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Shewanella putrefaciens is a special spoilage bacterium of seafood during

cold storage, which is easy to form biofilm and bring serious hazard to the

seafood quality. Life cycle of biofilm starts after bacterial adhesion, which

is essential for the formation and development of biofilm. As a ubiquitous

second messenger in bacteria, c-di-GMP regulates the conversion between

bacterial planktonic state and biofilm state. In this study, the adhesion and

biofilm formation of S. putrefaciensWS13 under 4◦C were compared to those

under 30◦C. Atom force microscope and scanning electron microscope were

used to study the bacterial adhesion. Biofilmwas analyzed by Fourier transform

infrared spectroscopy, Bradford assay and phenol-sulfuric acid method.

High-performance liquid chromatographic-tandem mass spectrometric and

quantitative real-time PCR were applied to study c-di-GMP level and genes

encoding diguanylate cyclases in cells, respectively. Results showed that the

swarming mobility of S. putrefaciens WS13 was weaker under 4◦C, however,

the adhesive force under 4◦C was 4–5 times higher than that under 30◦C.

Biofilm biomass, extracellular polysaccharides and extracellular proteins were

2.5 times, 3 times, and 1.6 times more than those under 30◦C, respectively, but

biofilm composition formed under both temperatures were similar. c-di-GMP

level in S. putrefaciens WS13 under 30◦C was no more than half of that in the

corresponding growth stage under 4◦C. Quantitative real-time PCR analysis

also showed that the expression of genes encoding diguanylate cyclases were

significantly enhanced under 4◦C than that under 30◦C. S. putrefaciens WS13

adapted to the cold stress by enhancing the expression of genes encoding

diguanylate cyclases to promote bacterial adhesion and biofilm formation. This

study provides a theoretical foundation for the research on the cold adaptation

mechanism of specific spoilage bacteria of seafood based on c-di-GMP, and
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also provides a new idea to control seafood quality from the perspective of

microbial molecular biology.
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Introduction

Shewanella putrefaciens is a specific Gram-negative

bacterium in aquatic products such as Litopenaeus vannamei

(1, 2), bigeye tuna (3), shellfish (4), and Paralichthys olivaceus

(5). S. putrefaciens has strong biofilm-forming capability. The

formation of biofilm enhances the antimicrobial resistance,

antimicrobial tolerance, and stress tolerance of bacteria to

strengthen their environmental tolerance, which is conducive

to the survival of bacterial cells (6–8). Biofilm is a bacterial

community that is formed when bacteria attach to biotic/abiotic

surfaces, secret substances such as extracellular polysaccharides,

extracellular proteins, extracellular DNA, and lipids, and

encapsulate bacterial cells. Once formed, biofilm is difficult

to remove (6, 9, 10). The formation of biofilm is divided into

four stages: bacterial adhesion, bacterial aggregation, biofilm

maturation, and detachment (11). Bacterial adhesion is the

process by which bacteria in a planktonic state sense and

adhere to biotic/abiotic surfaces. It has two stages, reversible

adhesion and irreversible adhesion (12). At the stage of

irreversible adhesion, bacteria cannot escape from biotic/abiotic

surfaces, and irreversible adhesion starts the life cycle of biofilm

formation. The adhesion of bacteria is the key to biofilm

formation (12). Biofilm is the ubiquitous form of microbial cells

in nature (13). The formation of biofilm is affected by factors

such as temperature (14), metal ions (15), oxygen (16), and

nutrients (17). A study on the mechanism of biofilm formation

under environmental stress is helpful to control the hazard

of biofilm.

To adapt to the complex and changeable environment,

there are various signal transduction systems in bacterial cells

to ensure the survival of bacteria, such as cyclic diguanylic

acid (c-di-GMP) (18) and two-component systems (19).

As the ubiquitous second messenger in bacteria, c-di-GMP

modulates diverse biological phenotypes in bacteria such

as virulence, flagellar motility, biofilm formation (17), and

bacterial colonization (20). c-di-GMP was first discovered in

Gluconacetobacter xylinus in 1987 (21), and its level in bacterial

cells is regulated by diguanylate cyclases (DGCs) (22) and

phosphodiesterases (PDEs) (22, 23). Most DGCs and PDEs have

transmembrane helix structures which can sense various input

signals such as oxygen, light, antibiotics (17), and temperature

(24) to regulate the level of c-di-GMP. Previous studies (25, 26)

have shown that the intracellular level of c-di-GMP can regulate

the conversion between the planktonic state and biofilm state

of bacteria. In addition, c-di-GMP can regulate the activity

of flagella to control the movement ability of bacteria and

then regulate bacterial adhesion, and also regulate the synthesis

of extracellular polysaccharides and extracellular proteins to

promote the formation of biofilm (25). However, few studies

on the role of c-di-GMP in the formation of biofilm of specific

spoilage organisms (SSOs) in seafood have been reported.

Based on the above, this study intended to reveal the

correlation between c-di-GMP and the adhesion and biofilm

formation of S. putrefaciens WS13 under cold stress. Our work

showed the characteristic differences of adhesive force and

biofilm of S. putrefaciensWS13 under 30 and 4◦C and indicated

the importance of c-di-GMP for bacterial adhesion and biofilm

formation. This provides a theoretical basis for the study of

c-di-GMP regulating the adhesion and biofilm formation of S.

putrefaciensWS13 under cold stress.

Materials and methods

Strains and cultivation

S. putrefaciens WS13 strain, isolated from spoiled

Litopenaeus vannamei, which was preserved by our group

(NCBI No. CP028435.1) (27) was applied in this experiment.

The strain was preserved in LB medium (Land Bridge

Technology, Beijing, China) with 50% (v/v) glycerol

(Sinopharm., AR, China) in a −80◦C refrigerator and was

activated to 8–9 log CFU/mL (OD600 value = 0.80) in fresh LB

medium under 30◦C for 150 rpm, and then, the culture was

diluted at 0.1% ratio with LB medium for further use.

Growth curve and swarming mobility of
S. putrefaciens WS13

The diluted culture was cultivated under oscillating

conditions (150 rpm) under 4 and 30◦C, respectively, and 200

µl of culture was taken out aseptically and added into 96-well

polystyrene microtiter plates to measure bacterial growth curves

with BioTek Synergy 2 (Winooski, VT, United States) at 600 nm.

The swarming mobility of bacteria was measured as

described (28) previously with slightly modified. The culture was

cultivated in semi-solid LB media containing 0.25% agar under

30 and 4◦C for various times (12, 24, 48, 72, 96, 120, 144, and

168 h under 4 ◦C; 8, 12, 24, 36, 48, 60, 72, and 84 h under 30 ◦C),

respectively. The sizes of bacterial colonies in the experiment

were observed to analyze the swarming mobility of bacteria.
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Atom force microscope

The adhesive force of S. putrefaciensWS13 was measured by

AFM (Bioscope resolve, Bruker, Germany) as described (29).

Cell preparation

The diluted culture was cultivated in LB medium under

4 and 30◦C to 8–9 log CFU/mL (OD600 value = 0.80),

respectively. After centrifugation (9500 rpm, 8min, 4◦C),

harvested cells were treated with 0.01M sterile phosphate-

buffered saline (PBS, pH 7.0) three times and suspended in

Milli-Q grade water (OD600 value= 0.20–0.40). The suspension

was applied to prepare cell probes (To minimize viability loss,

cells could be treated with 2.5% (w/v) glutaraldehyde precooled

under 4◦C in advance and kept under 4◦C).

Probe design and detection

The suspension prepared was set on the glass slide at room

temperature and connected to polystyrene plastic spheres (PS

spheres, diameter, 12µm) by electrostatic attraction for 20min.

Bacteria-PS spheres prepared were tenderly cleaned withMilli-Q

grade water to divide unattached cells. A biological microscope

(DM1000 LED, Leica, Germany) at a magnification rate of 900X

was used to ensure that cells were fixed on PS spheres. PS spheres

with cells were dispersed on the carrier chip and bonded to the

MLCT-F tipless cantilever of AFMwith AB glue. The experiment

which applied the system of Dimension Icon (Bruker, Santa

Barbara, CA) was operated at room temperature. First, the

polystyrene plastic (PS) substrate was probed with a bare probe

to set a baseline for comparing the force measurements with the

designed probe. The elastic constant of the probe cantilever was

0.1 N/m. Spring constants of the tips were in the range of 0.6

N/m and were measured for each probe. The loading force was

set to 1 nN. The adhesive force was measured by the formula F

= k∗sensitivity∗deflection error. K and sensitivity of MLCT-F

tipless cantilever were 0.6 N/m and 20 nm/v, respectively.

Nanoscope 1.8 software was used to quantify the adhesive force

that was obtained from the force–distance curves.

Scanning electron microscope

According to bacterial growth curves, 1mL of diluted

culture was cultivated at 48-well polystyrene microtiter plates

containing one piece of PS plastic sheet each under 30◦C for 18 h

and 4◦C for 168 h, respectively. PS plastic sheets were taken out,

washed with 0.01M sterile phosphate-buffered saline (PBS, pH

7.0, ACMEC biochemical, China) three times, and treated with

precooled 2.5 % glutaraldehyde (ACMEC biochemical, China)

under 4◦C for 4 h. After dehydrated with gradient ethanol

(30, 50, 70, 90, and 100 %, v/v) for 10min each and dried

naturally, plastic sheets were treated with gold plating. Scanning

electron microscope (SEM, S4500; Hitachi, Tokyo, Japan) at

3 kV was applied to obtain bacterial adhesive state (50 nm

objective multiple) and morphology (5 nm objective multiple).

Analysis of biofilm

Biofilm biomass was measured quantitatively as described

(6) previously with slightly modified. Briefly, 1mL of diluted

culture was added into 48-well polystyrene microtiter plates;

then, the plates were covered by plastic to avoid evaporative loss.

According to bacterial growth curves, after certain cultivation

times (6, 12, 18, 24, 30, 36, and 42 h under 30◦C; 24, 48,

72, 96, 120, 144, 168, 192, 216, 240, and 264 h under 4◦C),

biofilms in wells were carefully cleaned three times with 1mL

of 0.01M sterile phosphate-buffered saline (PBS, pH 7.0) to

remove unattached cells. After being dried for 25min under

60◦C, biofilms were stained with 1mL of 0.2% (w/v) crystal

violet (Sangon Biotech, Co., Ltd., Shanghai, China) for 15min,

then washed and dried as described above. Dye attached to the

biofilm was released with 95% ethanol (v/v) for 10min. Bio Tek

Synergy 2 (Winooski, VT, United States) at 600 nm was applied

to obtain biofilm content.

The components of biofilm were analyzed as described

(30, 31) previously with slightly modified. The diluted culture

was cultured at 30 and 4◦C, respectively. According to bacterial

growth curves, after certain cultivation times (10, 15, 20, 25,

and 30 h under 30◦C and 108, 132, 156, 180, and 204 h under

4◦C), the culture was removed and biofilm was washed with

0.01M sterile phosphate-buffered saline (PBS, pH 7.0) three

times and was collected by scraping; then, the cells were

transferred to 1mL of 0.01M KCl solution. After being treated

with ultrasonic (20 kHz, five times, 10 s on/10 s off), the cells

were filtered by 0.22µm cellulose membrane (Sangon Biotech,

Co., Ltd., Shanghai, China) and dried under vacuum (3–6 kPa)

condition in the freeze dryer for 48 h to obtain anhydrous

samples. The anhydrous samples were analyzed by Fourier

transform infrared spectroscopy (FT-IR, Perkin-Elmer, Model

2000), Bradford assay, and phenol–sulfuric acid method to

detect biofilm FT-IR characteristics, the content of extracellular

proteins and extracellular polysaccharides, respectively. FT-IR

studies were performed with up to 100 scans, a scan range of

4000 and 450 cm–1, and resolutions of4 cm–1.

High-performance liquid
chromatography-tandem mass
spectrometry

Cyclic diguanylic acid was analyzed as described (32)

previously with slightly modified. The diluted culture was
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cultivated in LB medium under 30 and 4◦C, respectively.

According to bacterial growth curves, an equal volume of

solution was extracted at the lag phase, early logarithmic

phase (early log), middle logarithmic phase (mid-log), late

logarithmic phase (late log), and stationary phase, respectively.

Formaldehyde at a final concentration of 0.19% was added.

After centrifugation (9500 rpm, 8min, 4◦C), harvested cells

were treated with iced deionized water, centrifuged as described

above, and then resuspended in 0.5mL of iced deionized water

to be heated at 96◦C for 5min. After adding 0.925mL of ice

anhydrous ethanol each, solutions were treated with vortex

condition (30 s), centrifugation (13000 rpm, 4min, 4◦C), freeze-

drying, and 50% (v/v) methanol to create resuspension solution.

The samples were filtered by 0.22µm cellulose membrane and

analyzed by HPLC-MS-MS to quantify the intracellular c-di-

GMP level.

Quantitative real-time PCR analysis

The diluted culture, under 4 and 30◦C at 8–9 log CFU/mL

(OD600 value= 0.80), respectively, was centrifuged (10000 rpm,

5min, 4◦C) to extract RNA. The RNA was obtained with the

RNA extraction kit (ACMEC Biochemical Co., Ltd., Shanghai),

and its concentration was evaluated with an ELISA reader

(Labsystems, Multiskan EX). The prepared RNAs were reverse-

transcribed into cDNA following M-MLV 4 First-Strand cDNA

Synthesis Kit (Biomed, Beijing) which were then kept at – 20◦C.

Quantitative real-time PCR was carried out with the

QuantStudioTM 1 Real-Time PCR System (Thermo Fisher

Scientific, Waltham, MA USA). The reaction system consisted

of 10 µl of 2X SYBR Green qPCRMaster Mix, 0.4 µl of 10µM F

Primer, 0.4 µl of 10µM R Primer, 7.2 µl of dd H2O, and 2 µl of

cDNA. The reaction system without cDNA served as a negative

control. 16S rRNA was applied as the reference gene, and the

gene-specific primers were designed and synthesized by Sangon

(Sangon, Biotech Co., Ltd, Shanghai, China). The primers used

in this experiment for quantitative real-time PCR are shown in

Table 1.

Quantitative real-time PCR was operated with the following

conditions: 50◦C for 2min; 95◦C for 10min; 40 cycles of 95◦C

for 15 s; and 60◦C for 1min. Genes were selected (27), and

the expression level of genes was analyzed by the 2−11CT

method in triplicate. Statistical analysis was performed byOrigin

Pro 2021, and error bars represent the SD from the mean

of measurements.

Data analysis

The experiments were carried out at least three times

independently. Analysis of microbiological results was

converted to OD and log CFU/mL. Origin Pro 2021 (Origin

Lab Corp., Northampton, MA, United States) was applied to

analyze the content of biofilm, biofilm components, and other

data obtained. SigmaStat 3.5 was applied to analyze bacterial

adhesive force. Differences at p-value <0.05 were regarded as

statistically significant.

Results

Growth and swarming mobility of S.
putrefaciens WS13

The growth and swarming mobility of S. putrefaciens WS13

are shown in Figure 1. The results showed that the lag phase

under 30◦C was < 2.5 h, and the lag phase under 4◦C was

significantly longer than 50 h. The maximum density value

of cells under 4◦C was higher than that under 30◦C. At the

stationary phase, the cell density of bacteria under 30◦C was

3–5 log CFU/mL inferior to that under 4◦C. The results of

TABLE 1 Primer sequences of the quantitative real-time PCR assay.

Gene name Forward primer (5′-3′) Reverse primer (5′-3′)

16s rRNA ACTCCTACGGGAGGCAGCAG, ATTACCGCGGCTGCTGG

AVV82427.1 TTACTGAACGAGGAAATCACTACG AACTACAACGCCAAGCAAGC

AVV82583.1 TAATATCAGTGCCTCTTTTGGTGT GAGTCGTTTGGCTTCATAGAGTAA

AVV82979.1 CAACATAAAGAAGAAAACCAGAAGC CCACATCAATAATCACCACGC

AVV83156.1 GTTGAGCCGCTTGTTGTCC GAGCTGCTTCCATGTCATATTTAG

AVV84237.1 TGGTGATGCCTATGATGGTTC AATGCCGCACTCGGACTC

AVV84424.1 AAATCCTGTCTGGGTCTCGC ACCGAGTAAGTCTCCCATCCA

AVV84755.1 ATCCAATCATCTGGGCGTAA TAGTATTTCTTTGGGAATGTGAGC

AVV85279.1 TACCTCTTTTAGCATTACCCTCCT CGCCGACTATAGCTGACTTCTT

AVV85746.1 GCAAAAGATTGAGCGTCGG TTTACCCATTCCAGCAGGC

AVV86051.1 TCTATTTGGGAGCGGGAAC GCCCCTGGGTAAGAATAAAGA
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FIGURE 1

Growth and swarming mobility of S. putrefaciens WS13. (A) Growth curve of S. putrefaciens WS13 under 30◦C. (B) Growth curve of S.

putrefaciens WS13 under 4◦C. (C) Swarming mobility of S. putrefaciens WS13 under 4◦C. (D) Swarming mobility of S. putrefaciens WS13

under 30◦C.

bacterial growth curves indicated that cold stress slowed down

the bacterial growth rate and raised its density.

With the prolongation of incubation time, the sizes of

colonies cultured under 4◦C did not change significantly.

However, the colonies cultured under 30◦C appeared earlier,

and the sizes of colonies increased with the extension of culture

time. It showed that cold stress weakened bacterial swarming

mobility (33) and made bacteria swarm in the smaller zone to

form smaller colonies.

Atom force microscope

As shown in Figure 2, the horizontal baseline measured by

the bare probe and the approach–retraction curve measured by

sample probes were obtained. After calculation, the maximum

difference between the two curves represented the adhesive

force of the sample to the matrix. Under 4◦C, the adhesive

force of cells was four–five times higher than that under 30◦C,

demonstrating that the adhesive force of S. putrefaciens WS13

under 4◦C was stronger than that under 30◦C.

Scanning electron microscope

The morphological changes in the mature biofilm of

S. putrefaciens WS13 under 30 and 4◦C are shown in Figure 3.

Cells in yellow rectangles in SEM images A and B were amplified

as presented in C and D. SEM images indicated that the number

of cells under 4◦C was more than that under 30◦C in matured

biofilm. Bacterial morphology was affected by temperature, but

the affection was tiny.

Analysis of biofilm

The results of biofilm biomass and components are shown in

Figure 4. The biofilmmatured under 30 and 4◦C at 18 and 168 h,

respectively (Figures 4A,B). S. putrefaciens WS13 produced

more biofilm under cold stress. The results of Fourier transform

infrared spectroscopy (FT-IR) characteristics of the mature

biofilm formed under 30◦C at 18 h and 4◦C at 168 h are shown

in Figure 4C, respectively. The characteristic wave numbers are

shown in Table 2. Bands of extracellular polysaccharides were at
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FIGURE 2

AFM images of S. putrefaciens WS13. (A) AFM image of S. putrefaciens WS13 under 30◦C. (B) AFM image of S. putrefaciens WS13 under 4◦C.

920 cm−1, 1100–1260 cm−1, and 3300–3400 cm−1, respectively.

The peak at 1450 cm−1, 1690–1700 cm−1, and 3300–3400

cm−1 indicated the existence of extracellular proteins in biofilm,

respectively. Other biomacromolecules such as lipids were

verified in the biofilm, which is consistent with the previous

studies (30, 34). FT-IR spectra of biofilm formed under 30

and 4◦C were roughly the same. Extracellular polysaccharides

and extracellular proteins reached the maximum value at 20 h

and 180 h under 30 and 4◦C, respectively. The maximum

value of extracellular polysaccharides and extracellular proteins

under 4◦C was three and 1.5 times higher than that under

30◦C, respectively.

High-performance liquid
chromatography-tandem mass
spectrometry

Figure 5 shows that the intracellular levels of c-di-GMP

in S. putrefaciens WS13 varied at different growth stages

under 30 and 4◦C. The level of c-di-GMP in bacterial cells

increased first and then decreased both under 30 and 4◦C.

Mostly, the c-di-GMP level in cells was higher under 4◦C

than that under 30◦C. Under the same culture stage, the

intracellular c-di-GMP level under 30◦C was < 50 % of that

under 4◦C.
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FIGURE 3

SEM images of the mature biofilm of S. putrefaciens WS13 under 30 and 4◦C, respectively. The scale bar in (A,B) represents 50.0µm. The scale

bar in (C,D) represents 5.00µm.

Quantitative real-time PCR analysis

The impact of temperature on the expression level

of genes encoding diguanylate cyclases was evaluated

by quantitative real-time PCR analysis, and the result

is shown in Figure 6. Under 4◦C, the expression levels

of all tested genes were higher than those under 30◦C,

and the change in gene expression under cold stress was

different. The expression levels of genes AVV82427.1,

AVV82583.1, AVV82979.1, and AVV83156.1 under

4◦C were upregulated by < 2 times (1.72, 1.08, 1.07,

and 1.64, respectively) than that under 30◦C, and the

expression levels of genes AVV84424.1, AVV85746.1,

AVV86051.1, AVV84237.1, AVV84755.1, and AVV85279.1 were

upregulated much more (2.22, 2.54, 2.52, 6.27, 6.31, and 4.11,

respectively).

Discussion

S. putrefaciens WS13 is a specific spoilage organism (SSO)

of seafood under cold storage and is related to aquatic product

disease named shewanellosis (35). S. putrefaciens has a strong

biofilm-forming capability. Our group has found that the

formation of biofilm of S. putrefaciens WS13 is conducive to its

survival under cold stress (6, 36). Further study found that genes

such as motA, ppsA, and fabs family expressed in S. putrefaciens

WS13 under 4◦C help attenuate bacterial motility, enhance

bacterial adhesion, and increase biofilm fluidity (36, 37), which

was beneficial for bacteria to form biofilm under cold stress.

Biofilm formation began after bacteria adhered to the surface

of the object, and the adhesion of bacteria was regulated by

c-di-GMP (11, 25). However, the characteristics of adhesion and

biofilm of S. putrefaciens WS13 under cold stress, as well as
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FIGURE 4

Biofilm analysis of S. putrefaciens WS13. (A) Biofilm biomass formed under 30◦C. (B) Biofilm biomass formed under 4◦C. (C) FT-IR spectra of S.

putrefaciens WS13 under 30◦C (red line) and 4◦C (black line). (D) The extracellular polysaccharides content of EPS under 30◦C. (E) Extracellular

proteins of EPS content under 30◦C. (F) The extracellular polysaccharides content of EPS under 4◦C. (G) Extracellular proteins of EPS content

under 4◦C.
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TABLE 2 Assignment of the main bands of FT-IR spectra.

Wavenumber (cm−1) Type of Vibration Assignment References

3300–3400 ν (N-H), ν (O-H) carbohydrates, amide I (30, 34)

2900–2960 ν (C-H) lipids

1690–1700 ν (C= O), ν (C-N) or τ (HOH) amide I

1400–1450 τ (C-H), ν (C= O) or τ (COO) proteins, lipids

1100–1260 ν (C-OH), ν (C-O-C) and P bonds in saccharide region carbohydrates

920 ν (O-H) carbohydrates

*Type of vibrations: (ν) stretching and (τ ) bending.

FIGURE 5

c-di-GMP levels in S. putrefaciens WS13. c-di-GMP levels in S. putrefaciens WS13 under 30 ( ) and 4◦C ( ).

intracellular c-di-GMP level, which regulated these two, needed

further study. Therefore, the refrigeration temperature (4◦C)

and an optimum growth temperature (30◦C) were selected in

this work to investigate the difference between those features of

S. putrefaciensWS13.

The swarming mobility, intracellular c-di-GMP level,

biofilm, cell morphology, and adhesion, as well as gene

expression of S. putrefaciens WS13 under 30 and 4◦C, were

investigated in this work. S. putrefaciens WS13 grew slower

under 4◦C, but its final density was higher than that under

30◦C. The swarming mobility of S. putrefaciens WS13 under

4◦C was weaker than that under 30◦C. Studies on Listeria

monocytogenes and Ralstonia solanacearum strains showed that

bacteria under cold stress achieved a greater proliferation rate

and a lower growth rate, and bacterial mobility on growing

colonies was attenuated (38, 39), which were consistent with

our work. Researchers have reported that the c-di-GMP level

could affect bacterial swarming mobility through flagella (40) or

fimbriae (41), and bacterial swarming mobility affected bacterial

self-aggregation (42), which in turn affected bacterial biofilm
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FIGURE 6

Expression of genes encoding diguanylate cyclases. The expression of genes encoding diguanylate cyclases under 30 ( ) and 4◦C ( ).

formation (43). The high c-di-GMP level in bacterial cells

would bind the proteins such as YcgR to affect the flagellar

motor, weakening bacterial swarming mobility, which improved

bacterial self-aggregation. Those results would promote biofilm

formation too (43, 44). Our work found that the intracellular c-

di-GMP level in S. putrefaciens WS13 increased and weakened

the ability of swarming mobility of S. putrefaciens WS13 under

cold stress compared to that under 30◦C, which was consistent

with the previous study.

Bacterial adhesion is affected bymany factors such as cellular

appendages and extracellular substances (45–47). Our work

found that S. putrefaciens WS13 cells had stronger adhesive

force under 4◦C than that under 30◦C. The biomass of EPS of

S. putrefaciens WS13 under 4◦C was higher, and extracellular

proteins and extracellular polysaccharides were higher than

those that synthesized under 30◦C. According to the research,

EPS affected the adhesion of bacteria (48–50). This might

indicate that S. putrefaciens WS13 would strengthen bacterial

adhesion by increasing the content of EPS under cold stress.

However, the details for those remained for further analysis.

The content of EPS and its components (such as extracellular

proteins and extracellular polysaccharides) are regulated by

many factors, such as c-di-GMP (51–53). The increase

in the intracellular c-di-GMP level under cold stress may

help to promote the synthesis and secretion of extracellular

polysaccharides and extracellular proteins (51–53) and

enhance bacterial adhesion, which is conducive for bacteria to

survive under cold stress. It was found that the extracellular
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polysaccharides Pel and/or Psl contributed to the adhesion of

Pseudomonas Aeruginosa, and the synthesis and secretion of

Pel and/or Psl were regulated by c-di-GMP (25). In addition,

it was found that c-di-GMP in Pseudomonas putida modulated

the transcription factor such as FleQ, affecting the synthesis

and secretion of adhesin LapA, which regulated the adhesion

of P. putida (50). The increase in the intracellular c-di-GMP

level under cold stress was identified to promote the synthesis

and secretion of extracellular polysaccharides and proteins of

EPS, which would strengthen bacterial adhesive force (51–53).

This study also confirmed that c-di-GMP regulates extracellular

polymers to affect the adhesion of bacteria.

Biofilm formed by S. putrefaciens WS13 under cold stress

was also investigated. The results showed that the FT-IR

characteristics, morphology, and structure of bacterial biofilm

formed under 30 and 4◦C were similar, which meant the

composition of biofilm formed under both temperatures was

almost the same. The intracellular c-di-GMP level affects

biofilm formation (54). The high c-di-GMP level would increase

bacterial extracellular matrix level and accelerate biofilm

formation (55). Compared to that under 30◦C, we found that the

intracellular c-di-GMP level increased under cold stress, which

was consistent with the conclusion that c-di-GMP regulated

bacterial living lifestyle between biofilm state and planktonic

state (56, 57). However, the effects of c-di-GMP under low

temperature affecting bacterial biofilm composition and biofilm

formation remained to be elucidated.

The level of c-di-GMP in bacterial cells affects the activity

of proteases in the cytoplasm, which could hydrolyze the

substances such as extracellular proteins that were located on

the outer membrane of bacteria, changing the composition and

structure of biofilm (58, 59). In P. fluorescens Pf0-1, the high

level of c-di-GMP would bind to LapD and promote LapD to

interact with the periplasmic protease LapG, which inhibited

LapD to cleave the N-terminus of adhesin LapA and enhance

the ability of bacterial adhesion (58, 59). Mostly, intracellular

c-di-GMP at the high level would promote the secretion of

EPS by controlling the regulatory factors to promote gene

transcription. CuxR, the c-di-GMP-responsive protein in plant

symbiotic α-proteobacteria, would stimulate the transcription of

the gene cluster that synthesized EPS at high c-di-GMP levels,

assisting bacterial adhesion (54). Also, researchers found that

in S. putrefaciens, the high level of c-di-GMP could bind to

the transcription regulator FlrA, which would strengthen the

synthesis of adhesin BpfA, and reinforce bacterial adhesion (52).

It explained the difference in FT-IR characteristics of bacterial

biofilm formed under both temperatures. Biofilm biomass

formed by S. putrefaciens WS13 under 4◦C was higher than

that under 30◦C, which was consistent with our previous work

(6). It demonstrated that cold stress promoted S. putrefaciens

WS13 to form more biofilms. However, further work on how

cold stress affected biofilm formation was needed. Our work

found that under cold stress, the intracellular c-di-GMP level

of S. putrefaciens WS13 was higher under 4◦C than that under

30◦C at the same growth stage, which affected the swarming

mobility, biofilm, cell morphology, and adhesion of bacteria.

The intracellular c-di-GMP level was regulated by DGCs and

PDEs (22, 23), while environmental signals such as light, oxygen,

(17) and temperature (24) would affect the expression of DGCs

and PDEs and then regulate the level of c-di-GMP in cells.

Quantitative real-time PCR analysis showed the expression of

genes that encoded diguanylate cyclases was upregulated under

cold stress, and the increased expression of genes contributed to

the increase in c-di-GMP in bacterial cells. The high c-di-GMP

level reduced bacterial swarming mobility, promoted bacterial

adhesion and biofilm formation, and also promoted the bacterial

ability to produce extracellular polysaccharides and extracellular

proteins under 4◦C, which directly improved bacterial adhesion,

which made biofilm more than that under 30◦C. This study

evaluated the effects of c-di-GMP on the bacterial adhesion

and biofilm formation of SSO in seafood under cold stress.

However, the specific signal pathways of c-di-GMP regulating

bacterial adhesion and biofilm formation need to be further

studied. This study provides a theoretical basis for studying the

effect of c-di-GMP on the adhesion and biofilm formation of S.

putrefaciensWS13 under cold stress.

Conclusion

This study analyzed the variation of c-di-GMP level and

the expression of genes encoding diguanylate cyclases in S.

putrefaciens WS13 under 30 and 4◦C, as well as the effects of

c-di-GMP on bacterial adhesion and biofilm formation. The

expression of genes encoding diguanylate cyclases and the levels

of c-di-GMP increased in S. putrefaciensWS13 under cold stress,

which reduced the swarming ability of bacteria, enhanced the

ability of cells to adhere, and promoted bacteria to form more

biofilm compared to that under 30◦C. In addition, the amount

of EPS such as extracellular polysaccharides and extracellular

proteins also increased, which also enhanced bacterial adhesion

and biofilm biomass. This study provided valuable clues to better

understand the effect of c-di-GMP on the bacterial adhesion

and biofilm formation of S. putrefaciensWS13 under cold stress.

Research on the mechanism of adhesion and biofilm formation

of S. putrefaciens WS13 regulated by c-di-GMP under cold

stress also laid a theoretical foundation for the development of

technology to control the hazard caused by biofilm.
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