = 0.038)

and an increased risk of lowHDL-C (OR: 1.88, 95% CI 1.03–3.42, P=

0.037). Furthermore, a significant interaction was observed between

vitamin C intake and genotypes of rs66 polymorphism on LDL-C (P

= 0.050) (Figure 1). In detail, the R-allele carriers with lower vitamin

C intake had higher LDL-C levels than QQ genotype carriers. No

significant interaction was found between vitamin E intake and rs662

polymorphism genotypes on the Gensini and SYNTAX scores and

lipid profile (P > 0.05).

Discussion

As far as we know, the present study is the first study

that addressed the interaction of PON1 rs662 polymorphism and

antioxidant vitamins E and C intake on CAD severity (Gensini and

SYNTAX scores) and lipid profile. Surprisingly, the results of the

present study showed that higher vitamin C intake was associated

with the risk of low HDL-C. Although this finding was not consistent

with the results of previous studies, a recent study showed that a

higher intake of antioxidant vitamins C and E blunt the clinical and

angiographic benefits of simvastatin and niacin therapy on HDL-C.

High intakes of these vitamins appear to prevent increases in HDL-

C in response to HDL-raising drugs by lowering lipoprotein (A-I) in

CAD patients (32). Our findings indicated that the higher vitamin

C intake significantly reduced the risk of high cholesterol and high

LDL-C. Although some studies have reported the protective effect

of a higher dietary vitamin C intake on serum cholesterol and LDL-

C (33–35), the results are still contradictory, and no effect has been

seen in other studies (36–38). Since CAD and lipid disorders are

multi-caused diseases (39), the inconsistency in the published studies

can be attributed to the interaction of several factors, including

genetic background, gender, and dietary components, which may

not have been considered (40). On the other hand, although most

previous studies supported the protective effect of vitamin E against

lipid disorder (41–43), the present study did not show a significant

association between vitamin E intake and lipid profile. In addition,

the present findings did not demonstrate a significant effect of

rs662 polymorphism or vitamin intake on CAD severity (Gensini

and SYNTAX scores). Research on the association between rs662

polymorphism and the CAD severity based on Gensini and SYNTAX

score is limited. In line with our study, two studies reported that

PON1 rs662 polymorphism is not associated with the severity and

extent of atherosclerosis (44, 45). The novel finding of the present
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TABLE 1 Characteristics and dietary intake of study participants according to PON1 genotypes and two categories of vitamin E and C intake.

Variables Type of genotype Vitamin E Vitamin C

QQ QR/RR P
a Low

(<11.20)
High

(>11.20)
P
a Low

(<194.45)
High

(>194.45)
P
a

Age (years) 57.20± 9.61b 56.33± 9.19 0.344 58.19± 8.98 55.31± 9.58 0.002 56.39± 9.64 56± 9.10 0.158

BMI (kg/m2) 27.38± 4.06 27.54± 4.55 0.699 27.76± 4.65 27.17± 3.96 0.167 27.88± 4.53 27.03± 4.07 0.048

Physical activity (Met_min/week) 3,833± 6,619 4,368± 7,884 0.452 3,357± 5,909 4,886± 8,442 0.032 3,597± 6,312 4,630± 8,154 0.145

Gender, male, n (%) 124 (46.1.1) 145 (53.9) 0.436 120 (56.1) 150 (70.1) 0.003 113 (52.8) 157 (73.4) <0.0001

Antihypertension drugs, yes, n (%) 89 (47.1) 100 (52.9) 0.900 113 (52.8) 76 (35.5) <0.0001 95 (44.4) 94 (43.9) 0.922

Antidiabetic drugs, yes, n (%) 63 (31) 75 (33.3) 0.611 74 (34.6) 64 (29.9) 0.301 64 (29.9) 74 (34.6) 0.301

Antihyperlipidemic drug, yes (%) 76 (37.4) 77 (34.2) 0.488 93 (43.5) 60 (28) 0.001 80 (37.4) 73 (34.1) 0.480

Alcohol consumption, n (%) 0.891 0.062 0.009

Never 190 (94.5) 209 (93.7) 205 (96.7) 194 (91.5) 206 (97.6) 193 (90.6)

Current consumption 7 (3.5) 8 (3.6) 5 (2.4) 10 (4.7) 3 (0.9) 12 (5.6)

Former consumption 4 (2) 6 (2.7) 2 (0.9) 8 (3.8) 2 (0.9) 8 (3.8)

Smoking status, n (%) 0.347 <0.0001 <0.0001

Never smoker 139 (50) 139 (50) 164 (59) 114 (41) 159 (74.3) 119 (55.6)

Current smoker 57 (42.9) 76 (57.1) 42 (31.6) 91 (68.4) 47 (22) 86 (40.2)

Former smoker 7 (41.2) 10 (58.8) 8 (47.1) 9 (52.9) 8 (3.7) 9 (4.2)

Vitamin E supplements intake, n (%) 0.456 0.517 0.778

Never 192 (94.6) 209 (92.9) 203 (94.9) 198 (92.5) 202 (94.4) 199 (93)

1–3/month 6 (3) 5 (2.2) 4 (1.9) 7 (303) 4 (1.9) 7 (3.3)

Minimal once a week 3 (1.5) 4 (1.8) 2 (0.9) 5 (2.3) 3 (1.4) 4 (1.9)

Minimal once a day 2 (1) 7 (3.1) 5 (2.3) 4 (1.9) 5 (2.3) 4 (1.9)

Vitamin C supplements intake, n (%) 0.674 0.019 0.103

Never 162 (79.8) 189 (84) 176 (82.2) 175 (81.8) 176 (82.2) 175 (81.8)

1–3/month 14 (6.9) 14 (6.2) 20 (9.3) 8 (3.7) 19 (8.9) 9 (4.2)

Minimal once a week 17 (8.4) 13 (5.8) 13 (6.1) 17 (7.9) 11 (5.1) 19 (8.9)

Minimal once a day 10 (4.9) 9 (4) 5 (2.3) 14 (6.5) 8 (3.7) 11 (5.1)

(Continued)
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TABLE 1 (Continued)

Variables Type of genotype Vitamin E Vitamin C

QQ QR/RR P
a Low

(<11.20)
High

(>11.20)
P
a Low

(<194.45)
High

(>194.45)
P
a

Multivitamin intake, n (%) 0.248 0.433 0.829

Never 187 (92.1) 208 (92.4) 200 (93.5) 195 (91.1) 200 (93.5) 195 (91.1)

1–3/month 9 (4.4) 8 (3.6) 9 (4.2) 8 (3.7) 7 (3.3) 10 (4.7)

Minimal once a week 4 (2) 1 (0.4) 1 (0.5) 4 (1.9) 2 (0.9) 3 (1.4)

Minimal once a day 3 (1.5) 8 (3.6) 4 (1.9) 7 (3.3) 5 (2.3) 6 (2.8)

Dietary intake

Energy intake (kcal) 2,592± 1,101 2,897± 1,426 0.013 2,000± 742 3,504± 1,284 <0.0001 2,070± 840 3,435± 1,302 <0.0001

Protein 14.87± 0.03 15.14± 0.03 0.423 15.13± 0.03 14.90± 0.03 0.428 15.17± 0.03 14.83± 0.03 0.352

Carbohydrate 62.06± 0.08 60.14± 0.09 0.024 62.16± 0.08 59.94± 0.08 0.009 59.69± 0.09 62.42± 0.08 0.001

Fat 24.72± 0.06 26.11± 0.07 0.038 23.76± 0.06 27.14± 0.06 <0.0001 25.87± 0.07 25.03± 0.06 0.213

Cholesterol 177.21± 95.74 167.21± 67.39 0.209 186.73± 84.76 157.54± 76.92 <0.0001 179.96± 64.08 163.94± 96.36 0.044

Saturated fatty acid 8.28± 2.95 8.72± 3.05 0.131 8.53± 3.12 8.94± 2.90 0.897 8.83± 3.11 8.19± 2.87 0.028

Folate 169.34± 39.20 171.80± 60.08 0.620 167.56± 41.47 173.70± 59.31 0.212 156.89± 42.37 184.37± 55.52 <0.0001

Vitamin B12 1.48± 0.85 1.62± 1.14 0.151 1.63± 1.12 1.48± 0.89 0.121 1.62± 0.90 1.49± 1.11 0.193

BMI, body mass index.

Vitamin E and C intake is categorized into two categories, “high” and “low,” based on the median intake.
a Obtained from Chi-squared test and independent t-test for categorical and continuous variables respectively.
b Continuous and categorical data are presented as mean± (SD) and frequency (percentage).

Protein, carbohydrate and fat are presented as a (% of total daily energy).

Other dietary intake are presented as the mg/1,000 Kcal.

P < 0.05 was considered as statistically significant.
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TABLE 2 Mean values of CAD risk factors across PON1 genotypes (QQ and QR + RR) based on two categories of vitamin E and C intake.

Variables Vitamin E intake Vitamin C intake

Low High P
a†

P
b†

P
c† Low High P

a†
P
b†

P
c†

QQ QR/RR QQ QR/RR QQ QR/RR QQ QR/RR

Gensini score Crude 35.54±

4.08

31.22±

4.22

31.73±

4.68

39.19±

3.92

0.712 0.625 0.167 35.49±

4.21

33.02±

4.15

32.04±

4.53

37.97±

4.05

0.683 0.860 0.323

Model 1 32.97±

3.38

30.21±

4.48

33.13±

4.91

39.90±

4.27

0.637 0.335 0.263 36.99±

4.32

35.06±

4.26

28.72±

4.70

35.39±

4.45

0.576 0.431 0.313

SYNTAX score Crude 10.81±

1.26

10.10±

1.32

9.50±

1.44

11.90±

1.21

0.519 0.854 0.238 10.35±

1.30

10.55±

1.28

10.12±

1.39

11.59±

1.25

0.524 0.757 0.630

Model 1 10.54±

1.37

10.19±

1.40

10.30±

1.53

11.73±

1.33

0.686 0.697 0.503 11.01±

1.35

11.34±

1.33

9.84±

1.47

10.61±

1.39

0.679 0.544 0.871

TG Crude 160.30±

8.45

154.12±

9.04

142.97±

9.46

155.99±

8.11

0.697 0.379 0.275 149.42±

8.51

159.14±

8.63

156.51±

9.42

151.32±

8.46

0.796 0.967 0.396

Model 1 159.63±

8.97

162.16±

9.36

146.42±

9.72

144.92±

8.84

0.953 0.160 0.818 153.17±

8.69

164.79±

8.91

154.40±

9.63

140.96±

9.26

0.916 0.280 0.153

TC Crude 210.36±

11.13

195.80±

11.90

183.81±

12.46

210.65±

10.68

0.596 0.613 0.074 198.10±

11.23

206.32±

11.40

199.16±

12.44

201.82±

11.18

0.639 0.882 0.810

Model 1 203.08±

11.86

204.36±

12.37

186.11±

12.85

207.93±

11.68

0.313 0.639 0.375 198.27±

11.49

219.20±

11.77

193.10±

12.72

192.83±

12.24

0.368 0.254 0.360

LDL-C Crude 100.13±

4.14

97.92±

4.42

95.36±

4.63

98.69±

3.97

0.896 0.642 0.520 100.87±

4.12

105.74±

4.18

94.51±

4.56

91.23±

4.10

0.851 0.015 0.339

Model 1 97.96±

4.53

98.71±

4.73

96.85±

4.91

97.68±

4.46

0.875 0.845 0.993 101.30±

4.34

108.18±

4.44

93.71±

4.80

87.41±

4.62

0.947 0.007 0.133

HDL-C Crude 52± 1.14 47.99±

1.22

47.77±

1.28

47.58±

1.09

0.078 0.051 0.109 51.33±

1.15

49.20±

1.16

48.65±

1.27

46.38±

1.14

0.065 0.021 0.952

Model 1 51.34±

1.33

48.15±

1.28

48.34±

1.33

46.98±

1.21

0.050 0.158 0.444 51.22±

1.18

49.86±

1.21

48.60±

1.31

45.09±

1.26

0.040 0.010 0.370

TG, triglyceride; TC, cholesterol; HDL-c, high density lipoprotein cholesterol; LDL-c, low density lipoprotein cholesterol; FBS, fasting blood sugar; SBP, systolic blood pressure; DBP, diastolic blood pressure.

Vitamin E and C intake is categorized into two categories, “high” and “low”, based on the median intake.

Data are presented as mean± standard error (SE).
† Obtained from Generalized linear models (GLM).

Pa : Association of genotypes and CAD risk factors: Genotypes main effect.

Pb : Association of vitamins and CAD risk factors: Vitamin main effect.

Pc : Interaction: vitamins and genotype interaction on CAD risk factors.

Model 1 is adjusted for age, gender, total energy intake, physical activity, smoking status, alcohol consumption, BMI, multivitamin intake, vitamin C and E supplements intake and medication use (antihypertension, antidiabetic and anti hyperlipidemic drugs).

Bolded values are statistically or marginally significant.
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TABLE 3 The odds of CAD severity and its risk factors in terms of vitamin E and C intake, PON1 rs662 genotypes, and the interaction of the vitamin intake and genotypes.

Variables High
Gensini

P
† High

syntax
P

† High
TG

P
† High

TC
P

† High
LDL-C

P
† Low

HDL-C
P

†

Genotypes QQ 1 1 1 1 1 1

RQ+ RR 1.11 (0.71–

1.75)

0.623 1 (0.57–

1.74)

0.996 0.90 (0.55–

1.48)

0.697 0.82 (0.52–

1.30)

0.413 1.17 (0.68–

1.99)

0.558 1.18 (0.72–

1.91)

0.502

Vitamin E intake Low intake 1 1 1 1 1 1

High intake 0.97 (0.57–

1.77)

0.971 1.30 (0.65–

2.56)

0.449 0.72 (0.38–

1.33)

0.296 0.83 (0.47–

1.49)

0.549 1.11 (0.57–

2.15)

0.753 1.65 (0.89–

3.07)

0.112

Interaction of vitamin E and

genotypes

QQ∗low 1 0.221 1 0.918 1 0.632 1 0.821 1 0.838 1 0.316

QQ∗high 0.74 (0.35–

1.56)

1.26 (0.51–

3.08)

0.81 (0.36–

1.82)

0.89 (0.42–

1.86)

1.04 (0.43–

2.47)

2.12 (0.95–

4.72)

RR/RQ∗low 0.85 (0.45–

1.59)

0.96 (0.43–

2.12)

1.03 (0.51–

2.06)

0.87 (0.46–

1.66)

1.10 (0.52–

2.34)

1.49 (0.75–

2.98)

RR/RQ∗high 1.12 (0.55–

2.27)

1.29 (0.54–

3.06)

0.66 (0.30–

1.44)

0.70

(0.−1.44)

1.28 (0.56–

2.94)

1.92 (0.88–

4.22)

Vitamin C intake Low intake 1 1 1 1 1 1

High intake 0.83 (0.48–

1.43)

0.513 0.94 (0.49–

1.80)

0.856 0.95 (0.52–

1.74)

0.890 0.42 (0.23–

0.75)

0.003 0.49 (0.25–

0.96)

0.038 1.88 (1.03–

3.42)

0.037

Interaction of vitamin C and

genotypes

QQ∗low 1 0.306 1 0.808 0.220 1 0.165 1 0.050 1 0.677

QQ∗high 0.66 (0.32–

1.33)

1 (0.43–

2.35)

1.31 (0.60–

2.86)

0.57 (0.28–

1.18)

1.85 (0.91–

3.78)

1.70 (0.79–

3.69)

RR/RQ∗low 0.89 (0.48–

1.66)

1.06 (0.49–

2.30)

1.20 (0.61–

2.36)

1.11 (0.59–

2.06)

1.85 (0.91–

3.78)

1.07 (0.55–

2.10)

RR/RQ∗high 0.95 (0.47–

1.91)

0.93 (0.39–

2.22)

0.84 (0.38–

1.85)

0.32 (0.15–

0.69)

0.52 (0.21–

1.28)

2.27 (1.04–

4.95)

HDL-c, high density lipoprotein cholesterol; LDL-c, low density lipoprotein cholesterol; TC, total cholesterol; TG, triglyceride.

Vitamin E and C intake is categorized into two categories, “high” and “low,” based on the median intake.
†Obtained from logistic regression.

All values are odds ratio (95% CI for OR) and adjusted for age, gender, total energy intake, physical activity, smoking status, alcohol consumption, BMI, multivitamin intake, vitamin C and E supplements intake and medication use (antihypertension, antidiabetic and anti

hyperlipidemic drugs).

Bolded values are statistically or marginally significant.
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FIGURE 1

Interaction of PON1 rs662 polymorphism and vitamin C intake on serum LDL-C.

study is the existence of a significant interaction between vitamin C

intake and genotypes of rs662 polymorphism on LDL-C. In detail, the

R-allele carriers placed in the lower category of vitamin C intake had

higher LDL-C levels compared to QQ genotype carriers. Although

no study addressed the interaction of rs662 polymorphism genotypes

with vitamin E and C, one study investigated the interaction of

rs662 polymorphism with vegetable and fruit consumption. In this

study, rs662_R allele carriers who consume higher vegetables have

a significantly lower risk of ischemic stroke and may benefit more

effectively from the joint effects of genotype and diet (16). Another

study reported the beneficial effects of increasing oleic acid intake

on HDL-C, especially in allele R carriers (46). Also, in the current

study, higher vitamin C intake in R allele carriers significantly

reduced the risk of high cholesterol and increased the odds of low

HDL-C, which may have occurred by chance because there was no

interaction between vitamin C intake and rs662 polymorphism on

TC and HDL-C. This result proposes the necessity of conducting

prospective cohort studies based on interaction and with a larger

sample size.

Although the exact mechanism for these interaction

effects has not yet been discovered, these effects seem to be

influenced by PON1 genotype-dependent enzyme activity (47).

Changing the activity of this enzyme leads to altering the

oxidation state in the body. This enzyme has an antioxidant

and antiatherosclerotic function by hydrolyzing lipid peroxides

and destroying pro-inflammatory molecules caused by LDL-C

oxidation (48). Various studies have shown that enzyme activity

is affected by both genetic and environmental factors (40, 49).

Therefore, although a higher intake of antioxidant vitamins

E and C can help to strengthen enzyme function, this effect

is modulated by the genetic variants of rs662 polymorphism

(40, 47).

The present study has strengths and limitations, which are

briefly addressed. In terms of strengths, the current study is

the first attempt to survey the interaction between PON1 rs662

polymorphism and antioxidant vitamins E and C on CAD severity

and lipid profile that helps to prescribe personalized nutritional

recommendations for the improvement and management of CVD

risk in the future. In terms of limitations, due to the cross-sectional

nature of the study design, it was not possible to conclude a

causal association. This study was done only on patients in Iran,

so it cannot be generalized to all races and ethnicities. Thirdly,

due to budget limitations, it was not possible to measure the

serum PON1 activity and investigate several polymorphisms at the

same time, so it is difficult to talk about possible mechanisms.

Fourth, FFQ is a memory-based dietary assessment method, so the

results may not be accurate. Finally, two patients’ genotype was

not amplified.

Conclusions

The novel finding of the present study was the existence of a

significant interaction between rs662 polymorphism and vitamin C

intake. More specifically, R allele carriers with lower vitamin C intake

were susceptible to higher LDL-C. The findings of such studies could

be critical for clinical diagnosis, gene-based therapy, and providing

individualized nutritional recommendations. Although, mechanism-

based studies with larger sample sizes are needed in this field.
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