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Catechins are a cluster of polyphenolic bioactive components in green tea.

Anticarcinogenic effects of tea catechins have been reported since the 1980s,

but it has been controversial. The present paper reviews the advances in

studies on the anticarcinogenic activities of tea and catechins, including

epidemiological evidence and anticarcinogenic mechanism. Tea catechins

showed antagonistic effects on many cancers, such as gynecological cancers,

digestive tract cancers, incident glioma, liver and gallbladder cancers, lung

cancer, etc. The mechanism underlying the anticarcinogenic effects of

catechins involves in inhibiting the proliferation and growth of cancer cells,

scavenging free radicals, suppressing metastasis of cancer cells, improving

immunity, interacting with other anticancer drugs, and regulating signaling

pathways. The inconsistent results and their causes are also discussed in

this paper.
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Introduction

Cancer or carcinoma is a leading contributor to the global disease burden and the
number of its deaths is next only to cardiovascular diseases (1). There were 23.6 million
cases of various cancers [95% confidence interval (95% CI) = 22.2∼24.9 million] and
10.0 million deaths (95% CI = 9.36∼10.6 million) in 2019 across 204 countries and
territories (1). Projections forecasted that the worldwide cancer burden might continue
to increase for the next two decades (2–4) and it is supposed to have 28.4 million cancer
cases in 2040 (5). It is considered that diet will be an effective pathway for preventing
some cancers (6, 7).

Catechins are a cluster of bioactive polyphenolic components in fresh tea leaves or
green tea and they are major contributors to the health benefits of tea (6, 8). There are
usually four epi-type catechins found in fresh leaves of normal tea cultivars, i.e., (−)-
epicatechin (EC), (−)-epigallocatechin (EGC), (−)-epicatechin gallate (ECG), and (−)-
epigallocatechin gallate (EGCG). Their isomers, however, are detected in made teas due
to heat-induced epimerization from the epi-type catechins in tea manufacture (9, 10).
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The most abundant individual of catechins in fresh tea leaves is
EGCG which is more than 40% of the total content of catechins
(8). Many studies showed the anticarcinogenic effects of tea
catechins (11–13). However, the effects of tea catechins and tea
consumption on the risk of cancers is still inconclusive and
controversial (14, 15). Though there were dozens of review
papers focusing on this topic in the last decade, the controversial
or inconsistent results, which are very important for the
future studies, have not been involved. This review not only
summarizes the progresses on the anticarcinogenic effects of
catechins or tea and underlying mechanism, but also highlights
the controversial or inconsistent results and their causes, which
will be provide helpful references for future studies.

Original research papers or epidemiological study reports
were researched on the Web of Science using key words
“catechins (topic) and anticarcinogenic (topic) or anticancer
(topic)” and those with no relation to catechins from tea
source were excluded.

Epidemiological evidence of
anticarcinogenic effects of tea and
tea catechins

There have been epidemiological studies showing the
relationship of tea consumption to the decreased risk of
cancer incidences since the end of the last century. A 9-
year study among 8,552 Japanese adults revealed that frequent
consumption of green tea in large amounts showed a potentially
beneficial effect on cancer prevention. The cancer onset was
delayed by 8 years in females, but by 3 years in males
who consumed ≥10 cups of green tea daily, compared
to those who consumed ≤3 cups daily (16). Meta-analysis
including 18 prospective cohort and 25 case-control studies
showed a significant inverse association between intake of tea
catechins and risk of various cancers, with a relative risk (RR)
being 0.935 (95% CI = 0.891∼0.981). Catechins consumption
showed significantly protective effect on breast cancer (BC)
(RR = 0.885, 95% CI = 0.790∼0.991), rectal cancer (RR = 0.838,
95% CI = 0.733∼0.958), oropharyngeal and laryngeal cancer
(RR = 0.759, 95% CI = 0.581∼0.993), and stomach cancer
(RR = 0.633, 95% CI = 0.468∼0.858) (17).

Gynecological cancers

Tea drinking is found to be related to the reduced risk
of gynecological cancers. A case-control study on Asian-
American women in Los Angeles, USA revealed that green
tea intake was significantly and negatively correlated to the
BC risk (18). Furthermore, a study involving 472 patients
with stage I, II, and III BC in Japan showed that green tea
consumption was negatively correlated to numbers of axillary

lymph node metastases among pre-menopausal patients with
stage I and II BC, but positively correlated to the expression of
estrogen receptor (ER) and progesterone receptor (PgR) among
post-menopausal patients. A 7-year follow-up study on these
patients showed that an increase in green tea consumption
was negatively correlated to the recurrence of stage I and II
BC (p < 0.05), with a recurrence rate being 16.7% among
patients who consumed ≥5 cups/day, but being 24.3% among
those who consumed ≤4 cups/day. After adjustment for other
lifestyle factors, the RR of recurrence among patients with
stage I and II BC was 0.564 (95% CI = 0.350∼0.911) (19).
In a population-based case-control study involving in 501 BC
patients and 594 control subjects among Japanese, Chinese, and
Filipino-American women, which was carried out during 1995–
1998, showed that the risk of BC decreased with increase in
intake of green tea [odds ratio (OR) = 1.00, 95% CI = 0.71
(0.51∼0.99)] in non-tea drinkers (0–85.7 mL/d) and OR = 0.53
(95% CI = 0.35∼0.78) in tea drinkers (>85.7 mL/d) (20).
A meta-analysis based on data through literature search in the
MEDLINE database from January 1966 to August 2004, which
revealed the relationship of black tea or green tea consumption
to BC risk among populations from eight countries, showed that
high intake of green tea reduced the risk of BC with OR = 0.78
(95% CI = 0.61∼0.98). Black tea consumption showed weakly
positive correlation to the risk of BC, with OR = 0.91 (95%
CI = 0.84∼0.98), in which the negative correlation was higher
in hospital-based studies (OR = 0.77, 95% CI = 0.50∼1.19)
than the population-based case-control studies (OR = 0.94,
95% CI = 0.81∼1.09) (21). An investigation on 3,315 women
in Singapore showed that mammographic density (PMD) of
daily green tea drinkers (19.5%) was significantly lower than
that of non-tea drinkers (21.7%, p = 0.002) after the relevant
covariates were adjusted, however, the intake of black tea was not
associated with the risk of PMD (22). A meta-analysis including
3,323,288 participants showed that heavy tea consumption
has a preventing effect against ER-BC, especially in the post-
menopausal women. Therefore, tea was considered to be a
potentially useful dietary protectant for preventing BC and a
recommended dose was ≥5 cups/day (23).

Ovarian cancer risk was found to be associated with tea
drinking. Black tea consumption showed linearly suppressive
effects on the risk of ovarian cancer (p = 0.03), in which 30%
decline in the risk was observed (adjusted OR = 0.70, 95%
CI = 0.51∼0.97) among those who consumed≥2 cups daily (24).
Green tea drinking was found significantly to decrease the risk
of ovarian tumors (OR = 0.81, 95% CI = 0.73∼0.89, p < 0.0001)
in a meta-analysis study including 3,842 cases and 5,271 control
cases retrieved from Wanfang, CNKI, CBMdisc, EMbase, and
PubMed databases during 2000–2010 (25).

Tea drinking was found to be beneficial to endometrial
cancer. A meta-analysis involving 6,797 cases of endometrial
cancer and 858,780 normal controls showed that the pooled
RR of endometrial cancer for the highest consumption of tea
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was 0.99 (95% CI = 0.94∼1.04, p = 0.005), compared with
the lowest level. Further study showed that the pooled RR was
0.83 (95% CI = 0.73∼0.95) for case-control study but 1.02
(95% CI = 0.96∼1.08) for cohort study, in terms of study
design. For various regions, however, the pooled RR was 0.80
(95% CI = 0.69∼0.93) for Asia, 1.06 (95% CI = 0.94∼1.20) for
USA/Canada and 1.01 (95% CI = 0.95∼1.08) for Europe. For
different kinds of tea, inverse associations of reduced risk of
endometrial cancer were found with black tea (RR = 0.65, 95%
CI = 0.46∼0.92) and green tea (RR = 0.73, 95% CI = 0.64∼0.84),
respectively (26).

Digestive tract cancers

Epidemiological investigations showed that tea drinking
was correlated with a reduced risk of digestive tract cancers.
An 8-year follow-up cohort study on association between
tea consumption and cancer incidence involving 35,369 post-
menopausal women in Iowa, USA showed that increasing
frequency of tea drinking was inversely associated with digestive
tract cancer (p = 0.04, RR = 0.68, 95% CI = 0.47∼0.98) for
females who drank ≥2 cups (474 mL/cup) daily, in comparison
with the women who occasionally or never drank tea (27).
A population-based case-control study including 931 colon
cancer, 884 rectum cancer, 451 pancreas cancer patients, and
1,552 control residents which was conducted in Shanghai,
China during 1990–1993, showed that the amount of green
tea consumption was inversely associated with colorectal and
pancreatic cancers (28). Green tea drinking reduced by 39,
78, and 81% in the risk of esophageal cancer, liver cancer
and gastric cancer were, respectively observed among alcohol
drinkers according to a population-based case-control study
conducted in Taixing, China (29). Those with a high level of
pre-diagnostic urinary epigallocatechin (EGC) (a component of
tea catechins) had a lower risk of colon cancer. The ORs for
colon cancer in populations with the lowest, intermediate, and
highest tertile of EGC detected were 0.64 (95% CI = 0.33∼1.24),
0.60 (95% CI = 0.30∼1.20), and 0.40 (95% CI = 0.19∼0.83)
respectively (p < 0.02) in comparison to those without EGC
detected. Methylated EGC showed a similar effect on colon
cancer (30). A 6-year population-based prospective cohort study
involving 14,001 elderly inhabitants with ages ranging from
65 to 84 years in Shizuoka, Japan showed that green tea
drinking was negatively correlated with colorectal cancer (CRC)
mortality in a mediate dose dependent manner, with hazard
ratio (HR) = 0.24 (95% CI = 0.14∼0.40) for total participants,
HR = 0.30 (95% CI = 0.15∼0.61) for men, and HR = 0.18
(95% CI = 0.08∼0.40) for women who consumed ≥7 cups/day,
compared to those who drank more than one cup daily (31).
A pooled analysis of six cohort studies including 219,080
subjects, among which 3,577 cases were gastric cancer, showed
a significant risk reduction for gastric cancer for women with

consumption of more than 5 cups daily (multivariate-adjusted
pooled HR = 0.79, 95% CI = 0.65∼0.96), but no significant risk
reduction for gastric cancer in men (32).

Green tea intake was shown to be negatively correlated with
stomach cancer risk (RR/OR = 0.86, 95% CI = 0.74∼1.00).
The group with green tea consumption >5 cups/day showed
significantly preventive effect on stomach cancer (RR/OR = 0.68,
95% CI = 0.53∼0.87) (33). An 11-year follow-up study
involving 1,255 persons suffering from digestive system cancers
including esophagus, stomach, liver, pancreas, colorectal and
gallbladder/bile duct cancers from 69,310 non-alcohol-drinking
and non-smoking women in Shanghai, China showed that
normal tea drinking (more than three times per week for more
than 6 months) was showed suppressive effects on the overall
digestive system cancers (HR = 0.86, 95% CI = 0.74∼0.98,
p = 0.01). In comparison with women who never drank tea,
and the risk decreased with increase in duration and amount
of tea drinking (p < 0.01) (34). A cohort study involving a
total of 65,042 Japanese residents aging from 40 to 79 years
revealed that green tea consumption showed a protective effect
against hematologic neoplasms, with multivariate HR = 0.65
(95% CI = 0.42∼1.00) for leukemia among those who consumed
2 cups of green tea daily or less, 0.73 (95% CI = 0.47∼1.13)
for those who drank 3–4 cups of green tea daily, and 0.63
(95% CI = 0.42∼0.96) for those who drank 5 cups of
green tea daily (35). An investigation involving 7,355 eligible
subjects who were classified into polyp-free, low-risk colorectal
adenomas and high-risk colorectal adenomas based on health
check-ups with colonoscopies showed that tea drinking was
inversely associated with low-risk colorectal adenomas. A larger
cumulative dose (≥42 cup-year) was negatively associated
with high-risk colorectal adenomas, especially adenomas with
villous-rich pathology and when three or more adenomas were
present (36).

Incident glioma

Tea consumption was revealed to be negatively correlated
to the risk of glioblastoma (HR = 0.93, 95% CI = 0.89∼0.98)
in a prospective cohort study involving 379,259 UK Biobank
participants among which 487 were incident glioma cases.
Consuming ≥4 cups/day was decreased the risk of glioma
in comparison of no tea consumption (HR = 0.69, 95%
CI = 0.51∼0.94) (37). A study on relationship of recent (up to
12 years) or average long-term (up to 30 years) dietary flavonoid
intake to the risks of incident glioma based on data from
the male Health Professionals Follow-Up Study (1986–2014,
n = 49,885), Nurses’ Health Study II (1991–2017, n = 95,228)
and the female Nurses’ Health Study (1984–2014, n = 81,688)
showed that long-term tea catechins intake was associated with
reduced risks of glioma in pooled analysis with comparison of
the highest quintile to the lowest quintile of tea consumption
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(HR = 0.76, 95% CI = 0.57∼1.01, p = 0.04). The association with
recent intake was weaker (38). Meta-regression analysis showed
that higher tea consumption was related to a reduced glioma
risk (RR = 0.84, 95% CI = 0.71∼0.98, p = 0.030), and sensitivity
study through removing case-control studies revealed that more
consumption of tea was associated with lower risk of glioma
(RR = 0.81, 95% CI = 0.70∼0.93, p = 0.004). Daily 1 cup of tea
reduced the glioma risk by 3% (RR = 0.97, 95% CI = 0.94∼1.00,
p = 0.048) (39).

Liver and gallbladder cancers

A population-based case-control study including 1,037 cases
with biliary stones, 627 incident cases with biliary tract cancer
(BTC) and 959 randomly selected controls of biliary tract
disease in Shanghai, China, showed that female tea drinkers
have significantly decreased gallbladder cancer risk (OR = 0.56,
95% CI = 0.38∼0.83) and biliary stone risks (OR = 0.73, 95%
CI = 0.54∼0.98). However, these risk assessments among male
tea drinkers who were more likely to be cigarette smokers
were not significantly lower than the non-tea drinkers (40).
A 9-year follow-up cohort study involving in 41,761 Ohsaki
residents with ages from 40- to 79-year old in Japan showed
that green tea drinking was negatively correlated to the liver
cancer risk. The multivariate-adjusted HRs for the risk of liver
cancer among women were 0.68 (95% CI = 0.35∼1.31) for those
who drank 2 cups or less daily, 0.79 (95% CI = 0.44∼1.44) for
those who drank 3–4 cups daily, and 0.50 (95% CI = 0.27∼0.90)
for those who drank >5 cups daily, compared with the group
drinking less than 1 cup/day. The corresponding HRs among
men were 0.83 (95% CI = 0.53∼1.30) for 1–2 cups/day,
1.11 (95% CI = 0.73∼1.68) for 3–4 cups/day, and 0.63
(95% CI = 0.41∼0.98) for >5 cups/day (41). Studies on tea
consumption in relation to primary liver cancer from 1979 to
2009 in China, which included 13 epidemiological investigations
consisting of seven prospective cohort and six case-control
studies, showed that consumption of polyphenols abundant
tea was negatively correlated with the risk of primary hepatic
cell carcinoma (HCC) (RR = 0.77, 95% CI = 0.57∼1.03).
Tea drinking showed preventive effects on the development
of primary liver HCC both among women (RR = 0.54, 95%
CI = 0.37∼0.79) and men (RR = 0.86, 95% CI = 0.77∼0.95)
(42). Larger quantities and longer duration of green tea drinking
were negatively correlated with primary HCC, among which
individuals who consumed green tea more than 30 years showed
the lowest risk (adjusted OR = 0.44, 95% CI = 0.19∼0.96) in
comparison with non-tea drinkers (43).

Lung cancer

Heavy drinking of tea (more than 2 cups per day) was found
to be negatively correlated with the risk of lung cancer in a case-
control study including 428 hospitalized controls and 427 lung

cancer cases in Uruguay (RR = 0.34, 95% CI = 0.14∼0.84) (44).
Green tea drinking was found to have a reduced primary lung
cancer risk in a case-control study including 649 female patients
with primary lung cancer based on the data from Shanghai
Cancer Registry from February 1992 to January 1994. However,
the effect was dependent on smoking. The risks reduced with the
increase in green tea consumption among non-smoking women
(OR = 0.65, 95% CI = 0.45∼0.93), but little association was
found among female smokers (OR = 0.94, 95% CI = 0.40∼2.22)
(45). An investigation on the relationship of diet and physical
activity to the risk of lung cancer in the Czechia revealed
that black tea drinking had preventive effect on lung cancer
among non-smokers (OR = 0.67, 95% CI = 0.46∼0.99) (46).
The frequency of black tea drinking (daily or several times per
week) showed a reduced risk of lung cancer female non-smokers
(OR = 0.65, 95% CI = 0.43∼0.99) (47).

Other cancers

Consumption of hot black tea was found to significantly
reduce skin squamous cell carcinoma (SCC) risk (OR = 0.22;
95% CI = 0.10∼0.51) in a population-based case-control study
conducted by the Southeastern Arizona Health Study (SEAHS)
from 1994 to 1996 (48). Prostate cancer risk was significantly
decreased with an increase in quantity, duration and frequency
of green tea drinking in a case-control study including 130
incidental prostate cancer cases confirmed histologically and
274 cases without cancer matched by age in southeast China
(49). A study in Italy revealed that orally administrating
green tea catechins (600 mg/day for 1 year) showed cancer
chemoprevention effect on prostate cancer among patients
who were at high risk to develop prostate cancer and had
pre-malignant lesions (50). A study based on 3 nutrient-
specific databases developed by the United States Department
of Agriculture which included 466 cases of non-Hodgkin
lymphoma (NHL) and 390 controls showed that higher intakes
of green tea components including epicatechin, flavonols,
proanthocyanidins and anthocyanidins significantly reduced
NHL risk (51).

It was found in a case-control study including 107
leukemia cases and 110 orthopedic controls in China mainland
that the risk of leukemia decreased with the increase in
frequency, quantity and duration of green tea consumption
(52). An investigation including 252 cases and 637 controls
in China Taiwan revealed that green tea consumption
showed significantly negative correlation with leukemia risk
among persons from 16- to 29-year-old (OR = 0.49, 95%
CI = 0.27∼0.91). The adjusted OR for heavy tea drinking group
(more than 550 cups annually) was 0.47 (95% CI = 0.23∼0.97),
compared with non-tea drinking group. Large amounts of tea
catechins intake showed a reduced risk of leukemia (OR = 0.49,
95% CI = 0.27∼0.91) after adjusting for smoking status and
medical irradiation exposure (53). A prospective UK Biobank
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cohort study involving more than 500,000 participants with ages
ranging from 38 to 73 years at enrollment (2006–2010) revealed
that tea drinking showed significantly negative correlation to
cancer mortality in both male and female (54).

Anticarcinogenic mechanism of
tea catechins

Inhibition of cancer cell proliferation
and growth

Major components of green tea polyphenols (GTPs) are
catechins which include at least eight compounds, i.e., EC, ECG,
EGC, EGCG, (+)-catechin-3-gallate (CG), (+)-gallocatechin-3-
gallate (GCG), (+)-gallocatechin (GC), and (+)-catechin (GC).
The content of EGCG accounts for more than 40% of total
content of catechins and so it is the most abundant one (8–
10). The research on anticarcinogenic activity of catechins has
started since the 1980s (55). EGCG showed a dose-dependent
inhibitory effect on human papillomavirus type 16 (HPV-16)
induced cervical cancer cell CaSki, in which the inhibitory dose
(ID) was 35 µM approximately. Cell cycles were arrested at
the G1 phase when incubated with 35 µM EGCG and EGCG-
induced apoptosis was occurred after incubation at 100 µM
EGCG for 24 h (56). When non-small cell lung cancer A549 cells
were incubated with catechin at 600 µmol/L for 24 h, inhibition

rate of the cell proliferation was 19.76% (57). The inhibitory
effects of catechins on proliferation of cancer cells depend on
the components of catechins and the types of cancer cells. For
the HSC-2 carcinoma cells, ECG, CG, and EGCG were grouped
as highly toxic, EGC as moderately toxic, and C and EC as least
toxic. For the HGF-2 fibroblasts, ECG and CG were grouped as
highly toxic, EGCG as moderately toxic, and EGC, C, and EC as
least toxic (58).

The mechanism inhibiting cancer cell proliferation involves
in several aspects, such as cancer cell growth arrest and cancer
cell death (Figure 1). Catechin inhibits A549 cells by regulating
its cell cycle arrest, increasing the expressions of p21 and p27 and
inhibiting the expressions of p-AKT (phosphorylated protein
kinase B) and cyclin E1 in a dose-dependent manner in the
cancer cells, which also contributed to the suppression of cancer
cell proliferation (57). EGCG can trigger cell growth arrest
pathways at the G1 stage of cell cycle by regulating p27/KIP1,
p21/WAF1/CIP1, cdk4, cdk6, and cyclin D1 (58, 59). Catechin
pyrogallol inhibits G2-M transition of human lung cancer cells
in cell cycling, resulting in tumor growth suppression (60). In
BC T47D cell line, catechin activates the phosphorylation of p38
and JNK/SAPK, and the former suppresses the phosphorylation
of cell division control protein 2 (CDC2) and regulates the
expression of cyclin dependent kinase (CDK), cyclin A and
cyclin B1 proteins, leading to G2 arrest (61). EGCG inhibited
the proliferation of human lung cancer cells through targeting
the epidermal growth factor receptor (EGFR) signaling pathway

FIGURE 1

Summary of the target of tea catechins inhibiting cancer cell proliferation and growth. This is mainly achieved through four processes: (A) cell
cycle arrest; (B) cell apoptosis; (C) cell necrosis; and (D) cell autophagy. Blue arrows indicate downregulation and red arrows indicate
upregulation.
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(62). EGCG displays anticarcinogenic effects in human BTC cell
lines by activating caspase and inducing cell arrest in the sub-G1
phase in cell cycling (63).

Catechins anticarcinogenic effects by inducing apoptosis
of various types of tumor cells. EGCG inhibited the growth
and induced apoptosis (programmed cell death) of human
stomach cancer cell line KATO III (64). EGCG triggers the Fas-
mediated apoptosis in LNCaP cells by reducing Fas activity,
presumably on the cell surface (65). EGCG induces apoptosis in
human prostate cancer cells via changing nuclear morphology
and DNA fragmentation (66). The EGCG-induced apoptosis
and inhibition of EGCG-mediated Bcl2-associated x protein
(Bax) expression were partially blocked by pre-treatment with
PD169316 [a p38 mitogen-activated protein kinase (MAPK)
inhibitor] (67). Similarly, the EGCG-induced apoptosis, and
inhibition of EGCG-mediated expression of p-p38 alpha MAPK
and Bax were partially blocked by pre-treatment with SHP-
1 inhibitor NSC87877. Therefore, it is considered that EGCG
induced apoptosis in NB4 cells via the SHP-1-p38 alpha MAPK-
Bax cascade (68). EGCG promoted the growth inhibition and
apoptosis of nasopharyngeal carcinoma (NPC) cell lines CNE-
2 and 5-8F through inhibition of the SIRT1-p53 signaling
pathway (69). EGCG induced inhibition of growth migration,
invasion and apoptosis of human osteosarcoma OS cells
through regulating the Wnt/beta-catenin pathway (70). Copper
dynamics and mobilization played an important role in the
EGCG-induced cancer cell apoptosis through regulating cellular
copper transporters CTR1 and ATP7A (71).

The necrosis is thought to be a result of ATP depletion to a
level unsuitable for cell survival (72). EGCG induced necrosis-
like cell apoptosis through a caspase-independent mechanism
in C2F8, K562, and CML cell lines. Furthermore, EGCG
promoted cell death induced by imatinib (p < 0.01), leading
to increased K562 cell death and suppressing the imatinib-
resistant viability of cell line K562 (p < 0.01) (72). Green
tea extract induced necrosis of cancer cell lines K-562U-
937, Clone E6-1, and Jurkat, with half maximal inhibitory
concentrations, with IC50 = 88 ± 1.89, 98 ± 1.96, and
205 ± 2.23 µg/mL, respectively (73). Topical (+)-catechin
prevents DMBA/TPA-induced carcinoma of the skin squamous
cells by modulating antioxidants and tumor necrosis factor α

(TNF-α) in BALB/c mice (74). ECG reduced tumor viability
and induced necrosis in HT29 cells by inactivating glucose-6-
phosphate dehydrogenase and transketolase, the key pentose
phosphate pathway enzymes (75).

Combination treatment of EGCG with a low energy
ultrasound and a low strength pulsed electric field (PEF) for
72 h induced autophagy of human pancreatic cancer cell PANC-
1 (76). Autophagy and apoptosis of glioblastoma cells were
strongly induced by 500 µM EGCG treatment (77). Also,
EGCG induced autophagy by activating light chain 3 (LC3)
and generating reactive oxygen species (ROS) in tumor cells.
By enhancing autophagy, the sensitivity of cancer cells had

been improved, that’s how EGCG can improve the efficacy of
anti-cancer drugs (78).

(−)-Epigallocatechin gallate is crucial factor in governing
secretion of α-fetal protein (AFP) modulating autophagic
activity of cells HepG(2). EGCG reduced AFP secretion and
simultaneously induce AFP aggregation in human HCC
HepG(2) cells. EGCG-stimulated autophagy induces the
degradation of AFP aggregates in HepG(2) cells, and it directly
interacted with protein LC3-I, leading to exposure of the
eminent Gly-120 site of LC3-I to the other pivotal binding
partners such as promoting the synthesis of LC3-II and 1,2-
distearoyl-sn-glycero-3-phosphoethanolamine (79). EGCG
induced cisplatin-resistant oral cancer CAR cell autophagy in
a time- and concentration-dependent manner, during which
the AKT/signal transducer and activator of transcription
3 (STAT3) pathway was stimulated and the expression
of multidrug resistance 1 (MDR1) was dose-dependently
inhibited, suggesting the alteration of AKT/STAT3 signaling
and downregulation of MDR1 were partially responsible for the
EGCG-induced CAR cell autophagy and apoptosis (80). EGCG
promoted nuclear factor-erythroid 2-related factor 2 nuclear
translocation and autophagy, enhanced the sensitivity of CRC
cells to radiation and inhibited CRC cell proliferation (81).

Antioxidant and free radical scavenging

Reactive oxygen species is a crucial signaling substance
that play important roles in carcinogenesis. ROS is a group
of highly sensitive molecules containing oxygen which are
continually generated by metabolizing organelles such as
endoplasmic reticulum, peroxisomes and mitochondria (82).
ROS appears to elicit both pro-malignant and anti-malignant
effects with an abnormal spectrum of actions. Excessive
accumulation of ROS in cells activates the signaling pathways
precipitating DNA damage or inducing mutagenesis, resulting
in carcinogenicity. Regulation of ROS levels in cells seems
to be an encouraging therapeutic measure, especially for
screening anticarcinogenic effects of natural products with
strong antioxidant properties (83).

Antioxidants are substances that protect interior molecules
from oxidative damages (84). Catechins play a role as reducing
agent antioxidants in many reactions owing to their abundant
hydroxyl groups (85), and have been attracting enormous
attention as possible compounds to be used in prevention and
treatment of ROS-targeted cancers. The mechanisms underlying
the anticarcinogenic potential of catechins include chelating
trace metals, inhibiting oxidases responsible for producing the
superoxide anion, scavenging ROS, and activating antioxidant
enzymes (86, 87). During the DPPH scavenging behavior, an
electron on B-ring in catechins molecules is oxidized by DPPH
radical, which generates a catechin phenoxyl radical to be
tautomerized to a corresponding o-quinone, then comes the
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nucleophilic attack by the reactive C-8 or C-6 carbon of other
catechins molecules in a Michael-type addition reaction to a
quinone on B-ring. Both B-ring and A-ring, but not the gallate
moiety, can be the antioxidant site of catechins (87–89). The
oligomers of C, EC, and resveratrol have shown anticarcinogenic
properties on T24 human urinary bladder cancer cells due
to scavenge ROS and chelate metal ions Fe2+ and Cu2+,
the antioxidant capacity of which is significantly higher than
their preceding monomers (90). In vitro study showed catechin
increased manganese superoxide dismutase (MnSOD) gene
expression after being incubated with pheochromocytoma cells
(PC-12) for 2 days, which can lead to growth inhibition of
the cancer cells (91). EGCG can also covalently interact with
cysteinyl thiol residues in protein molecules via autoxidation,
resulting in functional modulation which may be related to the
anticancer effects (92).

There was evidence showing EGCG attenuates DNA
damage mediated by ROS in pre-malignant cells, resulting
in inhibition of tumor initiation (93). These effects were
confirmed in cells hepatocytes, lymphocytes, and colonocytes
(94, 95). Carcinogen-induced activation of NOX1/ROS is
a signaling pathway in malignant and pre-malignant cells,
and treating these cells using EGCG markedly suppressed
NOX1/ROS signaling and interrupted the carcinogenesis (96).
ROS inhibited MAPK phosphatases, which negatively regulate

MAPK, it can be speculated that decreasing ROS levels and
subsequent phosphorylation blocking of extracellular signal-
regulated ERK1/2 (kinases 1 and 2) contribute partially to
the antioxidation activity of EGCG in treating and preventing
fibrosarcoma (97).

Inhibition of metastasis of cancer cells

The invasion and metastasis of cancer cells are the main
reasons for cancer recurrence and treatment failure. The
metastatic process of cancer cells includes loss of cell adhesion,
increased cell motility and invasiveness, entry into the blood
circulation, and spread to distant tissues (98). Several in vitro cell
experiments and in vivo animal experiments have shown that
catechins, especially EGCG, could negatively regulate these steps
to effectively suppressed the metastasis and invasion of various
cancer cells (Figure 2). Specifically, they included inhibiting
metastasis by regulating proteolytic enzyme activity, inhibiting
the epithelial-mesenchymal transition (EMT) process, and
inhibiting the formation of blood vessels or lymphatic vessels.

The anti-metastatic activity of catechins has been confirmed
by in vivo experiments in mouse models. Different doses of
EGCG given by gavage administration inhibited liver and lung
metastasis of colon tumors implanted orthotopically in the

FIGURE 2

Diagram of catechins inhibiting cancer cell metastasis. Blue arrows indicate downregulation and red arrows indicate upregulation. EMT,
epithelial-mesenchymal transition process; TIMP-3, tissue inhibitor of metalloproteinase-3; MMP, matrix metalloproteinases; ECM, extracellular
matrix; uPA, urokinase plasminogen activator; VEGF, vascular endothelial growth factor.
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cecum of nude mice to different degrees, high-dose EGCG
had a potent inhibitory effect (99). A study using an in vivo
mouse model of lung metastasis showed that EGCG treatment
significantly reduced the size and number of metastatic nodules
in the lungs (100).

Matrix metalloproteinases (MMPs) degrade various protein
components in the extracellular matrix (ECM) and inhibit the
histological barrier of tumor cell invasion, which plays a key role
in tumor invasion and metastasis. Studies on renal carcinoma
cells 786-0 and ACHN (101), bladder cancer cell SW780 (102),
oral cancer cell OC2 (103), three types of NPC cancer cells (104),
hepatocellular carcinoma cell LM6 (105), fibrosarcoma cell
HT1080 (106), lung cancer cell CL1-5 (107) showed that EGCG
treatment downregulated mRNA or protein expression of
MMP-2 or MMP-9, and decreased the ability of the cancer cells
to metastasize. Tissue inhibitor of metalloproteinase-3 (TIMP-
3) downregulates MMPs activity. Abnormal epigenetic silencing
of the TIMP-3 has been associated with the carcinogenesis and
metastasis of BC. GTPs or EGCG mediated epigenetic induction
of TIMP-3 activity and played a crucial role in blocking
invasiveness and gelatinolytic activity of MMP-9 and MMP-2 in
BC cells (108). The same effect was found in polycystic ovary
syndrome (PCOS) mice treated with oolong tea (109).

Urokinase plasminogen activator (uPA) and its inhibitor
plasminogen activator inhibitor-1 (PAI-1) are also associated
with ECM degradation and are considered biomarkers for
metastasis of cancer cells. GTPs inhibited the uPA secretion and
suppressed the metastatic behavior of BC cell malondialdehyde
(MDA)-MB-231 by inhibiting activator protein-1 (AP-1) and
nuclear factor κB (NF-κB) (110), in which an EGCG derivative
3e was able to inhibit the expression of both uPA and PAI-1,
resulting in inhibition of the cancer cell metastasis (111). The
inhibitive effect of EGCG on the metastasis of prostate cancer
cell LNCaP (112) and the above-mentioned oral cancer cell OC2
(103) is also involved in the inhibition of uPA expression.

Epithelial-mesenchymal transition of cancer cells
is considered a prerequisite for the acquisition of an
invasive/migratory phenotype and subsequent metastasis.
EGCG inhibited the in vitro proliferation, migration, and
invasion of pancreatic cancer cells, and suppressed mouse
xenograft pancreatic cancer in vivo. EGCG halted the “Cadherin
switch” and suppressed the expression of mesenchymal markers
vimentin and β-catenin (113). Similarly, EGCG suppressed the
expression of vimentin in non-small cell lung cancer H1299 cells
(114), decreased TGF-β1-induced EMT in anaplastic thyroid
carcinoma 8505C cells (115), downregulated the expression
of EMT phenotypes of cancer stem cells (CSCs) (116), and
inhibited these cancer cells invasion and migration. Catechins
containing galloyl moiety, or gallated catechins (such as
EGCG, GCG, ECG, and CG) potently suppressed the EMT and
migration of ovarian cancer cell ES-2 induced by TGF-β (117,
118), indicating they play a role in inhibiting the metastasis of
cancer cells by regulating EMT markers and inhibiting EMT.

In addition to the molecular phenotypes of EMT mentioned
above, cell motility and cell stiffness are considered to be the
mechanical phenotypes of EMT and are also closely related to
the metastatic activity of cancer cells. Lower stiffness of cancer
cells is connected with stronger metastatic potential in many
types of cancers. EGCG and green tea extract increased the
mean level of Young’s modulus of cancer cells, resulting in
increased cell hardness and stiffness and enhanced inhibition
of cell motility (118, 119), leading to the suppression of cancer
cell metastasis.

Cancer cell metastasis requires angiogenesis and
lymphangiogenesis, which involve hematogenous and
lymphatic metastasis of cancer cells, respectively. The inhibitory
effect of EGCG in synergy with TNF-related apoptosis-inducing
ligand (TRAIL) on migration and invasion of prostate cancer
LNCaP cells was achieved by inhibiting the protein expression
of vascular endothelial growth factor (VEGF) and angiopoietin
1 and 2 (112). VEGF-D is one of the major lymphangiogenic
secretory factors, and it induced lymphatic invasion and
metastatic spread of cancer cells (119). EGCG treatment
reduced VEGF-D secretion in inflammatory breast cancer cells
SUM-149 and SUM-190, resulting in reduction of lymphatic
endothelial cell migration and tube formation, leading to
inhibition of metastasis of cancer cells (120). EGCG has also
been shown to reduce the expression of vascular endothelial
growth factor receptor 2 (VEGFR2) in CRC cell line RKO
(121). Interleukin IL-6 and IL-8 are confirmed to promote
angiogenesis in tumor tissues, and treatment of tumor-bearing
mice using EGCG suppressed the expression of IL-6 and IL-8
in a concentration-dependent manner, suggesting that IL-6 and
IL-8 might mediate the anti-metastatic activity of EGCG (122).
EGCG inhibited the angiogenesis of human thyroid cancer
xenograft tumors in nude mice (123).

Regulation of immunity

The immune response to abnormal cells in the body
is crucial for maintaining homeostasis. The development of
cancer usually triggers a series of immune responses. Tumors
can escape immune system attack and migrate by regulating
the production of cytokines. Therefore, bioactive substances
that target the immune system often have unexpected effects
on cancer control, among which catechins are included.
Meanwhile, catechins have a significant regulatory effect on
multiple sites in the immune system, which has an innate
advantage in tumor immunotherapy (Figure 3).

The attack on immune checkpoint is one of the main
strategies of tumor cells to escape. The immune checkpoint
consists of programmed death factor 1 (PD-1), a receptor
molecule secreted by T-cells, and programmed death factor
ligand (PD-L1) secreted by tumor cells on the cell membrane.
The binding of PD-1/PD-L1 can inhibit the activity of cytotoxic
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FIGURE 3

Schematic diagram of catechins regulating immunity. (A) Increase immune checkpoint function; (B) interaction with TLR-4; (C) ameliorate TME;
(D,E) regulates immune cell response; (F) regulated immune cytokines. TLR-4, toll-like receptor 4; TME, tumor microenvironment; DCs,
dendritic cells; CAA, cancer-associated adipocyte; MDSCs, myeloid-derived suppressor cells. Blue arrows indicate downregulation and red
arrows indicate upregulation.

T-cells (CTLs) and even cause T-cell failure, thus protecting
tumor cells from immune system attack (124). PD-L1 was
induced by epidermal growth factor (EGF) and interferon γ

(IFN-γ). Studies were showing that EGCG could regulate the
expression of PD-L1 by inhibiting the phosphorylation of STAT
and preventing the Janus kinase (JAK)-STAT signaling pathway
from activating the transcription factor of PD-L1/PD-L2 (125).
PD-L1 mRNA level can also be controlled through the EGFR-
Akt signaling pathway (124). IFN-γ is an important factor to
stimulate cell expression of PD-L1, so the inhibition of EGCG
on IFN-γ could effectively reduce PD-L1 (126). These effects
eventually relieve the inhibition of T-cells and improve their
attack effect on tumors (Figure 3A).

In addition to PD-1, toll-like receptor 4 (TLR-4) is also
a catechin-acting receptor molecule, which may be a target
for inhibiting chronic inflammation. Studies have shown that
20% of cancer-related deaths were directly due to TLR-induced
cancer cachexia, in which cancer cells released heat shock
proteins that acted as TLR-4 agonists in macrophages, skeletal
muscle, and fat cells, causing downstream signal transduction.
EGCG could effectively downregulate the TLR-4 signal pathway
(127). Toll interaction protein (Tollip) is a strong suppressor of
this signaling pathway and can directly interact with the ligand

IL-1R or TLR4 to inhibit the TLR-induced immune response
and negatively regulate signal transduction. Elf-1 is the blocking
protein that can inhibit Tollip expression. EGCG achieved
the inhibitory regulation of TLR by increasing the level of
cGMP in PP2A/cGMP pathway in macrophages to inhibit Elf-1
expression (128). It has also been found that EGCG could inhibit
TLR-4/MyD88-mediated NF-κB activation by downregulating
both mRNA and protein levels of MyD88 (129) (Figure 3B).

There is an abnormal tumor microenvironment (TME)
in cancer patients that causes different immune responses.
This low-grade inflammatory state, activated under long-term,
low-dose stimulation of specific antigens, often leads to the
depletion of immune cells and induces immune tolerance of
cancer cells (130). Therefore, some inflammatory factors such as
interleukin-2 (IL-2), interleukin-6 (IL-6), and PGE2 are needed
to initiate immunosuppression, antagonize this low-grade
inflammation and improve the attack of lymphocytes on tumors.
EGCG could effectively inhibit inflammation by interrupting the
binding of pro-inflammatory factors to receptors and blocking
signal transduction such as NF-κB and STAT (131). And the
cancer-associated adipocyte (CAA)-like phenotype generated by
cells in human triple-negative breast cancer (TNBC) in response
to TME. CAA induced cells to secrete many pro-inflammatory
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factors including CCL2, CCL5, IL-1β, IL-6, and some immune
modulators such as COX-2, HIF-1α, VEGF, and PD-L1, which
caused carcinogenic through pro-inflammatory effects. EGCG
could effectively ameliorate CAA by inhibiting the expression
of CAA-related genes and blocking the activation of Smad2 and
NF-κB, to alleviate these pro-inflammatory factors and further
induces cancer progression (132) (Figure 3C).

Another target of catechins is to regulate immune cell
response. First, dendritic cells (DCs), the largest antigen-
presenting cells in the immune system, recognize tumor-
specific antigens and present them to T-cells (Figure 3D).
T-cells initiate a series of responses, typically a Th1 response.
Th1-polarized CD4+ T-cells secreted IL-2, IFN-γ, and TNF-
α. Activated by IFN-γ and TLRs, macrophages transformed
into M1-like macrophages, which can secrete ROS, TNF-
α, IL-12, and Nitric oxide (NO) to kill the abnormal cells.
At the same time, the cytokines secreted by CD4+ T could
further enhance the cytotoxic activity of macrophages and
the antigen presentation function of DCs. However, in the
TME, Th1 responses were converted to Th2 responses. In
this case, Th2 cells secreted IL-4 and IL-10, meanwhile, TGF-
β was expressed in large quantities. Simultaneously Foxp3+
B regulatory (Breg) cells and T regulatory (Treg) cells were
recruited to initiate humoral immunity. At the same time, m2-
polarized macrophages participated in the response to secrete
VEGF, IL-10, and TGF-β, which promotes angiogenesis and
migration of cancer cells (133, 134). A clinical grade catechin
mixture, Polyphenon E, containing about 50% EGCG interacts
with the 67 kD laminin receptor (67LR) and promotes the
release of granulocyte colony-stimulating factor (G-CSF). The
G-CSF then induces the molecular and phenotypic maturation
of myeloid-derived suppressor cells (MDSCs) and suppresses
their migratory capacity, leading to markedly suppression of
their immunosuppressive functions. It was considered that the
Polyphenon E could potentially be beneficial to cancer patients
through antagonizing cells which interfere with immunotherapy
induced antitumor immune responses (135).

(−)-Epigallocatechin gallate plays an efficient regulatory
role in this process (Figures 3D,F). EGCG to downregulate the
expression of genes necessary for DC presenting antigen, induce
the secretion of immunosuppressive factor IL-10, prevent cell
surface molecules from binding to receptors, inhibit the low-
grade inflammation and prevent the consumption of immune
cells (134). Furthermore, EGCG could upregulate the G-CSF
secreted by mononuclear MDSCs, a cytokine stimulating the
directed proliferation and differentiation of hematopoietic stem
cells (133). It also significantly inhibited the accumulation of
MDSCs, leading to restoration of the IFN-γ level inhibited
by MDSCs, enhancement the activity of CD8+ T-cells, and
improvement of the ratio of CD4(+) to CD8(+) T-cells
(136), which is beneficial to the improvement of the immune
system’s attack on tumor cells. In addition, a phytochemical
mixture including EGCG could exert anti-tumor activity by

repolarization of m2-polarized macrophages and induce the
production of IL12, which could recruit CTLs and natural
killer cells (NK) inside tumor cells (137). The combination of
EGCG and vitamin A/E increased the adaptive B-cell activity by
enhancing adaptive antibody responses and improving CD4(+)
and CD8(+) T-cell responses, in which TNF, Il-6, and IL-17
were decreased but IL-15 increased (138). There were studies
revealing that EGCG could induce lymphocyte migration in the
presence of macrophages, suggesting that the anticancer effect
of EGCG depended on the existence of the immune system to a
certain extent (139).

It is shown that catechins could act on most of the pathways
related to immune regulation (140), among which the star
molecules NF-κB and STATS were the targeting signaling
pathway of EGCG. EGCG contributes to immunosuppression
by inhibiting NF-κB and STATS phosphorylation activation
and blocking nuclear translocation to inhibit downstream
gene expression (129, 136, 141). EGCG targeting Arg-
1/iNOS/NOX2/NF-κB/STAT3 signaling pathway has also been
demonstrated in detail, and its activation can enhance immune
function (136). Molecular docking experiments proved that
catechin has high affinity hydrogen binding ability with NF-
κB p52 and TNF-α active site, but has no H-binding effect
with anti-inflammatory factor IL 10 (142). Interestingly, EGCG
may inhibit the ERK/JUK pathway rather than the p38 MAPK
pathway by inhibiting the AP-1 in stimulated human T-cells.
EGCG selectively activates signaling pathways (143).

In addition, EGCG also regulated many immune cytokines.
For example, TNF-α, an important pro-inflammatory factor in
the body, which activates endogenous inflammatory cascades.
EGCG antagonized inflammation induced by TNF-α by
suppressing the expression of pro-inflammatory cytokines
IL-12, IL-6, IL-1β, IL-1α, inflammatory enzymes COX-2
and iNOS, and stimulating anti-inflammatory cytokines IL-
10 and IL-4 expression (144). It has also been proved
that tea polyphenols could reduce the destruction of the
keratinocyte tight junction barrier induced by TNF-α (145).
Tea catechins could significantly reduce the expression of
TNF-α (142, 143, 146). Chemokines are also a kind of
cytokines related to immune cell metastasis. After receiving the
antigen information, the immune cells with a specific response
will make directional movement along the concentration
gradient of the chemical stimulus, which is the chemotaxis of
immune cells, and the chemical stimulus that plays locating
role is called chemokine. EGCG reduced the migration
of neutrophils induced by the chemokine IL-8, inhibited
neutrophils recruitment at inflammatory sites, and reduced
the expression of pro-inflammatory factors such as MCP-1
(chemokine monocyte chemotactic protein 1) and its receptor
(CCR2) (147). Other catechin components have been shown
to have immunosuppressive activity. EC could inhibit cell
proliferation by inhibiting the AMPK pathway, reducing
Akt phosphorylation and mechanistic target of rapamycin
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(mTOR) expression (148). Like EGCG, EC reduced NF-κB
p65 phosphorylation and blocked nuclear translocation, as well
as inhibitor levels. By lowering the phosphorylation levels of
MAPK members such as P38, JNK, and ERK1/2, EC blocked the
signaling pathway (149). EC could inhibit the upregulation of
TLR4 and activation of NOX to inhibit downstream events and
achieve a preventive effect (150). Immunoactivity of ECG has
also been reported, suggesting that ECG inhibited lymphocyte
proliferation in an apoptosis-specific manner (151).

In general, catechins maintain the balance of the immune
system and have a significant antagonistic effect against most
abnormal responses caused by tumors. Catechins have bilateral
regulatory effects, i.e., inhibiting the overreaction of the immune
system and restoring the immune tolerance caused by tumor
cells, in which secretion of cytokines is regulated by their
targeting key signaling pathways to maintain a stable and
orderly operation of the intracellular immune system.

Interaction with anticancer drugs

The advent of a variety of anticancer drugs can be
beneficial to controlling cancers to a certain extent, resulting
in an improvement in life quality for the patients. However,
problems in clinical chemotherapy still exist, such as low
bioavailability, cell resistance, and strong toxic and side effects,
which greatly limit the use of the drugs. Studies were showing
that catechins would play a role in alleviating these side
effects induced by chemotherapy, owing to their diversely
biological activities including antagonistic effects on oxidative
stress. Due to their effects on the important signaling pathways
in vivo, catechins are often used as sensitizing agents in
combination with drugs. The multiple phenolic hydroxyl groups
in catechins can bind with various proteins through hydrogen
and ionic bonds, regulating the functions of the proteins.
The combination of anti-cancer drugs with catechins, whether
before or after drug administration, would alleviate the toxic
and side effects induced by the drugs to a certain extent,
resulting in apoptosis acceleration of cancer cells and efficacy
enhancement of the drugs.

Interaction with cisplatin
Cisplatin is a platiniferous anticancer drug, which

induces apoptosis of cancer cells by inhibiting their mitosis
via binding directly to DNA and interfering with DNA
replication and repair processes. But this is accompanied by
extensive drug toxicity.

The combination of cisplatin with EGCG will improve the
chemotherapeutic sensitivity of cells to the drug, leading to a
reduction of cisplatin dosage. Copper transporter 1 (CTR1) is a
transporter related to the intake of cisplatin. EGCG improved
the sensitivity of cancer cells to cisplatin by stimulating the
expression of CTR1. Specifically, EGCG inhibited ERK1/2,

accompanied by enhancement of expression Nuclear enriched
abundant transcript 1 (NEAT1) and CTR1 through ROS
initiation (152). NEAT1 is a key factor inducing CSCs, and it
causes cellular resistance to cisplatin. CTR1 and NETA1 are
mutually regulated. EGCG-induced upregulation of expression
in NEAT1 would increase CTR1 expression (153), which in
turn inhibited CSCs regulated by NEAT1, leading to the reverse
stemness induced by NEAT1 (154). Also, EGCG inhibited the
CSCs phenotypes and reduced the resistance of cancer cells to
drugs via increasing the expression of miRNA 485, an upstream
gene for CD44 in cisplatin-resistant cells (155).

(−)-Epigallocatechin gallate is an inhibitor of some
enzymes, including 5′-3′ structure-specific endonuclease
excision repair cross-complementation group 1/xeroderma
pigmentosum group F (ERCC1/XPF). ERCC1/XPF is an
enzyme involved in repairing DNA damage induced by
cisplatin. EGCG enhanced the sensitivity of cancer cells to
cisplatin via targeting ERCC1/XPF, leading to the inhibition of
DNA repair of the cancer cells (156).

(−)-Epigallocatechin gallate promoted cisplatin-induced
cancer cell apoptosis and enhanced the therapeutic effect
of cisplatin. Specifically, EGCG played the synergistic action
through upregulation of the p19Arf-p53-p21Cip1 signaling
pathway that plays a crucial role in regulating cell proliferation.
Murine double minute 2 (MDM2) is a tumor suppressor
which promotes ubiquitination and degradation of p53 whose
expression is activated via inhibition of MDM2.

P19 inhibits MDM2 activity by binding to it. Compared
with cisplatin alone, the combination of cisplatin with EGCG
increased the expression of P19, P53, and P21 at both mRNA
and protein levels, leading to cell cycle arrest in G1 phase and
promoting apoptosis of cancer cells (157). Furthermore, EGCG-
induced inactivation of NF-κB could prevent migration and
self-renewal of cancer cells by coordinating the cell localization
of NF-κB p65 and the transcriptional level of TWIST 1 (158).

(−)-Epigallocatechin gallate, with its excellent anti-
inflammatory and antioxidant activity, can effectively
ameliorate the toxic and side effects of cisplatin. The oral
administration of EGCG could not only resist cisplatin-induced
inflammation, reduce the production of apoptotic proteins
and inhibit cell damage, but also improve the toxic effects of
cisplatin-induced oxidative and nitrosative stress by enhancing
the total antioxidant capacity (159, 160). EGCG downregulated
NF-κB and upregulated nuclear factor-erythroid related
factor 2 (Nrf2) and heme oxygenase 1 (HO-1), resulting in
enhancement of anti-inflammatory effect. Meanwhile, EGCG
itself could increase the activity of Caspase3/9, downregulate
MDR1, regulate the AKT/STAT signaling pathway, and induce
apoptosis and autophagy, which increases the cisplatin drug
potency (80). When cisplatin was used with EGCG, acidic
vesicular organelles and intracellular microtubule-associated
protein 1 light chain 3 (LC3-II) in the cytoplasm were
accumulated, accompanying an increase in autophagosomes,

Frontiers in Nutrition 11 frontiersin.org

https://doi.org/10.3389/fnut.2022.1060783
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-09-1060783 November 29, 2022 Time: 14:59 # 12

Li et al. 10.3389/fnut.2022.1060783

indicating that EGCG synergically inhibited cell proliferation
and induced cell apoptosis by increasing autophagy (161).

Interaction with doxorubicin
Doxorubicin (DOX) is a widely used antibiotic drug that

can kill multiple tumors, but it has serious toxic effects on
healthy cells, such as DOX-induced ROS oxidative stress.
EGCG scavenged ROS by improving the activity of antioxidant
enzymes such as MnSOD, suppressing the depletion of the
antioxidant glutathione and inhibiting MDA level, resulting
in increased vitality of the healthy cells exposed to DOX
(162). Administration of EGCG after DOX treatment could
enhance the expression of EGFR family ErbB2 to promote cell
growth, but reduce the activity of caspase 12 and calpain 2,
downregulating the expression of NF-κB p65 subunit and the
downstream genes in the apoptosis pathway, during which the
anticancer efficacy of DOX was increased and its IC50 on cancer
cells decreased (162). EGCG administration prior to DOX could
effectively reduce pro-inflammatory factors TNF-α, NF-Kappa
B, and iNOS induced by DOX (163).

In addition, EGCG can also reduce cancer cell resistance to
DOX. Studies have shown that EGCG significantly suppressed
the p-AKT and ERK by downregulating the expression of
downstream STAT, making the cells more sensitive to the
growth inhibition and apoptosis induced by DOX (164).
Meanwhile, EGCG could inhibit DOX-induced overexpression
of P-gp (165), an ABC transporter acting as an energy-
dependent “drug pump” that excludes the drugs from the
cells, reducing intracellular drug concentrations and resulting
in drug resistance. EGCG could maintain the drug level in
cancer cells by binding to P-gp (166) and promote apoptosis by
reducing DOX-induced pro-survival autophagy (167). Further
studies showed that EGCG interacted with DOX by reducing
LncRNA SOX2OT variant 7, inactivating the Notch3/DLL3
signaling pathway targeting this RNA, leading to a reduction
in the stemness of cancer cells and inhibition of their drug
resistance (168).

Interaction with erlotinib
Erlotinib is an EGFR tyrosine kinase inhibitor that inhibits

EGFR phosphorylation. Studies have shown that EGFR kinase
domain mutations are happened in cancer cells, which
induces ligand-independent phosphorylation and activates the
downstream uncontrolled signal transmission. Both Erlotinib
and EGCG could bind to the ATP binding pocket of EGFR,
resulting in inhibition of the phosphorylation (169) and a
synergistic effect with Erlotinib. Erlotinib stabilizes EGF on
the plasmalemma, however, EGCG induced internalization and
ubiquitination of EGF, resulting in disruption of EGFR signal
transduction (170).

(−)-Epigallocatechin gallate synergistically inhibited
Erlotinib-induced inhibition of cell cycle suppressors p21 and
p27, leading to enhancement of the cell cycle arrest, during

which the expression of apoptosis regulatory protein Bim was
not affected. Protein p53 is a factor influencing the EGCG
and Erlotinib induced growth inhibition by mediating the
NF-κB signaling pathway and its downstream transcription
target B-cell lymphoma-2 (Bcl-2). A combination of EGCG and
Erlotinib could improve the expression of p53 (171). Further
study showed that EGCG and its combination with Erlotinib
had no significant effects on the mRNA expression of Bcl-2, p27,
p21, or Bim, suggesting they are post-transcriptional regulation
(172). The two drugs’ combination facilitated normal cell
proliferation and suppressed tumor growth rate (173). Clinical
trials on phase IB patients showed that the combination of GTPs
and Erlotinib showed a high rate of pathological reaction and
good cancer-free survival (CFS), suggesting that the adjuvant
therapy of EGCG has a certain clinical promotion value (174).

Interaction with docetaxel
Docetaxel (DOC), a derivative of Taxanes, is a class of

anticancer drugs targeting hormonal tumors. The hormonal
tumors, such as prostate and BC, are largely caused by the
uncontrolled binding of hormones to corresponding receptors.
DOC produces aromatase inhibitors, leading to changes in
transcriptional activity and nuclear localization of androgen
receptors, and tumor inhibition. EGCG strengthened the
inhibitive effect of DOC on the PISK/Akt signaling pathway,
the transduction and activation of STAT3, and the expression
of MDR protein, leading to inhibition of cancer cell invasion
and metastasis (175). EGCG and DOC bound to different
locations of tubulin, showing synergistically suppressive effects
on the targeted tubulin, causing cell cycle arrest (176). Low-dose
metronomic (LDM) chemotherapy showed that EGCG targeted
the angiogenesis of normal cells and reduced the side effects
of DOC (177). Furthermore, a combination of DOC in the
EGCG significantly improved the absorption and transport of
the anticancer drug DOC (178).

Interaction with irinotecan
Irinotecan (IRN) is a topoisomerase I inhibitor that

inhibits tumor progression by targeting topoisomerase to
damage DNA structure. The combination of IRN with EGCG
could simultaneously improve the bioavailability of IRN and
reduce its side effects. EGCG collaborated with IRN to cause
more extensive DNA damage to arrest cancer cell cycle in
the S/G2 phase and promote autophagy (179). Furthermore,
EGCG enhanced the bioavailability of IRN by inhibiting the
ATPase activity of drug pump P-gp, resulting in significant
suppression of the bile efflux of IRN and SN-38, the active
metabolite of IRN that prevented the drug efflux into the
biliary elimination, leading to significantly prolong the drug’s
half-life in plasma (180). Due to the antioxidant properties
of catechins, the combination could effectively reduce IRN-
induced toxicity, including ameliorating symptoms such as
diarrhea and leukopenia, along with reduction of adenoma
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and non-alcoholic fatty liver disease (NAFLD) (181). EGCG
could also reduce IRN-induced inflammatory factors and inhibit
ROS production, and restore MMP-2 and MMP-9 reduction
induced by IRN, protecting the oral mucosa against deleterious
effects (182).

Interaction with daunorubicin
Daunorubicin (DNR) is a powerful anticancer drug, but

it has serious cardiotoxicity. Carbonyl reductase 1 (CBR1)
metabolizes DNR into Daunorubicinol, which reduces the
anticancer activity of DNR and increases its cardiotoxicity.
Catechins, especially EGCG, inhibited the catalytic activity of
CBR1 by directly binding to its active site, reducing the side
effects of DNR (183). The transport of DNR is P-gp dependent,
and catechins would interact with the allosteric site of P-gp
to improve its holistic function and transport efficiency, and
ultimately inhibited DNR outflow, improving the intracellular
DNR level (184). EGCG could bind to 67LR and activate
PP2A through EGCG/67LR/PKA/PP2A pathway, leading to the
dephosphorylation of subunit MYPT1 of myosin phosphatase,
making THP-1 leukemic cells more sensitive to DNR and
promoting apoptosis (185).

Interaction with gemcitabine
Gemcitabine is a cytosine nucleoside derivative, which is

activated by deoxycytosine kinase and metabolized by cytosine
nucleoside deaminase after entering the body. It is a drug
that directly acts on genes through the incorporation of
major metabolites into DNA and influences the G1/S phase.
EGCG played a synergistic role with Gemcitabine through
the inhibition of signaling pathways. EGCG decreased the
phosphorylation levels of signal transduction factors such as
AKT, ERK, JNK, etc., which weakened cell stress response to
stimulation caused by treatment and improved cell sensitivity,
leading to an increase in drug effects (186). STAT3 seemed to be
a key acting site that enhanced the inhibition of cell viability by
EGCG, while Gemcitabine could inhibit the target gene of STAT,
showing a synergistic effect with EGCG (164, 187).

Epithelial-mesenchymal transition is a marker of cancer
metastasis. The combination of Gemcitabine with EGCG
inhibited the growth, invasion, and migration of pancreatic
cancer cells partially via the suppression of EMT and Akt
pathway, resulting in enhancement of Gemcitabine efficacy
(114). Tumor suppressor factors such as DAPK2 and decoy
receptor of RANK ligand OPG were upregulated by EGCG. The
increased expression of OPG suppressed the activation of NF-
κB induced by the RANK receptor, making cells more prone to
apoptosis (188).

Interaction with 5-fluorouracil
The 5-fluorouracil (5-FU) is a thymidylate synthase

inhibitor that inhibits the methylation of deoxyuridine acid
(dUMP) into deoxythymidylate (dTMP), affecting DNA

synthesis. Green tea extract or EGCG could improve the
half-life of 5-FU (189), enhancing its growth inhibition, and
reducing the viability and migration of cancer cells. Moreover,
studies have shown that EGCG increased the number of cells in
G2/M phase, while 5-FU blocked the cell cycle in the S phase
(190). On the other hand, EGCG could enhance 5-FU resistance
by inhibiting the expression of P-GP and receptor VEGF
(191). Furthermore, EGCG targeted the ATP binding domain
of glucose-regulated protein 78 (GRP78), preventing it from
exercising its protective function and increasing the sensitivity
of cells to drugs (192). Inhibition of GRP78 activates the NF-κB
pathway, leading to a series of downstream responses, for
example, which increase mir-155-5p targeted MDR1 expression
which suppresses efflux of 5-FU, leading to the accumulation
of 5-FU in cancer cells, activation of Caspase-3 and PARP, and
decrease in Bcl-2 but increase in Bad, which in turn causes the
cancer cells apoptosis (193).

Interaction with sulindac
Sulindac is a non-steroidal anti-inflammatory drug, which

can inhibit inflammatory factors in vivo. EGCG could
prevent lipid peroxidation, downregulate the expression of
iNOS, and effectively reduce intracellular oxidative damage.
When combined with Sulindac, EGCG improved the anti-
inflammatory activity of Sulindac by increasing the activity of
caspase-3, and so induced cell apoptosis, promoting therapeutic
effects of Sulindac (194). The combination of Sulindac and
green tea catechins upregulated RARα1, but downregulated
MAP3KI4 (NF-κB induced kinase), death-related protein kinase
I (DAPK1), and tyrosine protein kinase (SKY), inhibiting the
NF-κB pathway and blocking important signaling in cancer
development, though GADD153, a key transcription factor
inducing apoptosis, and P21, a protein blocking cell cycle and
inhibiting proliferation, were not significantly upregulated when
the two drugs were used individually (195).

Aberrant crypt foci (ACF) is a new precancerous lesion that
occurs in the early stage of CRC. The combination of EGCG and
Sulindac could synergistically promote cancer cell apoptosis by
inhibiting the formation of ACF and alleviating the side effects
caused by Sulindac (196).

Interaction with gefitinib
Gefitinib is another tyrosine kinase inhibitor, and its

combination with EGCG could enhance the inhibition of
tumor migration and invasion by decreasing enzymatic
activity of tyrosine kinase and the expression of MMP-
2, and suppressing the phosphorylation of ERK, JNK, p38,
and AKT. Most importantly, EGCG administration inhibited
the phosphorylation of EGFR, making the cancer cells
more sensitive to Gefitinib (197). An epigallocatechin gallate
derivative (EGCGD) isolated from Anhua dark tea presented
cancer cells from resistance to Gefitinib through suppressing
EMT and PI3K/mTOR signal pathway (198).
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Interaction with temozolomide
Temozolomide (TMZ) is a DNA-methylating drug. O-6-

methylguanine DNA-methyltransferase (MGMT) is the key
factor for cell resistance, thus maintaining a low level of
MGMT expression is more conducive to the efficacy of TMZ.
EGCG could inhibit the expression of MGMT. EGCG alleviated
the resistance of MGMT to TMZ and then enhanced TMZ
cytotoxicity to cancer cells by inhibiting β-catenin transfer into
the nucleus and blocking the expression of downstream genes
(199). EGCG degraded PARP by downregulating P-Akt, Bcl-2,
and P-gp, suppressing the vitality of drug-resistant cancer cells
and decreasing the stemness of tumor cells, resulting in more
sensitivity of cancer cells to TMZ and apoptosis (200).

Glucose-regulated protein 78 plays an important role in
protein folding and assembly. Cell surface GRP78 is found
to act as a receptor or co-receptor for numerous ligands,
promoting signaling cascades relating to tumor cell survival
and proliferation. EGCG could directly act on the ATP binding
domain of GRP78, decreasing the protective function of GRP78,
and making cancer cells more sensitive to TMZ (192). The
combination of TMZ with EGCG increased the therapeutic
efficacy of TMZ in orthotopic mouse glioblastoma models by
inhibiting the expression level of GRP78 (201).

Synergistic effects of EGCG were found in many other
anticancer drugs. EGCG could significantly enhance the
inhibitory effect of Safingol (a competitive inhibitor of SPHK1)
on CLL cancer cells. EGCG/SPHK1 inhibitor combinations
would be a novel therapeutic strategy for CLL patients with 67LR
and SPHK1 overexpression (202). Tegafur, a chemotherapy
drug for gastrointestinal tumors, reduces the expression of α-
defensin, an important antibacterial peptide in the intestinal
innate immune system, and induces the production of ROS.
EGCG, when used with Tegafur, inhibited the production of
ROS induced by Tegafur and prevented α-defensin expression
decline caused by Tegafur, reducing the side effects of
drugs (203).

Dacarbazine is an anti-tumor drug that induces cancer cell
growth arrest or apoptosis by causing nucleic acid methylation
or direct DNA damage. Combination of EGCG and Dacarbazine
enhanced the efficacy of Dacarbazine by inhibiting activities of
FAK and MMP-9, as well as proliferation and/or metastasis of
cancer cells, in which the effective dosage of Dacarbazine was
reduced, resulting in less potential cytotoxicity to the healthy
cells (204).

Much attention has been paid to the clinical adjuvant
therapy of catechins (40). For EGCG, administered after
Sunitinib, showed synergistic effects by acting on the IRS/MAPK
pathway, in which the effects of Sunitinib on inhibition of
proliferation and VEGF secretion were increased. In vivo
experiments showed that EGCG injection at the 4th hour after
Sunitinib administration reduced angiogenesis and inhibited
tumor growth, accompanying significant downregulation
of IRS-1 levels.

Regulation of signaling pathways

The signaling pathway is the core system in which cells
regulate various physiological processes and respond to external
stimuli. Normally, cells have a complete set of regulatory
mechanisms for initiating and/or inhibiting signal reception,
cascade transmission, and ultimately gene expression, but in
cancer cells, the signaling pathway is usually overactivated, and
the balance is broken. Catechins played an anticarcinogenic role
by promoting and/or inhibiting signal transmission through the
targeted regulation of multiple links in the signal pathways.

(−)-Epigallocatechin gallate regulates signaling pathways
by interacting with membrane receptors. Signal transduction
usually begins when an external stimulus activates a receptor
on the cell membrane. Membrane target protein 67LR, an
important membrane glycoprotein to communicate with the
ECM, is widely expressed in tumor cells, which in turn
can affect tumor metastasis and regulate many other signal
pathways. EGCG matched to 67LR at residues 161–170 (205,
206) and bound to 67LR via lipid rafts (207), blocking
the activation of downstream pathways by preventing the
combination of the receptors and ligands. In the PKA/PP2A
pathway, EGCG binding to 67LR induced the activation of
PKA, which dephosphorylates related proteins such as the
tumor suppressor Merlin and inhibited the proliferation of
cancer cells (208) (Figure 4A). VEGF receptor is a high affinity
receptor binding specifically to VEGF. Inactivation of the VEGF
signaling pathway suppresses angiogenesis, a common strategy
for inhibiting carcinogenesis. EGCG significantly inhibited the
expression of VEGF and reduced VEGF receptors (209).

(−)-Epigallocatechin gallate regulates signaling pathways by
inhibiting phosphorylation of signaling molecules (Figures 4B–
D). STAT is a transcription factor family that combines
with DNA to initiate downstream genes transcript. STAT3
suppresses anti-tumor immune responses and promotes the
proliferation and migration of cancer cells. EGCG inhibited
STAT3 phosphorylation by blocking JAK2 phosphorylation
(210) (Figure 4B). The mTOR is a serine/threonine kinase
belonging to the PI3K related kinase (PIKK) family, which
can regulate cell growth and proliferation (211). EGCG
blocked AKT phosphorylation at Ser473, and also acted as
an ATP competition inhibitor competing for ATP binding
sites of PI3K and mTOR to block the mTOR signal pathway
(212) (Figure 4C). MAPK signaling pathway is a core
pathway in the cellular regulatory network. EGCG inhibited
the MAPK signaling by competing for the phosphorylation
sites of downstream proteins (213). Wnt (Wingless-type mice
mammary tumor virus integration site family) pathway is
a highly conserved signal pathway in species evolution,
which plays an important role in early embryo development,
organogenesis, and tissue regeneration. The key factor in this
pathway is β-catenin, a class of transcription factors that activate
the cell division related gene expression. β-catenin binds to the
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FIGURE 4

The target of catechins in the signaling pathway. (A) 67LR/PKA/PP2A signal pathway; (B) JAK/STAT signal pathway; (C) mTOR/AKT signal
pathway; (D) Wnt/β-Catenin signal pathway. The green arrow represents the signal transmission, red arrow represents inhibition.

FIGURE 5

The target of catechins in the signaling pathway. (A) Sonic hedgehog (SHH) pathway signal pathway; (B) Nrf2 signal pathway; (C) NF-κB signal
pathway. The green arrow represents the signal transmission, red arrow represents inhibition.

destruction complex when the Wnt ligand does not bind to
Frizzled family of proteins (FZD). CK1 and GSK3 in destruction
complex can phosphorylate β-catenin, leading to its degradation
by E3 ubiquitin ligase. When Wnt is combined with FZD,
destruction complex will be confined to the cell membrane
and cannot degrade β-catenin, resulting in accumulation of
β-catenin in the cytoplasm (214). EGCG could inhibit the
Wnt pathway by phosphorylating β-catenin and promoting its
degradation (215) (Figure 4D).

(−)-Epigallocatechin gallate suppressed some signaling
pathways by reducing the related bioactive proteins (216).
Sonic hedgehog (SHH) pathway involves in regulating cell
proliferation and differentiation. Excessive activation of SHH
leads to carcinogenesis. The downstream transcription factor
Gli1 is the key factor of the SHH pathway and it is regulated

by membrane receptors Patched (Ptc) and Smoothened (Smo).
Normally, Ptc inhibits Smo, and Gli1 binds to the protein kinase
inhibitor SUFU and is trapped in the cytoplasm. When SHH
binds to Ptc1, the inhibition of Smo is relieved and SUFU
is disconnected from Gli1. Then Gli1 will enter the nucleus
to initiate the expression of downstream genes (217). EGCG
inhibited the expression of Smo, SHH, Gli1, and Gli2 (193)
(Figure 5A).

(−)-Epigallocatechin gallate regulates some signaling
pathways by interacting with specific inhibitors in the pathway.
Nrf2 pathway involves in a variety of diseases and Kelch-like
ECH-associated protein 1 (Keap1) is its inhibitor which acts
as a bridge between Nrf2 and E3 ubiquitin ligases. When
Nrf2 is inactive, it will be degraded by ubiquitination. When
Keap1’s key cysteine is modified upon stimulation, it will lose its
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FIGURE 6

Anticarcinogenic mechanism of tea catechins. Tea catechins exert their anticarcinogenic effects by inhibiting cell proliferation (blue module),
preventing tumor metastasis (purple module), reducing oxidative damage (green module), improving immune activity (orange module), and
ameliorating the potency of anticancer drugs (yellow module). Different colored textboxes indicate the specific ways in which tea catechins
exert.

inhibitive effect and release the Nrf2. The released Nrf2 is then
transferred to the nucleus to bind with antioxidant responsive
element (ARE), which activates downstream transcription
factors. EGCG could inhibit Keap1 and activate Nrf2, resulting
in the expression of the downstream antioxidant related genes
(218) (Figure 5B). Furthermore, EGCG could induce the
re-expression of secreted frizzled-related protein 1 (SFRP1), an
inhibitor of the Wnt pathway, which prevents ligand-receptor
interaction and is silenced in cancer cells (215).

(−)-Epigallocatechin gallate can regulate some signaling
pathways by controlling downstream genes expression in the
signal pathway. EGCG could act on the MMP associated
with cell apoptosis (207, 219). These enzymes are secreted by
tumor cells and can degrade various proteins in the ECM
and are the main proteolytic enzymes in tumor invasion
and metastasis. EGCG inhibited the activities of MMP2 and
MMP9, and promoted the expression of tissue inhibitor of
MMPs (TIMp1/2) to suppress the invasion and metastasis of
tumor cells (107). Peptidyl-prolyl isomerase NIMA-interacting 1
(PIN1) is a specially phosphorylated prolyl isomerase necessary
for mitotic regulation and a direct target of EGCG. EGCG
inhibited the activity of PPIase (207) and reduced the expression
of PIN, inducing apoptosis (220). NF-κB is normally inactivated
when it binds to the inhibitor IkBα. However, when upstream
signal factor TNF binds to membrane receptors, IkB kinase
(IKK) is activated, which phosphorylates IkBα and dissociates

NF-κB. Free NF-κB is released into the nucleus and binds
with nuclear DNA to initiate the transcription of genes such
as CyclinD1, C-MYC, MMP-9, and VEGF (221). EGCG could
significantly downregulate NF-κB activity, inhibiting these gene
transcription (222) (Figure 5C).

Inconsistent results and future
expectations

Although there have been a lot of in vivo and in vitro studies
revealing tea catechins had anticarcinogenic effects, inconsistent
results were also observed and reported. A 7-year (1995–2001)
population-based cohort study in Japan involving 41,440 male
and female patients with ages ranging from 40 to 79 years
gave no direct evidence showing green tea consumption being
correlated to lower risk of lung cancer (223). No significant
relationship was found between colon cancer and intake of EC
or tea (30, 224). Population based case-control studies showed
green tea drinking was no associated a reduced risk of pancreatic
cancer (225). A screening study on prostate, lung, colorectal
and ovarian (PLCO) cancers involving 57,398 men and women
showed that heavy tea drinking was not correlated to risk
of overall CRC (RR = 0.77, 95% CI = 0.55∼1.09, p = 0.17)
or the risks of CRC cancer site (p = 0.14) or CRC stage
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(p = 0.60) (226). A cohort study in Japan showed no significant
relationship of green tea drinking to the reduced risk of acute
myeloid leukemia (227). A 14-year follow-up EPIC (European
Prospective Investigation into Cancer and Nutrition) cohort
study including 476,160 male and female residents from 10
European countries, among which there were 5,991 incident
CRC cases (3,897 colon cancer cases and 2,094 rectum cancer
cases), revealed by multivariable-adjusted Cox regression model,
that a doubling intake of total dietary polyphenol was not
correlated to CRC risk in men (HR = 0.97, 95% CI = 0.90∼1.05)
or in women (HR = 1.06, 95% CI = 0.99∼1.14) (228).

What causes the inconsistency in these research findings?
The metabolism and/or chemically changing of the in-
taken catechins might be important factors influencing the
anticarcinogenic effects of tea and catechins. There was a study
showing that the in-taken catechins are promptly O-methylated
by COMT (human catechol-O-methyltransferase) and so the
association between tea intake and BC depends on COMT
genotype. Among women who carried minimum one low
activity COMT allele, the risk of BC in tea drinkers was
significantly lower than those who did not drink tea (OR = 0.48,
95% CI = 0.29∼0.77), after balancing the related dietary,
menstrual, reproductive, and demographic factors. Among
women who carried homozygous high activity COMT allele,
however, no significant difference in the BC risk was observed
between non-tea drinkers and tea drinkers (OR = 1.02, 95%
CI = 0.66∼1.60) (18, 20). The risk of lung cancer was decreased
by 72% among daily tea drinkers who carried the OGG1 Cys
(326) allele (95% CI = 0.09∼0.94). Among people carrying
GSTM1 null homozygotes, on significant difference in lung
cancer risk was observed between daily tea consumers and tea
non-consumers. Green tea drinking showed no effect on the risk
of lung cancer among GSTM1, AKR1C3, or OGG1 Ser (326)
homozygote carriers. It is considered that the chemopreventive
effects of green tea consumption may be limited to the
population who are exceptionally susceptible to DNA damages
induced by oxidative stress (71, 94, 156).

Interaction of catechins with partial drugs resulted in a
reduction in drug bioavailability might lead decrease in the
therapeutic efficacy of the drugs. Simultaneous administration
of EGCG and anticancer drug Sunitinib would decrease
Sunitinib concentration in plasma, thus reducing its therapeutic
effect (224) because EGCG has the same binding sites on human
serum albumin (HSA) as some drugs, such as DOX and TF (225,
226), leading to less bioavailability of the drugs.

To explore the potentials of tea catechins in anticarcinogenic
drug development, the following topics should be focused on:
(1) metabolism of in-taken catechins in the gastrointestinal
tract and development of methods for protecting the in-
taken catechins from degradation or transformation; (2)
technology for improving the bioavailability of catechins, such
as encapsulation and nanoparticle; (3) novel catechins formulae
with synergic anticarcinogenic effects.

Conclusion

Epidemiological and in vivo studies showed that tea
catechins have anticarcinogenic effects on many cancers
including gynecological cancers, digestive tract cancers, incident
glioma, liver and gallbladder cancers, lung cancer, etc.
Catechins suppressed cancers through inhibiting proliferation
and metastasis of cancer cells, antioxidation and scavenging
free radicals, enhancing body immunity, and synergistically
interacting with anticancer drugs, which involved many
signaling pathways (Figure 6).
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Glossary

5-FU, 5-fluorouracil; 67LR, 67 kD laminin receptor; ABC, ATP-binding cassette transporter; ACF, aberrant crypt foci; ACHN,
human renal cell carcinoma; AFP, α-fetal protein; AKR1C3, aldo-keto reductase family 1 member c3; Akt, protein kinase B; AMPK,
adenosine 5′-monophosphate-activated protein kinase; AP-1, activator protein 1; ARE, antioxidant responsive element; Arg-1,
arginase 1; ATP, adenosine triphosphate; ATP7A, ATPase copper transporting 7 alpha; Bax, Bcl2-associated x protein; BC, breast
cancer; Bcl-2, B-cell lymphoma-2; Bim, Bcl-2 interacting mediator of cell death; BTC, biliary tract cancer; C, (+)-catechin; CAA,
cancer-associated adipocyte; CAR, oral cancer cell-line; CBR1, carbonyl reductase 1; CCL, C-C motif ligand; CCR2, C-C motif
chemokine receptor 2; CD4, cluster of differentiation 4; CDC2, cell division control protein 2; CDK, cyclin dependent kinase;
CFS, cancer-free survival; CG, (+)-catechin-3-gallate; cGMP, cyclic guanosine monophosphate; CI, cumulative incidence; CIP1,
cyclin dependent kinase interacting protein 1; CK1, casein kinase 1; CLL, chronic lymphocytic leukemia; COMT, human catechol-
O-methyltransferase; COX-2, cyclooxygenase 2; CRC, colorectal cancer; CSCs, cancer stem cells; CTL, cytotoxic T-cells; CTR1,
copper transport protein 1; DAPK2, death associated protein kinase 2; DCs, dendritic cells; DLL3, delta-like ligand 3; DMBA, 7,12-
dimethylbenz(a)anthracene; DNR, daunorubicin; DOC, docetaxel; DOX, doxorubicin; DPPH, 2,2-diphenyl-1-picrylhydrazyl; dTMP,
deoxythymidylate; dUMP, deoxyuridine monophosphate; EC, (−)-epicatechin; ECG, (−)-epicatechin gallate; ECM, extracellular
matrix; EGC, (−)-epigallocatechin; EGCG, (−)-epigallocatechin gallate; EGCGD, epigallocatechin gallate derivative; EGF, epidermal
growth factor; EGFR, epidermal growth factor receptor; Elf-1, ETS transcription factor; EMT, epithelial-mesenchymal transition;
EPIC, European Prospective Investigation into Cancer and Nutrition; ER, estrogen receptor; ErbB2, Erb-b2 receptor tyrosine kinase
2; ERCC1/XPF, excision repair cross-complementation group 1/xeroderma pigmentosum group F; ERK, extracellular regulated
protein kinases; FAK, focal adhesion kinase; FZD, Frizzled family of proteins; GADD153, growth arrest and DNA damage-inducible
153; GC, (+)-gallocatechin; GCG, (+)-gallocatechin-3-gallate; G-CSF, granulocyte colony-stimulating factor; GLI1, glioma-associated
oncogene homolog 1; GRP78, 78-kd glucose-regulated protein; GSK3, glycogen synthase kinase 3; GSTM1, glutathione S-transferase
mu 1; GTPs, green tea polyphenols; HCC, hepatic cell carcinoma; HepG(2), human hepatocellular carcinomas; HIF-1α, hypoxia
inducible factor-1α; HO-1, heme oxygenase 1; HPV-16, human papillomavirus type 16; HR, hazard ratio; HSA, human serum
albumin; IFN-γ, interferon γ; IkBα, inhibitor of NF-κB; IKK, Ikb kinase; IL-1R, interleukin-1 receptor; iNOS, inducible nitric oxide
synthase; IRN, irinotecan; IRS, insulin receptor substrate; JNK, C-jun n-terminal kinase; Keap1, kelch like ech-associated protein
1; KIP1, kinesin-like protein 1; LC3, light chain 3; LDM, low-dose metronomic; LNCaP, human prostate cancer cell-line; LncRNA,
long non-coding RNA; MAP3KI4, NF-κB induced kinase; MAPK, mitogen-activated protein kinase; MCP1, chemokine monocyte
chemotactic protein 1; MDA, malondialdehyde; MDA-MB-231, breast cancer cell-line; MDM2, murine double minute 2; MDR1,
multidrug resistance 1; MDSCs, myeloid-derived suppressor cells; MGMT, O-6-methylguanine DNA-methyltransferase; MMPs,
matrix metalloproteinases; MnSOD, manganese superoxide dismutase; mTOR, mechanistic target of rapamycin; MyD88, myeloid
differentiation primary response protein 88; MYPT1, myosin phosphatase target subunit; NAFLD, non-alcoholic fatty liver disease;
NEAT1, nuclear enriched abundant transcript1; NF-κB, nuclear factor κB; NHL, non-Hodgkin lymphoma; NK, natural killer cells;
NO, nitric oxide; NOX1, phagocyte-like NADPH oxidase 1; NPC, nasopharyngeal carcinoma; Nrf2, nuclear factor-erythroid related
factor 2; OC, oral cancer; OGG1, 8-oxoguanine DNA glycosylase; OPG, osteoprotegerin; OR, odds ratio; P21, cyclin inhibition protein
2l; PAI-1, plasminogen activator inhibitor-1; p-AKT, phosphorylated protein kinase B; P-Akt, phospho-protein kinase B; PARP, poly
ADP ribose polymerase; PC-12, pheochromocytoma cells; PCOS, polycystic ovary syndrome; PD-1, programmed death factor 1; PD-
L1, programmed death factor ligand 1; PEF, pulsed electric field; PGE2, prostaglandin e2; P-gp, P-glycoprotein; PgR, progesterone
receptor; PI3K, phosphatidylinositol 3-kinase; PIKK, phosphatidylinositol 3-kinase-related protein kinase; PIN1, peptidyl-prolyl
isomerase NIMA-interacting 1; PKA, protein kinase A; PLCO, prostate, lung, colorectal and ovarian cancers; PMD, mammographic
density; PP2A, protein phosphatase 2A; PPIase, peptidyl-prolyl cis-trans isomerase; Ptc, membrane receptors patched; RANK, receptor
activator of nuclear factor κB; RARα1, retinoic acid receptor alpha 1; RKO, colorectal cancer cell-line; ROS, reactive oxygen species; RR,
relative risk; SAPK, stress-activated protein kinase; SCC, squamous cell carcinoma; SEAHS, Southeastern Arizona Health Study; SFRP1,
secreted frizzled-related protein 1; SHH, sonic hedgehog pathway; SHP1, Src homology containing protein tyrosine phosphatase 1;
SKY, tyrosine protein kinase; Smad, drosophila mothers against decapentaplegic protein; Smo, membrane receptors smoothened; SN-
38, 7-ethyl-10-hydroxycamptothecin; SOX2OT, sex-determining region y-box 2 overlapping transcript; SPHK1, sphingosine kinase 1;
STAT3, signal transducers and activators of transcription; SUFU, suppressor of fused; SUM-149, breast cancer cell-line; SW780, bladder
cancer cell-line; TGF-β1, transforming growth factor-β; THP-1, human monocytic leukemia cell-line; TIMPs, tissue inhibitor of matrix
metalloproteinases; TLR-4, toll-like receptor 4; TME, tumor microenvironment; TMZ, temozolomide; TNBC, triple-negative breast
cancer; TNF-α, tumor necrosis factor α; Tollip, toll interaction protein; TPA, 12-O-tetradecanoylphorbol-13-acetate; TRAIL, factor-
related apoptosis-inducing ligand; TWIST 1, twist family bHLH transcription factor 1; uPA, urokinase plasminogen activator; VEGF,
vascular endothelial growth factor; VEGFR2, vascular endothelial growth factor receptor 2; WAF1, wild-type p53 activated fragment
1; Wnt, wingless-type mice mammary tumor virus integration site family.
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