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In the current study, cornstarch-based antimicrobial and edible films were

designed using solution-casting methods. The medicinal plants (Acontium

heterophyllum, Artemisia annua, and Thymus serpyllum) reinforced the

gelatinized solution in different concentrations as fillers. The effect of plant

extracts on antimicrobial and antioxidant potential, microstructure, barrier,

thermal and mechanical properties of cornstarch-based films (SBFs) was

investigated using antimicrobial activity, DPPH free radical scavenging values,

scanning electron microscopy, X-ray diffraction, water vapor transmission

rate, differential scanning calorimetry, and tensile strength. Likewise, it was

depicted that the geometric and crystalline structures of medicinal plants’

reinforced films remained the same even after processing. The mechanical

tests indicated that the plant extracts effects are associated with reduced

elongation, increasing tensile strength, and Young’s modulus. Morphological

analysis revealed the generation of uniform and the compact surfaces.

However, films with 10% concentration of plant extracts have the lowest water

vapor permeability values, and emerged better barrier properties. Moreover,

these films showed the significant antioxidant potential and antimicrobial

activity.
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1. Introduction

The therapeutic properties of medicinal plants have been
recognized globally; over 50% of recent clinical drugs have
been extracted from plant extracts. According to some reports,
most of the population (80%) from developing regions use
medicinal plants for their primary healthcare (1, 2). Nearly
8,000 plant species with medical values have been reported
in South Asia, out of which 1,000 exists in Pakistan. With
their indigenous knowledge, such plants were used to treat
certain diseases for years (3, 4). However, modern research
reported phytochemicals such as alkaloids, glycosides, saponins,
resins, and essential oils with other functional compounds such
as furanocoumarins and hydroxycoumarins napthoquinones
and acylphloroglucinols in these species. Thorough health
benefits including cancer, cardiovascular disorders (5–9), ulcer,
hemorrhage, diarrhea, and microbial, parasites, and vermifuge
treatments with these bioactive compounds, highlighted by
numerous researchers (10). In addition, bacterial infections,
including gastrointestinal, pneumonia, pulmonary, and skin,
are among the common problems treated with antimicrobial
medical plants (11).

In addition to other medicinal plants, Thymus serpyllum
(wild thyme) grows at higher altitudes and possesses various
medicinal properties. Some studies proved its anti-rheumatic,
antiseptic, antispasmodic, antimicrobial, cardiac, carminative,
diuretic diaphoretic, analgesic, carminative, expectorant, and
stimulant attributes (12). Likewise, Artemisia annua L. (sweet
wormwood) is also a medicinal plant, widely available in Europe,
Africa, China, and Pakistan (13, 14). Due to rich bioactive
compounds, the plants act as anti-rheumatic anthelmintic,
antispasmodic, and antibacterial natural sources. Additionally,
treatment of malaria, hepatitis, cancer, inflammation, and
menstrual associated issues are also treated with the plants.
Moreover, Aconitum heterophyllum is also a Himalayan
medicinal specie, beneficial against, fever, diarrhea, digestive
problems, nervous system, rheumatism issues and reported to
possess antifungal, antiviral, and immune-stimulant attributes
(15). Furthermore, in the traditional medicine of China, India,
and Pakistan, the plant is beneficial for treating sciatica and
rheumatic pain and can also be used against body lice (16, 17).

In recent years, numerous antimicrobial packaging systems
have been introduced with different polymer matrices (18–
20). However, these films possess certain limitations such
as toxicological effects, costly environmental issues, poor
mechanical attributes, high water affinity, and others (21,
22). On the other hand, using antimicrobial materials from
natural sources is among emerging research topics in preserving
food from microbial contaminations and developing anti-
microbial food packaging with numerous advantages (23, 24).
For example, reinforcement of SBFs with natural fillers having
biocompatible and biodegradable valuable nature in medicine,
drug release, packaging, and agricultural research (25, 26). The

natural fillers can act as a reinforcing source and enhance the
matrix’s mechanical and barrier characteristics by delivering
matrix tension to the fillers (27).

Despite the efforts, no attempt has been made to incorporate
these medicinal plants as fillers in SBFs to prepare films
with unique characteristics. Therefore, in the current work,
the effect of Acontium heterophyllum, Artemisia annua, and
Thymus serpyllum medicinal plant from Pakistan’s northern part
(Gilgit region), as novel and iinovative approach was evaluated
on the environmental-friendliness, thermo-mechanical, and
antibacterial attributes of the SBFs. Since all the components
employed were derived from food sources; therefore, it is
anticipated that the material would possess great potential as
antimicrobial packaging for food in future research.

2. Materials and methods

2.1. Materials

Hydroxypropyl high-amylose cornstarch (amylose content
80%) was purchased from Penford, Australia. Fresh medicinal
plants (Acontium heterophyllum, Artemisia annua, and Thymus
serpyllum) were collected from the upper pastures of Bagrote
valley located at Central Karakoram National Park Gilgit
Baltistan, Pakistan. After identification, washing, and cleaning
with distilled water, the plants were frozen (at −85◦C) in the
presence of liquid nitrogen. Then the sample was dried with
a freeze dryer (FDU-1200 EYELA) at a vacuum pressure and
condenser temperature of 7 m Torr and−88◦C, respectively, for
24 h. The freeze-dried plants were finally granulated into a fine
powder, followed by sieving with a 180 mesh size.

2.2. Film preparation

The following solution casting procedure synthesized all the
films. Briefly, a corn starch solution (8%, w/w) was prepared in a
conical flask, and then 20% polyethylene glycol was injected on
a dry weight basis of starch. Further, the solution was pre-mixed
and then heated to 99◦C (maintained for 1 h) with continued
agitation. The solution was further cooled at 55◦C, and fillers
(0, 5, 10, and 15%) were mixed into the gelatinized suspension
and agitated for 40 min. Moreover, the mixed suspensions
were poured into Petri dishes and were coded according to the
medicinal plant (see Table 1). The Films were then dried for 8 h
in an oven (at 37± 1◦C) to get constant weight.

2.3. Characterizations of films

2.3.1. Transparency measurement
A UV (WFZ UV-3802) spectrum was employed to estimate

the prepared films’ transparency. The samples were first placed
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TABLE 1 Sample codes of films reinforced with different medicinal plants.

Sr. no Code Medicinal plant Code Filler
(%)

Weight of each component (g) Final
volume

PEG Starch Filler Water

1 PSF Corn starch PSF 0 1.6 8 0 90.4 100

2 AH1 Accountium heterophyllum AH1 5 1.6 8 0.4 90 100

3 AH2 Accountium heterophyllum AH2 10 1.6 8 0.8 89.6 100

4 AH3 Accountium heterophyllum AH3 15 1.6 8 1.2 89.2 100

5 AA1 Artemisia annua AA1 5 1.6 8 0.4 90 100

6 AA2 Artemisia annua AA2 10 1.6 8 0.8 89.6 100

7 AA3 Artemisia annua AA3 15 1.6 8 1.2 89.2 100

8 TS1 Thymus serpyllum TS1 5 1.6 8 0.4 90 100

9 TS2 Artemisia annua TS2 10 1.6 8 0.8 89.6 100

10 TS3 Artemisia annua TS3 15 1.6 8 1.2 89.2 100

in a 10 × 10 mm square container for the calculations.
A wavelength of 315 nm corresponds to transparency in the
research. The transparency of various films was also observed
at 206 nm, divided by thickness and displayed as %/mm.

2.3.2. Water vapor transmission rate (WVTR)
Water vapor transmission rate (WVTR) of samples was

evaluated with a thermos hygrometer using deionized water
following ASTM E96/E96M-14 guidelines. The films were first
placed in a permeation cell sealed over a circular opening of
2.82 cm2, then stored in a desiccator (at 25 ◦C) to maintain
a 75% relative humidity (RH). Water vapor permeability
was calculated as weight gain on the permeation cell. Other
researchers also employed this methodology (28, 29).

2.3.3. Scanning electronic microscope (SEM)
For observing microstructural surface structure with

scanning electronic microscope (SEM) (PHENOM Pro)
technique, the films were adjusted on copper stubs and then
coated with gold. Finally, the samples were estimated by setting
an accelerating voltage of 5 kV.

2.3.4. Tensile testing
The ASTM D5938-96 standard Instron tensile testing

apparatus (5,565) was used to test tensile strength. Tensile
strength, elongation at break and modulus was estimated at a
crosshead speed of 5 mm/min. Seven specimens were evaluated
for each film and mean values were obtained.

2.3.5. X-ray diffraction (XRD)
The X-ray patterns of corn starch-based films reinforced

with three different medicinal plants as a filler were tested with
an X-ray diffractometer with Cu K radiation at 40 kV and 30 mA
voltage. The samples were scanned between 2θ = 3 and 40◦.

2.3.6. Differential scanning calorimetry (DSC)
Differential scanning calorimetry (DSC) test was performed

with a Q1000 DSC system (TA instruments, USA). Different film
pieces (10 mg) were sealed in a standard aluminum pan followed
by heating at a rate of 5◦C/min from −25 to 550◦C under a
nitrogen atmosphere.

2.4. Antimicrobial activity of films

The SBFs’ anti-microbial activity was ascertained with
the disk diffusion technique proposed by Zaiden et al. (30).
The current protocol followed a modified agar disk diffusion
approach against the microorganisms: Staphylococcus aureus,
and Salmonella. Firstly, 100 µL of indicator microorganisms
containing a bacterial load was put on soft agar and poured
over a nutrient agar plate to prepare a layer of indicator
microorganisms. Further, the plates were incubated at 37◦C
(overnight) for solidification. The prepared corn starch-based
films of 6 mm diameter were put onto the surface of a nutrient
agar plate, followed by incubation at 37oC for 24 h. The
inhibitory level of the films was presented as zone inhibition in
diameter (mm) around the disk. All the films were evaluated
in triplicate, and the average mean of the inhibition zone
inhibition was determined.

2.5. DPPH radical scavenging activity

The % DPPH radical scavenging activity of the corn starch-
based films was measured by following the method proposed
by Brand-Williams et al. (31). To calculate the antioxidant
properties of prepared films, 5 g of each film was homogenized
and then extracted with 50 mL of methanol for 6 h. Further,
0.1 mL of methanol extract was taken in a flask, and 4.9 mL
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of DPPH solution was added and kept in the darkroom
for incubation (30 min). After incubation, the absorbance
was recorded at 715 nm with a UV spectrophotometer.
The antioxidant activity was calculated with the following
expression:

Antioxidant activity (%)

=
Absorbance blank− Absorbance with sample

Absorbance blank
× 100

2.6. Solubility in water

Film solubility is the % calculation of total soluble matter
(TSM) in the film and is solubilized in distilled water (32). The
films’ initial weight (0.50 mg) was calculated and dried in an
oven at 70 ± 5◦C for 24 h. After drying, the initial weight
was calculated, and the dried samples were immersed in 50 g
of distilled water for 6 h (at 25◦C). After 6 h, the insoluble
films were again dried at 70 ± 5◦C until a constant weight
was attained. The %TSM was calculated by using the following
formula:

%TSM

=
Initial weight of the film− Final weight of the film

Initial weight of the film
× 100

2.7. Statistical analysis

The statistical analysis was performed with STATISTICS 8.1
software. The complete randomized design (CRD), analysis of

variance (ANOVA), and LSD comparison was performed (33).
To detect the difference between the film properties (p ≤ 0.05).

3. Results and discussion

3.1. Physical properties

The effect of the medicinal plants on the thickness,
transparency, solubility, moisture, and WVTR of the corn starch
film is shown in Table 2. The thickness was controlled by adding
the same weight (25 mL) of suspension into the petri dish.
However, a slight increase in the film thickness was increased
with the increase of filler content in all medicinal plant-
reinforced films. The moisture content of the pure corn starch
and all reinforced film were the same. It was noticed that adding
fillers to the corn starch-based film decreased the transparency
level of the films due to the proper dispersion of the filler
in the starch matrix. The film-barrier properties against UV
radiation of a film is e used to measure at 206 nm to check the
transparency level. The declined pattern of opacity was noticed
in all e all reinforced films, from 73 to 53% in AA3 reinforced
film. The finding indicated that adding medicinal plants to
starch-based films improved their UV radiation protection
properties (Table 2).

The water solubility rate greatly affected the film’s water
vapor resistance quality. Table 2 represents the water solubility
results of corn starch-based reinforced film (p ≤ 0.05). All the
films were statistically different from each other except TS3. It
can be seen that the water solubility rate of all films was reduced
compared to pure corn starch film. The solubility rate decreased
from 37.20 to 25.88%. It was due to the interaction between

TABLE 2 Effect of starch based films reinforced with different medicinal plants on physical properties of films.

Sample
Physical properties

Thickness
(mm)

Opacity
(%/mm)

Solubility (%) WVTR
(g/m2.24 h)

Moisture
content (%)

Corn starch 0.11± 0.06e 73± 3a 37.20± 3a 1278.00± 32a 15.98

Accountium heterophyllum 0.11± 0.50e 62± 4e 31.51± 2e 1220.50± 25d 15.80

Accountium heterophyllum 0.13± 0.04c 65± 5ef 25.88± 1h 1186.60± 37ef 15.88

Accountium heterophyllum 0.16± 0.06a 55± 5d 30.600± 1f 1250.50± 15c 15.87

Artemisia annua 0.12± 0.05d 56± 4e 33.51± 2d 1150.67± 15e 15.90

Artemisia annua 0.114± 0.06b 68± 7b 26.21± 3g 1141.25± 10g 15.91

Artemisia annua 0.16± 0.04a 53± 4g 36.09± 0.10b 1285.63± 32c 15.89

Thymus serpyllum 0.13± 0.05c 56± 4e 33.02± 0.10d 1170.50± 21f 15.82

Thymus serpyllum 0.14± 0.05b 68± 7c 34.07± 0.10c 1191.10± 27e 15.95

Thymus serpyllum 0.16± 0.05a 70± 5b 37.07± 0.10a 1273.11± 11b 15.45

Mean values in the same column with different letters are significantly different (p ≤ 0.05). The different letters represent the statistical application that shows data significantly different
from each others.
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the starch matrix and the functional compounds in medicinal
plants (34).

Table 2 also presents the effect of different medicinal
plants on the WVTR of the corn starch film reinforced
with different medicinal plants. It was observed that all three
medicinal plants having different concentrations reduced the
WVTR. Generally, the WVTR of the pure starch film was
higher, and it was also noticed that the films with a higher
concentration of filler (15%) showed higher WVTR than the
lower amount. The highest WVTR (1278 ± 32 g/m2 24 h)
was observed in the pure starch film, while the lowest WVTR
(1141.25 ± 10 g/m2 24 h) was demonstrated by Artemisia
annua (10%). A similar study of the role and function of
cellulose and chitin nanofibers (CNF) and nanocrystals (NC)
have been reported because the homogeneous scattering is
essential for barrier properties, and the higher amount of filler
also results in the agglomeration of filler particle and weak
the WVTR and gas barrier properties (35). The decrease in
water vapor transmission rate with adding the medicinal plant
powder as a filler was also ascribed to better barrier properties.
A stronger interfacial adhesion between starch and matrix was
formed, reducing the longer diffusive path and also helping to
minimize the penetration of the molecular permeability (36).
The network developed between cellulose and starch matrix
due to the hydrogen bonding banned the formation of free
spaces where water molecules can enter. Our results agree
with the previous studies published to compare fillers with
different morphologies and their role in starch-based films (37,
38).

3.2. DPPH radical scavenging
activity (%)

The main characteristic of a packaging film is its antioxidant
activity because it protects the food commodity from microbial
spoilage and extends the product’s shelf life (39). Table 3 shows
the effect of DPPH radical scavenging activity (%) of medicinal
plants reinforced starch-based film. All the reinforced films
were statistically different (p ≤ 0.05). The percent antioxidant
activity of starch film reinforced by medicinal plants as a
filler enhanced from 0.00 to 69% in 15% Thymus serpyllum
medicinal plant reinforced film. It was noticed that the higher
amount of filler showed higher antioxidant activity in all three
different medicinal plant reinforced films as compared to the
low amount. A similar increase in antioxidant activity has been
reported in the chitosan-starch-based film when incorporated
with mango leaf and honeysuckle flower extracts (40, 41). The
increased antioxidant activity was due to functional groups
in Chinese chive (Allium tuberosum) root extract (CRE). The
increase in antioxidant activity was due to the higher total
phenolic in chitosan-starch-based film reinforced with CRE.
Similar trends of improved antioxidant activity were ascribed

by the chitosan-starch-based film reinforced by β-carotene and
starch NC (42).

3.3. Antimicrobial activity

The packaging material used for packing should possess
good antimicrobial activity, protecting the food commodity
from bacterial contamination (43). Two different strains,
Staphylococcus aureus and Salmonella were tested to evaluate
the antibacterial activity of the medicinal plants’ reinforced
films. As shown in Table 3, the starch-based films filled
with different medicinal plants indicated good inhibition
zones (p ≤ 0.05) against both microorganisms. The rate of
zone inhibition (diameter) was increased with the increasing
amount of medicinal plants in starch-based films compared
to the control film. All three medicinal plants presented the
highest inhibitory effects (Accountium hetrophyllum, Artemisia
annua, and Thymus serpyllum), having 15% reinforced filler
against both microorganisms. The Starch-based films filled with
medicinal plants were more effective against Gram-negative
and Gram-positive bacteria. Functional ingredients present in
medicinal plants, such as total phenolics, Sulfur containing
compounds, flavonoids, and allicin, are responsible for the
antimicrobial properties (44). The mechanism of pomegranate
peel particles against microorganisms can be ascribed to the
phenolic toxicity that affects the sulfhydryl groups of proteins
present in microorganisms (45, 38). The results agree with
previous studies of pomegranate peel against Gram-positive and
Gram-negative bacteria. Antibacterial properties of phenolic
compounds result in physiological changes in a cell membrane
that lead to cell death in bacteria (46).

3.4. Tensile properties

Table 4 shows the effect of three different medicinal plants
on the tensile properties of the starch films. It was observed
that medicinal plants increased the modulus from 387.6 to
483 MPa and tensile strength from 16.65 to 19.12 MPa and
decreased the elongation at break from 22.77 to 15.05%. The
medicinal plant Accountium hetrophyllum (5%) reinforced film
detected the best values, followed by Artemisia annua (10%) and
Thymus serpyllum. It was observed that the films with smaller
particles display good mechanical properties, which is expected
since smaller particles distribute evenly. Filler surface polarity,
composition, roughness, adhesion, and wettability are essential
in improving reinforced film properties. That affects the barrier
and the mechanical properties. It displayed that the medicinal
plant powder acted as a natural filler and improved the tensile
properties of the film. The contrivance of reinforcement can
be clarified by good compatibility between filler and starch.
Our previous findings are in line with the recent findings of
improvement in mechanical properties (38, 47).
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TABLE 3 Effect of starch-based films reinforced with different medicinal plants on DPPH radical scavenging activity and anti-microbial activity.

S. no Samples DPPH radical
scavenging activity (%)

Diameter of inhibition zone (mm)

S. aureus Salmonella

1 Corn starch 0.00± 0i 0.0± 0g 0.00± 0f

2 Accountium heterophyllum 39.32± 5h 10.0± 1.0f 8.0± 0.5e

3 Accountium heterophyllum 48.66± 2g 11.0± 0.7de 9.0± 0.8d

4 Accountium heterophyllum 57.50± 4d 13.0± 1.8b 12.0± 1.0b

5 Artemisia annua 49.32± 3f 11.0± 1.0e 9.0± 0.5d

6 Artemisia annua 52.43± 3e 12.8± 1.1c 11.0± 0.5c

7 Artemisia annua 62.00± 5b 14.5± 2.0ab 12.0± 0.8b

8 Thymus serpyllum 68.00± 6c 13.0± 1.8b 9.0± 1.0d

9 Thymus serpyllum 62.67± 5b 12.5± 1.3d 12.0± 0.9b

10 Thymus serpyllum 69.66± 8a 15.0± 1.8a 13.0± 0.4a

Mean values in the same column with different letters are significantly different (p ≤ 0.05). The different letters represent the statistical application that shows data significantly different
from each others.

TABLE 4 Effect of starch-based films reinforced with different medicinal plants and tensile properties of films.

S. no Samples Tensile properties

Young’s modulus (MPa) TS (MPa) Elongation (%)

1 Corn starch 387.6± 12.0e 16.65± 1.2d 22.77± 3.3a

2 Accountium heterophyllum 483.7± 14.8a 19.12± 0.5a 15.05± 1.2d

3 Accountium heterophyllum 465.8± 13.3c 18.35± 1.8ab 16.98± 0.8b

4 Accountium heterophyllum 454.9± 10.8d 17.73± 0.8c 16.04± 1.4b

5 Artemisia annua 468.5± 16.4b 17.93± 1.1b 15.55± 0.8d

6 Artemisia annua 476.9± 12.1ab 18.86± 1.6a 16.00± 1.3c

7 Artemisia annua 461.4± 10.6c 17.98± 1.2b 17.19± 1.3b

8 Thymus serpyllum 470.8± 12.7b 18.86± 1.6a 16.98± 0.8b

9 Thymus serpyllum 468.1± 11.9b 18.10± 0.9a 16.00± 0.8ab

10 Thymus serpyllum 465.8± 13.3c 16.73± 0.8d 17.14± 1.4b

Mean values in the same column with different letters are significantly different (p ≤ 0.05). The different letters represent the statistical application that shows data significantly different
from each others.

TABLE 5 Effects of different medicinal plants reinforced films on endothermic curves of starch-based films.

Sample To (oC) Tp (oC) Tc (oC) 4H (J/g)

Corn starch 33.59± 0.57bc 83.60± 0.08e 131.09± 0.15a 177.57± 2.69d

Accountium heterophyllum 35.29± 0.68a 84.64± 0.12d 130.91± 0.02ab 203.20± 5.20c

Accountium heterophyllum 34.66± 0.20abc 85.61± 0.04c 129.35± 0.04e 208.20± 4.23bc

Accountium heterophyllum 33.49± 0.35cd 91.26± 1.74a 129.80± 0.02d 237.84± 9.83a

Artemisia annua 34.20± 0.36abc 82.98± 0.71f 130.76± 0.03b 200.93± 5.92c

Artemisia annua 34.52± 0.66abc 84.26± 0.50d 130.23± 0.06c 196.94± 5.21c

Artemisia annua 35.02± 0.02abc 87.22± 0.21b 128.57± 0.36f 216.08± 12.88b

Thymus serpyllum 33.62± 1.50c 84.54± 0.22d 129.50± 0.22e 200.00± 3.22c

Thymus serpyllum 34.60± 0.22abc 86.13± 1.00bc 130.70± 0.30b 203.90± 2.20c

Thymus serpyllum 33.45± 1.12cd 88.05± 0.10b 128.00± 0.30f 210.80± 10.98b

To, onset temperature; Tp, peak temperatures; Tc, conclusion temperatures; 4H, enthalpy of gelatinization. The different letters represent the statistical application that shows data
significantly different from each others.
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3.5. Differential scanning calorimeter
(DSC)

Table 5 shows the results of starch-based films reinforced
with different medicinal plants. All the prepared films were
heated from −25 to 180◦C with a heating rate of 10 C/min. It
can be observed from the endothermic curves of starch-based
films. The increase in endothermic heat flow was observed in
medicinal plant powder-filled films. It was also observed that the
endothermic heat flow increased gradually with the increase in
medicinal plant powder contents. Understandably, the increase
in filler level increased the crystallinity and filler and starch
matrix interaction. It reduced the mobility of the amorphous
region due to the cross-links made by crystallization (48). The
starch-based films reinforced with medicinal plants exhibited a
declining peak temperature trend and higher thermal stability.

The increased thermal stability of starch/polyvinyl alcohol
films with the addition of nano-silicon dioxide has been

FIGURE 1

Scanning electronic microscope (SEM) surface images of pure
corn starch (1) and the films containing 5% (2–4), 10% (5–7), and
15% (8–10) Accountium heterophyllum, Artemisia annua, and
Thymus serpyllum medicinal plants.

reported (49). The result of an improved melting temperature
of the starch-based film agrees with (50), who reported that the
increase in melting temperature of the composites reinforced
with starch NC and waterborne polyurethane matrix.

3.6. SEM and XRD observations

Figure 1 shows the SEM images of corn starch-based
films filled with medicinal plants. It is seen that the starch
film (1) has a reasonably smooth surface. All three medicinal
plants’ reinforced film (5 and 10%) could be seen on the film
surface after drying the starch film. The films reinforced with
5% medicinal plant powder were smooth compared to the
10% reinforced films in all three medicinal plants. The rough
surface of the films shows good interaction between filler and
corn starch matrix. This observation can explain the improved
mechanical properties (WVTR) and UV radiations (51, 52).

The results indicated that the medicinal plant powder
remained stable during film preparation and improved the film’s
peak intensity in XRD studies, as shown in Figure 2. The XRD
results also support this conclusion (Figure 2). The films showed
peaks at 2θ◦ = 22.20◦, associated with starch crystallinity. It
was observed that the peak intensity was improved after adding
medicinal plant powder as a filler. These results can be used
to clarify the reinforcement mechanism in corn starch-based
films. Furthermore, the improved mechanical properties can be
benefited by developing a rigid network between filler and starch
matrix that helps transfer the stress from the matrix to the fillers.

FIGURE 2

X-ray diffraction (XRD) of pure corn starch (1) and films
reinforced with three different medicinal [Accountium
heterophyllum (AH), Artemisia annua (AA), and Thymus
serpyllum (TS)] medicinal plants.
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4. Conclusion

In the current attempt, corn starch-based antimicrobial
films were prepared by reinforcing Acontium heterophyllum,
Artemisia annua, and Thymus serpyllum (medicinal plants) as
a filler using a solution-casting approach. Findings determined
higher DPPH radical scavenging activity and antimicrobial
activity for reinforced films than the pure corn starch film.
Moreover, the mechanical properties (Tensile strength and
Young’s modulus) of the SBFs significantly improved after
reinforcing medicinal plant powder. These results depicted
more vital films after reinforcement of natural fillers than
without fillers. Furthermore, the barrier properties (WVTR)
of the corn starch films were also improved by adding
medicinal plant powder. Films reinforced with smaller amounts
(5 and 10%) in all three medicinal plants displayed better
mechanical properties than films reinforced with significant
particle filler content. SEM and XRD observations showed that
the compatibility between corn starch and filler was quite good,
which was expected. The XRD observation represented that
medicinal plant geometry and crystalline structures remained
the same in the films after processing, which explained the
reinforcement mechanism. The DSC indicated that the prepared
samples were more thermally stable than pure corn starch films.
Since all the components were from natural food resources, the
materials are fully biodegradable, safe for food packaging, and
can also be suitable for producing sustainable edible films and
medicinal capsules.
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