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Meat spoilage (MS) is a complex microbial ecological process involving

multiple specific microbial interactions. MS is detrimental to people’s health

and leads to the waste of meat products which caused huge losses during

production, storage, transportation, and marketing. A thorough understanding

of microorganisms related to MS and their controlling approaches is a

necessary prerequisite for delaying the occurrence of MS and developing

new methods and strategies for meat product preservation. This mini-review

summarizes the diversity of spoilage microorganisms in livestock, poultry, and

fish meat, and the approaches to inhibit MS. This would facilitate the targeted

development of technologies against MS, to extend meat’s shelf life, and

e�ectively diminish food waste and economic losses.
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Introduction

According to a report by the Food and Agriculture Organization of the United

Nations, one-third of food produced for human consumption is either spoiled or wasted

(1). MS is defined as a change in color and the production of off-flavors, mucus, and

exudates that result in unacceptable sensory and organoleptic properties. Parlapani

confirms that the deterioration is caused by specific spoilage organisms that dominate

and form metabolites that alter the organoleptic properties of the meat, making it unfit

for consumption (2). Although the causes for meat deterioration vary, bacteria direct

the process more than other factors such as endogenous enzymes. Meat is generally

considered sterile before slaughter, but the environment during slaughter is not sterile,

so some degree of microbial contamination may occur, leading to meat corruption

(3). The sources of microbial contamination in this process can be summarized as

both endogenous and exogenous. The microbiological quality of post-slaughter meat

depends to a large extent on the type of meat, processing, distribution, and storage

conditions. Contaminated slaughter equipment, personnel and environmental factors

(e.g. water, air, and soil) can be cross-contaminated with spoilage-associated bacteria (4).

After storage, various intrinsic and extrinsic factors affect the process of microbial MS,

including oxygen demand, pH, temperature, and competing organisms (5). The diversity

of these ecophysiological factors affects the dynamics of microbial growth, including
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microbial succession and microbiota composition, ultimately

affecting the type and rate of MS. Several strategies have

been proposed to preserve fresh products to overcome MS,

including the addition of ingredients such as food preservatives,

essential oils and storage under refrigerated conditions, and

aeration packaging (6, 7). Therefore, understanding the

sources of spoilage microorganisms in meat, the diversity of

microorganisms and measures to retard spoilage, and achieving

accurate and effective inhibition of spoilage microorganisms

is one of the common goals of meat industry sessions

and academia.

Spoilage microbial diversity

Major types of spoilage microorganisms
in livestock meat

Not all bacteria cause spoilage of food, there is only an

initial small group of microorganisms in meat, referred to as

specific spoilage organisms (SSO) (8). In meat products, SSO

metabolizes available substrates during storage, leading to

changes in meat quality and odor (9). This section summarizes

the common microorganisms and spoilage phenotypes

associated with the spoilage of livestock meat (Table 1). A study

showed that the dominant bacteria in the meatballs of the

blown pack spoilage (BPS) group packed with 71.85% CO2

were Klebsiella (46.05%) and Escherichia (39.96%). Klebsiella

pneumoniae was the main strain causing BPS in meatballs due

to its ability to pack swelling (26). Wang et al. (27) revealed that

Proteobacteria, Firmicutes, Pseudomonas spp., Acinetobacter

spp., Pantoea spp., Brochothrix spp., and Raoultella spp. were

the main pathogenic and spoilage bacteria in chilled pork

by culture-dependent and non-culture-dependent methods

(27). The microbial composition of pork stored at−2◦C and

4◦C showed a high degree of similarity, with Pseudomonads

and Brochothrix being the dominant taxa. Acinetobacter spp.,

Myroides spp., and Kurthia spp. were markers for spoiled pork

meat stored at 25◦C (28). The current research results show that

the abnormal growth of lactic acid bacteria, Micrococcaceae,

Enterobacteriaceae, yeast, and mold plays a key role in the

formation of dry cured ham odor defects, while the key

putrefactive microorganisms of different types of ham are

different (29, 30). In Mianning ham, the dominant bacterial

genus was Clostridium_sensu_stricto_2 (92.01%), and the

dominant fungal genus was Aspergillus (84.27%) (31). The

number of Enterobacteriaceae and Enterococcus in deteriorated

ham was significantly higher than that in normal ham. High

water content and low salt content lead to abnormal growth

of Enterobacteriaceae and Enterococcus in deteriorated ham,

leading to the deterioration of Jinhua ham (32, 33). C. farmei

CDC 2991–81, B. cereus ATCC 14579, and E. faecalis ATCC

19433 were the main spoilage microorganisms of Jinhua ham

(34). C. sestertheticum was detected as the most abundant

Clostridium spp. in vacuum packaging beef and other raw

meats, associated with BPS (35). Li et al. (36) reported that total

viable bacteria (8.75 log CFU/cm2) and Lactobacillus (3.20 log

CFU/cm2) counts were higher on meat surfaces dry-aged for 19

days (36). The microbial communities of all samples evaluated

in dry-aged beef contain Enterobacteriaceae and Pseudomonas,

which are considered to be the major spoilers in dry-aged beef

(13). In another study, beef and lamb samples from Europe,

North and South America, and Oceania were investigated

and Psychrophilic Clostridium spp. was found to be the most

prevalent Clostridium (37).

Major types of spoilage microorganisms
in poultry meat

There has been a steady increase in consumption and

demand for poultry meat globally. Among poultry products,

processed chicken meat is the most consumed (about 75% of

total poultry meat), followed by turkey (about 25%) and duck

meat (38). The bacterial community in poultry meat include

pathogenic species such as Salmonella and Campylobacter (18).

This section summarizes the common microorganisms and

spoilage phenotypes associated with the spoilage of poultry meat

(Table 1). When defining the dominant spoilage bacteria in the

spoilage process of meat products based on the number of

bacteria, Pseudomonas spp., Bacillus spp., Crude Typhimurium

spp., Schwartzella spp., Aeromonas spp. are usually considered

to be the dominant communities in cold meat and poultry

packed under aerobic conditions (19). Poultry meat spoils

quickly, even under refrigerated conditions.Wang et al. detected

a significant increase of Clostridium perfringens over time

in almost poultry samples stored aerobically under different

refrigeration conditions. Pseudomonas fluorescens, Aeromonas

salmonicida, and Serratia liquefaciens cause spoilage of poultry

meat stored at 8◦C for 4 days (20). Several new enterococci

or lactic acid bacteria were also identified in poultry products,

such as Viikkiensis enterococcus, Seigonensis enterococcus, and

Heterofermentative lactic acid bacteria (39, 40).

With the development of MS studies, it is more appropriate

to determine the dominant spoilage organism by determining

the spoilage capacity of bacterial isolates grown in situ. The

main common Pseudomonas in poultry meat is Pseudomonas

fragilis, Pseudomonas lundengensis, and Pseudomonas

fluorescens. Pseudomonas fragilis, Pseudomonas fluorescens,

and Pseudomonas aeruginosa produced slime on meat and its

products during storage (41). Extracellular enzymes secreted by

Pseudomonas aeruginosa have strong protease activity against

myogenic fibronectin and myxomatosis protein. This helps

bacteria penetrate the meat to obtain new sources of nutrients,

increasing the formation of mucus and softening the meat (21).
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TABLE 1 List of bacterial groups associated with livestock and poultry MS.

NO. Bacteria genus Spoilage phenotype References

Livestock

1 LAB Slime and discoloration (8)

2 Leuconostoc Slime, gas production and discoloration (9, 10)

3 Lactobacillus Slime (9, 11)

4 Serratia Discoloration (12)

5 Weissella Slime and Discoloration (11)

6 Enterobacteriales Slime and discoloration (13)

7 Clostridium Blown pack spoilage (14, 15)

8 Pseudomonas Biofilm formation (16)

9 Brochothrix Biofilm formation (17)

Poultry

1 Aeromonas Biofilm formation (18, 19)

2 Salmonell Unknown (20)

3 Pseudomonas Slime formation and meat softening (21)

4 Enterococcus Discoloration (22)

5 Brochothrix Discoloration (41)

6 Acinetobacter Biofilm formation (23)

7 Shewanella Discoloration (24)

8 Staphylococcus Acid production (25)

In addition, Serratia spp., Micrococcus spp., Serratia spp., and

Brucella spp. were also associated with slime production and

softening during MS (42).

Major types of spoilage microorganisms
in fish meat

The increase in the global population has led to an increase

in the consumption of fish and meat in various countries.

It becomes highly susceptible to spoilage through a series of

chemical reactions, under the action of microorganisms and

enzymes due to its high water content and high pH (43).

Similar to other meat, not all microorganisms in fish meat

have the potential for corruption, except SSO. This section

summarizes the common spoilage microorganisms associated

with the spoilage of fish meat (Table 2).

Møretrø et al. (44) found higher levels of Pseudomonas spp.

and Salmonella spp. on industrially processed salmon filets with

the methods of bacterial enumeration 16S rRNA analysis from

seven processing plants. Salmonella spp. and Photobacterium

spp. were found on salmon at the slaughter stage (44). The

main microbiota of air-packaged (AP) and vacuum-packaged

(VP) carp filets during storage were systematically identified

by Zhang et al. (52) The results showed that Pseudomonas

aeruginosa was the only microbiota found in spoiled AP

carp, while Karnococcus were found mainly in VP samples

(52). Characterization of some specific H2S-producing spoilage

organisms isolated from raw tuna and swordfish by Serio

et al. (45). Among them, Shewanella spp. can form biogenic

amines, showing great corruption potential. Pseudomonas and

Shewanella are two spoilage microorganisms of frozen fish

meat preserved aerobically, while CO2-resistant Photobacterium

phosphoreum is the main flora of fish meat packed under

altered atmosphere conditions (46). Pseudomonas can inhibit

each other in seafood matrices. Boziaris et al. (53) observed

that Pseudomonas fluorescens outcompeted Pseudomonas spp. at

increased storage temperatures and that Pseudomonas spp. could

cause spoilage bacteria in raw salmon under aerobic conditions

(53). Brochothrix thermosphacta produces caramel off-flavors

(2,3-butanedione) in seafood under aerobic conditions. The

genus Psychrobacter is a gram-negative, psychrophilic and

aerobic bacterium found mainly in seafood and meat. Members

of this category include Acinetobacter, Photosynthetic bacteria

(Psb) cibatius, Psb. maritimus and Psb. proteolyticus are found

in a variety of seafood, such as mackerel, anglerfish, lobster,

oysters, and Atlantic cod (47). Psychrobacter species, especially

Psb. immobilis, are able to break down lipids and hydrolyze

amino acids, thus causing a slight ichthyological andmusty odor.

Common control approaches

Packaging methods

Factors affecting the growth of microorganisms in meat

include intrinsic factors (natural and added ingredients, pH,
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TABLE 2 List of bacterial groups associated with fish meat spoilage.

NO. Bacteria genus Fish meat References

1 Shewanella Raw lobster tails, whole lobster, salmon (44, 45)

2 Pseudomonas Raw lobster tails, whole lobster, salmon, carp (44)

3 Photobacteriu Salmon (44, 46)

4 Staphylococcus Fresh shrimp (47)

5 Psychrobacter Whole lobster, cod (48)

6 Brochothrix Raw salmon, catfish, sea bass, sea bream (48)

7 B.Thermospheracta Fresh shrimp (49)

8 Serratia Oysters,fish, tropical shrimps (50)

9 Salmonicida Shrimps, salmon, sea beam (51)

redox potential, and water activity), as well as extrinsic factors

(storage temperature and packaging methods).

Modified atmospheric packaging (MAP) reported extending

the shelf life of frozen meat (54). Luong et al. (55) showed that

for fresh turkey sausage, a 2% (w/w) lactic acid formulation

in combination with MAP (50% CO2-50% N2) significantly

reduced acidification, off-flavors and prevented discoloration of

the sausage from red to dark gray or brown. In pork sausages,

MAP (70% O2-30% CO2) slightly reduces off-flavor perception

(55). The decrease in the quality of meat during storage depends

not only on the number of bacteria but also on the activity

of bacterial metabolism. Proteases produce free amino acids

which can be further metabolized by bacteria, resulting in off-

flavors and mucus associated with spoilage. Previous studies

have shown that a gas mixture of 30% CO2 and 70% N2 for

MAP can extend the shelf life of frozen chicken (56). Meat

stored under this MAP has a lower number of Pseudomonas

spp. and is less likely to spoil than when stored in the air (57).

Therefore, MAPmay affect the growth as well as the metabolism

of bacteria. Different packaging conditions affect the shelf life

of carp and the growth of microorganisms. The shelf life of air-

packed (AP) and vacuum-packed (VP) filets at 4◦C is 8 days and

12 days, respectively, with the highest number of Pseudomonas

aeruginosa in the AP sample and a relatively high level of lactic

acid bacteria (LAB) in the VP sample. VP delays the increase in

biogenic amine content compared to AP (52).

Dohlen et al. (58) studied the effect of novel antimicrobial

packaging materials containing poly-[2-(tertbutylamino)

methylstyrene] (poly-TBAMS) on the growth of typical

spoilage and pathogenic bacteria present in meat. The results

showed that gram-positive bacteria were more susceptible

to poly(TBAMS) foil than gram-negative bacteria, and an

increase of the antimicrobial activity with an increasing amount

of poly(TBAMS) in the base polymer (58). Amna et al. (59)

developed a new antimicrobial hybrid packaging pad consisting

of biodegradable polyurethane. This type of packaging material

was found to show effective antibacterial activity against

Staphylococcus aureus and Salmonella typhimurium (59).

Zeinab et al. (60) found that TiO2 nanocomposites and

irradiation at 3kGy maintained chemical, microbiological,

and sensory properties for longer periods and extended the

shelf life of fish filets in cold storage (60). It was shown

that antibacterial polyvinyl alcohol films containing TiO2

nanoparticles inhibited Shewanella spp., Pseudomonas putida,

and Aeromonas hydrophila, and prolonged the shelf life of

macroscopic rotenone by 1–2 days (61).

Addition of antibacterial substances

Recently, the harmful effects associated with synthetic

preservatives have led to a search for new alternatives in natural

products. Commercially available polyphenols reduce primary

and secondary lipid peroxidation levels, inhibit lipoxygenase

activity, improve meat color stability, minimize degradation

of salt-soluble myogenic fibrin and sulfhydryl groups, and

retard bacterial growth (62). Essential oils (EOs) are secondary

metabolites obtained from plants of Asteraceae, Lamiaceae,

Lauraceae, Myrtaceae, Rutaceae, Umbelliferae, Zingiberaceae

families, among others. Composed of a complex mixture of

low molecular weight volatile compounds (63). These valuable

substances can be obtained from different parts of the plant,

such as bark, flowers, fruits, leaves, roots, and stems (64). This

section summarizes the effects of common plant EOs on spoilage

microorganisms in meat products and fish meat (Table 3).

Thymol and carvacrol have inhibitory effects on Bacillus

cereus, Pseudomonas aeruginosa, and Staphylococcus aureus

(72). In contrast, Guimarães et al. (73) observed that the

free terpenes commonly found in essential oils have strong

antibacterial activity against gram-negative bacteria (73). Sage

EO as a preservative was demonstrated in meat products used as

fresh pork sausages, suppressing aerobic thermophilic bacterial

counts at the end of storage (4.8–7.3%) (65). Sojic et al. (66)

evaluated the antibacterial potential of Satureja montana L. EO

in fresh pork sausage. Compared with the control group, adding

Satureya montana L.EO can improve the microbial stability
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TABLE 3 List of common plant EOs e�ects on spoilage bacteria in meat products and fish meat.

NO. EOs Meat types Effects References

1 Sage EO Fresh pork sausages Inhibiting thermophilic aerobic bacterial. (65)

2 Satureja montana L. EO Fresh pork sausages Reducing the number of thermophilic aerobic bacteria

and Enterobacteriaceae.

(66)

3 Z.clinopodioides EO+nisin Raw beef patty Inhibiting the growth of Cryophilic, Enterobacteriaceae,

and thermophilic bacteria as well as Staphylococcus

aureus and Escherichia coli O157:H7.

(67)

4 Rosemary, sage, thyme, and clove Eos Smoked rainbow trout Extending the shelf life by 6-7 weeks. (68)

5 Black pepper EO Fresh pork Deformation, depression, shrinkage, adhesion, and

rupture of Escherichia coli; Inhibiting the growth of

Pseudomonas and Enterobacteriaceae.

(69, 70)

6 Cinnamon EO Fresh Italian style sausages Inhibiting the growth of Enterobacteriaceae. (71)

of the product, and reduce the total number of thermophilic

aerobic bacteria (4.9-10.9%) and Enterobacteriaceae (7.1-19.6%)

in sausage (66). Shahbazi et al. (67) found that both essential

oils and lactobacillus peptides significantly (p < 0.05) affected

the growth of Cryophilic, Enterobacteriaceae, and thermophilic

bacteria as well as Staphylococcus aureus and Escherichia coli

O157:H7 in raw beef patties, with the fastest decrease in the

number of tested microorganisms in samples treated with 0.2%

essential oil+ 500 IU/g lactobacillus peptide (67).

For fish meat, MAP conditions favor the growth of

anaerobic bacteria, which can produce toxins. Therefore, often

in combination with other modalities (MAP, edible coatings

and films, non-thermal sterilization, etc.) to enhance the

effectiveness of natural preservatives (74). Yuan et al. (75) found

that the total volatile alkaline nitrogen and total aerobic colony

values of black spot shrimp treated with chitosan coating in

combination with pomegranate peel extract (PPE) were lower

than those of shrimp treated with chitosan coating or PPE

alone, indicating a synergistic effect between chitosan coating

and PPE (75). Emird et al. (68) found that rosemary, sage,

thyme, and clove essential oils as natural antioxidants can be

used with vacuum packaging to extend the shelf life of smoked

rainbow trout by 6–7 weeks (68). In a previous study, the

effects of nanoemulsions based on commercial oils (sunflower,

canola, corn, olive, soybean, and hazelnut oils) on the fatty

acid compositions of farmed sea bass stored at 2 ± 2◦C was

investigated. The results showed hazelnut group gave the highest

polyunsaturated fatty acid content, followed by canola and

soybean at the end of the storage period. These oils can be

recommended for nanoemulsions as a preservative for fish (76).

Plasma sterilization

Reactive oxygen species (ROS) in atmospheric pressure

cold plasma (APCP) act on gram-positive and gram-negative

bacteria through different microbicidal mechanisms, and

intracellular ROS levels increase in Listeria monocytogenes

and Staphylococcus aureus with prolonged exposure

to APCP, but with little damage to the cell wall (77).

Exposure of Listeria monocytogenes and Staphylococcus

aureus to APCP causes cell shrinkage, but little damage

to the cell wall. In addition, intracellular ROS levels of

Listeria monocytogenes and Staphylococcus aureus have

been shown to increase with the exposure time of APCP

(78). Dielectric barrier discharge (DBD) plasma is a

source of plasma that generates ROS that can penetrate

cell membranes and cause apoptosis through intracellular

DNA damage. Previous studies have shown that the levels

of Listeria monocytogenes in inoculated meat and meat

products were reduced by 0.59–6.52 Log CFU/g after DBD

treatment (79).

Bacteriophage sterilization

Phages are considered promising new bioretention agents

because they can efficiently and specifically lyse targeted

bacteria. A cocktail of three phages effectively inhibited the

growth of S. hiva in catfish filets and significantly improved the

pH, total volatile basic nitrogen, and organoleptic value indices

of the filets (80).

Low-dose irradiation

Low-dose irradiation is considered a common technique

for keeping fish meat fresh. Dogruyol et al. reported that sous-

vide filets could be irradiated (5.0 kGy) to extend their shelf

life up to 8 weeks during refrigerated storage without any

damage to the organoleptic and physicochemical properties of

the filets (81).
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Conclusion

Microbial contamination of meat is the domain cause of

losses during production, storage, and distribution, accounting

for approximately 21% of total food losses. We review

recent advances in research on microbial diversity causing

spoilage of livestock, poultry, and fish meat and summarize

measures to prevent MS. However, to achieve more accurate

and effective control of spoilage microorganisms in meat,

it is necessary to obtain more comprehensive and accurate

information on the composition of microbial communities

and the dynamic processes of their metabolism. By revealing

specific interactions between various spoilage phenotypes

during MS, we would achieve controllable product quality

during the production, transportation, marketing, and storage

of meat.
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