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Objective: Although phthalates are common environmental pollutants, few

studies have focused on the relationship of phthalates exposure with non-

alcoholic fatty liver disease (NAFLD) or liver fibrosis, and especially, the

alternative phthalates have been questioned in recent years about whether

they are better choices. Thus, this study aimed to explore the associations of

exposure to major phthalates or alternative phthalates with NAFLD and liver

fibrosis.

Methods: Data of 1450 adults from the National Health and Nutrition

Examination Survey (NHANES) 2017-2018 were collected. The urinary

metabolite concentrations of di-2-ethylhexyl phthalate (DEHP), diisononyl

phthalate (DINP) and diisodecyl phthalate (DIDP) were detected. Controlled

attenuation parameter (CAP) and median liver sti�ness measurement (LSM)

were acquired for quantitative diagnosis of NAFLD and liver fibrosis by

vibration-controlled transient elastography. Multivariate logistic regression

analysis and linear regression analysis were performed to examine the

associations between phthalates and NAFLD and liver fibrosis.

Results: After adjustment of the potential factors, the prevalence of NAFLDwas

significantly elevated among those in the fourth quartile of mono-(2-ethyl-5-

carboxypentyl) phthalate (OR, 95%CI = 2.719, 1.296, 5.700, P = 0.016), mono

(2-ethyl-5-hydroxyhexyl) phthalate (OR, 95%CI = 2.073, 1.111, 3.867, P =

0.037). No significant associationwas found between the alternative phthalates

and NAFLD. The similar result was gained by linear regression analysis that

MECPP was still significantly associated with Ln CAP (Q4 vs. Q1: β, 95%CI

= 0.067, 0.017, 0.118, P = 0.027). After adjustment for the same covariates,

no significant association between phthalates and liver fibrosis was found in

logistics regression analysis.

Conclusions: All in all, higher prevalence of NAFLD is correlated with DEHP

but not DINP or DIDP in American adults. There is no significant relationship

Frontiers inNutrition 01 frontiersin.org

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://doi.org/10.3389/fnut.2022.1059675
http://crossmark.crossref.org/dialog/?doi=10.3389/fnut.2022.1059675&domain=pdf&date_stamp=2022-11-22
mailto:102lyq@163.com
mailto:wanhdr@163.com
mailto:sjiesy@smu.edu.cn
https://doi.org/10.3389/fnut.2022.1059675
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnut.2022.1059675/full
https://orcid.org/0000-0001-6952-9541
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Chen et al. 10.3389/fnut.2022.1059675

between phthalates and liver fibrosis defined as LSM ≥ 8 Kpa. Nevertheless,

further research is needed to provide evidence of causality.

KEYWORDS

phthalates,NAFLD, liver fibrosis, vibration-controlled transient elastography,NHANES

(National Health and Nutrition Examination Survey)

Introduction

Non-alcoholic fatty liver disease (NAFLD) has become

the most common chronic liver disease in the world. The

prevalence of NAFLD is predicted to increase, and by 2030,

NAFLD may affect 33.5% of the world’s population aged ≥15

years (1). NAFLD encompasses a spectrum of conditions, from

steatosis to non-alcoholic steatohepatitis, fibrosis and eventually

cirrhosis, which is attributed mainly to insulin resistant, obesity,

genetic variants and lifestyles (2, 3). However, in recent

years, evidences reflect that exposure to some environmental

contaminants may be considered as tangible risk factors for

NAFLD (4, 5).

Phthalates, such as the major traditional plasticizers

[e.g., di-2-ethylhexyl phthalate (DHEP)] and the alternative

phthalates [e.g., diisononyl phthalate (DINP)], diisodecyl

phthalate (DIDP), are used as plasticizers in numerous products.

Due to the restriction of DEHP, the alternative phthalates such

as DINP and DIDP have been widely used (6). They may

become environmental pollutants since they can easily leach

from products to environment (7). After absorbed by humans,

phthalates are metabolized in the gastrointestinal tract and the

liver, metabolites of phthalates such as MEHHP, MEOHP are

finally excreted by urination (8). Thus, the urinary metabolite

concentrations of phthalates are usually used for identifying

phthalates exposure. As environmental endocrine-disrupting

chemicals, phthalates are tightly associated with the prevalence

of metabolic diseases, such as obesity and type 2 diabetes

(9, 10). What’s more, studies have showed that phthalates

exposure to animal may interrupt lipid metabolism as well

as induce inflammatory response in liver (11). However, the

association of phthalates with NAFLD in humans is less clear.

In addition, the association between phthalates and liver fibrosis

is also unknown.

Two epidemiological studies have analyzed the relationship

between exposure to traditional phthalates and NAFLD, in

which NAFLD was defined by the US fatty liver index (US

FLI) or the hepatic steatosis index (HSI) based on serum

markers (12, 13). However, these serum biomarkers can be

normal in patients with NAFLD and impacted by comorbid

conditions, which may not be sufficiently sensitive in NAFLD

definition and potentially underestimate the true population

prevalence of NAFLD (14–16). Recently, some guidelines

and expert consensus have recommended vibration-controlled

transient elastography (VCTE) as a sensitive non-invasive tool

in NAFLD evaluation especially in identifying advanced liver

fibrosis (17, 18). VCTE, with high sensitivity and specificity of

about 90%, can directly estimate the degree of hepatic steatosis

and liver fibrosis with the controlled attenuation parameter

(CAP) and liver stiffness measurement (LSM), respectively

(19, 20).

Thus, in this study, we aimed to determine if the

urinary metabolite levels of phthalates, including the alternative

compounds, were associated with the prevalence of NAFLD and

liver fibrosis detected by VCTE among American adults.

Methods

Study population

The National Health and Nutrition Examination Survey

(NHANES) is amajor program of the National Center for Health

Statistics to assess health and nutritional status of civilians

in America, which is approved by the Centers for Disease

Control and Prevention Research Ethics Review Board. Both the

physical examinations and blood collection were conducted in

the mobile examination center (MEC), where laboratory tests

were performed under standardized conditions. Demographic

variables were collected and data were public. We analyzed data

from NHANES 2017–2018, which can provide data on blood

and urine phthalates exposure and VCTE.

Initially, 5,856 participants aged 18 or older were included.

First, 323 individuals considered to be not available for MEC

exam were excluded. Second, 788 patients were excluded

because of ineligible for the VCTE exam data and missing data.

Third, 325 participants with hepatitis B or C or significant

alcohol consumption (>30 g/day for men and >20 g/day for

women) were excluded (21). Then, 2,970 participants who

lacked data of urinary phthalates were excluded. Finally, 1,450

participants with complete data were enrolled (Figure 1).

Measurements

Phthalates examination

We analyzed 6 metabolites of 3 phthalates

(Supplementary Table S1): mono(2-ethyl-5-oxohexyl)

phthalate (MEOHP), mono(2-ethyl-5-hydroxyhexyl)

phthalate (MEHHP), mono-(2-ethyl-5-carboxypentyl)

phthalate (MECPP), mono-(carboxyoctyl) phthalate
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FIGURE 1

Data reduction diagram.

(MCiOP), mono-(carboxynonyl) phthalate (MCiNP) and

mono-oxoisononyl phthalate (MOiNP). High-performance

liquid chromatography-electrospray ionization-tandem mass

spectrometry (HPLC-ESI-MS/MS), and online solid phase

extraction coupled with isotope dilution-HPLC-MS/MS were

used to quantitatively detect the urine levels of the 6 metabolites.

Samples were assigned with the limit of detection (LOD) divided

by the square root of two as recommended by NCHS when

their concentrations were below the LOD. Detailed contents of

analysis methods can be queried on the website (https://wwwn.

cdc.gov/nchs/nhanes/analyticguidelines.aspx).

Definition of NAFLD and liver fibrosis

The CAP and LSM, which reflect liver steatosis and fibrosis,

respectively, were assessed using VCTE. VCTE was performed

by the trained technicians using a FibroScan model 502 V2

Touch (Echosens, Paris, France). Themedium probe was applied

firstly. If recommend by the manufacturer’s instructions, an

XL-probe was used instead of M-probe. Examinations were

considered reliable if (i) participants fasted at least 3 h before

the exam, (ii) 10 or more complete LSMs were performed, and

(iii) the interquartile range/median of LSM was <30%. Detailed

procedure was recorded in the Liver Ultrasound Transient

Elastography Procedures Manual. We defined NAFLD as CAP

≥274 dB/m and LSM ≥8 kPa as a threshold for liver fibrosis

according to the literature (22).

In addition, we also calculated HSI and US FLI. In this study,

NAFLD was defined as HSI > 36 and the cut-off of US FLI to

diagnose NAFLD is 30 or higher (13). The HSI and US FLI were

calculated as follows:

HSI= 8 ∗ ALT (IU/L)/AST (IU/L)+ body mass index (BMI,

kg/m2)+2 (if female)+2 (if type 2 diabetes).

US FLI = (e− 0.8073 ∗ non-Hispanic black + 0.3458 ∗Mexican

American + 0.0093 ∗ age + 0.6151 ∗ loge (GGT) + 0.0249 ∗ waist

circumference + 1.1792 ∗ loge (insulin) + 0.82 ∗ loge (glucose) − 14.7812)

/ (1 + e−0.8073 ∗ non-Hispanic black + 0.3458 ∗ Mexican American

+ 0.0093 ∗ age + 0.6151 ∗ loge (GGT) + 0.0249∗ waist circumference +

1.1792 ∗ loge (insulin) + 0.8242∗ loge (glucose) −14.7812) ∗ 100

Covariates definition

Other covariates included sociodemographic variables, such

as age, sex (male or female), smoking status (<100, 100 ormore),

education (high school degree and below, higher than high

school) and race/ethnicity (Mexican American, non-Hispanic

white, non-Hispanic black, or other races). Physical activity

(PA) was further dichotomized into achieved PA or insufficient

in line with the 2018 Physical Activity Guidelines Advisory

Committee Scientific Report. Diabetes was determined using

a previous diagnosis by healthcare professionals according to

fasting plasma glucose (FPG) level ≥7.0 mmol/L or HbA1c

≥6.5%, or self-reported diabetes diagnosis. Blood pressure

(BP) was measured three times by trained nurses and the
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average value was used for subsequent analysis. Covariates

were also collected such as body mass index (BMI) and total

cholesterol levels.

Statistical analysis

Data were analyzed using IBM SPSS Statistics 26 (IBM

Corporation, Armonk, NY, USA) and software R 4.1.1.

Benjamini-Hochberg false discovery rate was performed to

correct P-values for multiple comparisons and two-tailed P

< 0.05 was considered significant. The proper weight was

used because of the complex design of NHANES. Continuous

variables were described as means ± standard error (SE) and

analyzed using t-test. Categorical variables were expressed as

numbers (percent) and compared by the chi-square test. The

levels of urinary phthalate metabolites were corrected by the

creatinine level in µg/g to account for differences in kidney

function. Due to the skewed distribution, the levels of phthalate

metabolites were further transformed by a natural logarithm.

Quartiles of urinary phthalate metabolite concentrations were

treated as exposure variables for subsequent analyses.

Multivariate logistic regression analysis was performed to

analyze the associations of the prevalence of NAFLD and

liver fibrosis with phthalates after accounting for potential

confounders. The model was adjusted for age, gender, race, BMI,

total cholesterol level, systolic blood pressure, educational level,

smoking status, diabetes status and physical activity. In addition,

CAP and LSM were ln-transformed to calculate the significance

determined by a linear regression model after adjusting for

the same underlying confounders as well. Finally, we repeated

the multivariate logistic regression analysis to estimate the

association between phthalates and NAFLD defined by US FLI

or HSI.

Results

Population characteristics

Table 1. Totally 1,450 participants with an average age of 46

years were included. Among them, the numbers of men and

women were almost the same (50.1 vs. 49.9%). Most of them

were white and had received higher than high school education.

The majority of the participants had achieved guidelines for PA

and no diabetes. The proportion of smokers was less than that of

non-smokers.

Clinical features of the patients with or without NAFLD

were also shown in Table 1. In total, 613 patients were diagnosed

NAFLD (defined by the cut-off CAP of ≥ 274 dB/m, weighted

prevalence 40.2%). Compared to the subjects without NAFLD,

those with NAFLD were more often male and likely to

be older (50.7 vs. 43.2 years old), having larger BMI (33.5

TABLE 1 Population characteristics of American adults with or

without NAFLD from NHANES 2017–2018.

Characteristic Total (N = 1,450) NAFLD P-value

No Yes

(N = 837)(N = 613)

Age, y 46.2± 0.81 43.2± 1.03 50.7± 0.92 <0.001

Gender, % 0.015

Male 50.1 46.4 55.5

Female 49.9 53.6 44.5

Race, % <0.001

Mexican American 9.4 6.8 13.4

Non-Hispanic

White

60.7 61.3 59.7

Non-Hispanic Black 11.3 12.9 9.1

Other race 18.6 19.1 17.9

Physical activity, % <0.001

Insufficient 31.7 26.9 38.9

Achieved PA 68.3 73.1 61.1

Education, % 0.650

≤High school 39.0 38.1 40.1

>High school 61.0 61.8 59.9

Current smoking, % 0.572

No 85.9 85.4 86.6

Yes 14.1 14.6 13.4

Diabetes, % <0.001

No 77.2 88.6 62.6

Yes 22.8 11.4 37.4

SBP, mmHg 120.6± 0.49 118.6± 0.63 123.5± 0.96 0.001

BMI, kg/m² 29.2± 0.31 26.3± 0.36 33.5± 0.38 <0.001

FPG, mmol/L 6.1± 0.08 5.7± 0.05 6.6± 0.18 <0.001

HbA1c, % 5.6± 0.02 5.5± 0.02 5.9± 0.05 <0.001

TC, mmol/L 4.9± 0.05 4.9± 0.06 5.0± 0.07 0.409

ALT, U/L 22.6± 0.72 20.1± 0.84 26.3± 1.14 <0.001

AST, U/L 21.5± 0.49 21.2± 0.71 22.0± 0.53 0.339

GGT, U/L 27.4± 0.99 23.0± 1.36 33.8± 1.42 <0.001

The ln-transferred of urinary phthalate metabolites, µg/g Cr

MECPP 1.89± 0.03 1.84± 0.03 1.97± 0.05 0.012

MEOHP 0.99± 0.03 0.95± 0.03 1.07± 0.05 0.028

MEHHP 1.44± 0.03 1.40± 0.03 1.50± 0.05 0.084

MCiNP 0.16± 0.02 0.15± 0.03 0.17± 0.04 0.738

MCiOP 1.51± 0.04 1.51± 0.04 1.52± 0.05 0.749

MOiNP 0.19± 0.03 0.20± 0.03 0.18± 0.05 0.790

Data are expressed as numbers (percent) for categorical variables and as means ±

standard error (SE) for continuous variables.

BMI, body mass index; FPG, fasting plasma glucose; HbA1C, glycohemoglobin;

ALT, Alanine aminotransferase; AST, Aspartate aminotransferase; GGT, γ-glutamyl

transpeptidase; SBP, systolic blood pressure; NHANES, National Health and Nutrition

Examination Survey. P values are bolded when P < 0.05. (The same in Table 2).

vs. 26.3), and diabetic (37.4 vs. 11.4%). The subjects with

NAFLD also had higher levels of systolic blood pressure, FPG,

alanine aminotransferase (ALT), glutamine transferase (GGT),

HbA1c and urinary concentrations of MECPP and MEOHP.

In addition, significant baseline differences in the distributions
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TABLE 2 Population characteristics of American adults with or

without liver fibrosis from NHANES 2017–2018.

Characteristic Total Liver fibrosis P-value

(N = 1,450) No Yes

(N = 1,334) (N = 116)

Age, y 46.2± 0.81 45.7± 0.85 52.9± 2.39 0.013

Gender, % 0.415

Male 50.1 49.7 55.8

Female 49.9 50.3 44.2

Race, % 0.396

Mexican American 9.4 9.3 11.2

Non-Hispanic White 60.7 61.1 54

Non-Hispanic Black 11.3 11.1 14.6

Other Race 18.6 18.5 20.2

Physical activity, % <0.001

Insufficient 31.7 29.9 56.6

Achieved PA 68.3 70.1 43.4

Education, % 0.001

≤High school 39.0 38 52.9

>High school 61.0 62 47.1

Current smoking, %

No 85.9 85.8 86.9 0.817

Yes 14.1 14.2 13.1

Diabetes, %

No 77.2 81.3 34.9 <0.001

Yes 22.8 18.7 65.1

SBP, mmHg 120.6± 0.49 120.4± 0.57 122.5± 1.38 0.243

BMI, kg/m² 29.2± 0.31 28.5± 0.36 38.2± 0.60 <0.001

FPG, mmol/L 6.1± 0.08 5.9± 0.07 7.2± 0.36 0.002

HbA1c, % 5.6± 0.02 5.5± 0.02 6.4± 0.13 <0.001

TC, mmol/L 4.9± 0.05 4.9± 0.04 4.7± 0.16 0.189

ALT, U/L 22.6± 0.72 21.9± 0.72 32.7± 2.45 <0.001

AST, U/L 21.5± 0.49 21.0± 0.46 28.1± 2.30 0.005

GGT, U/L 27.4± 0.99 24.8± 0.89 62.9± 8.09 <0.001

The ln-transferred of urinary phthalate metabolites, µg/g Cr

MECPP 1.89± 0.03 1.89± 0.03 2.00± 0.07 0.057

MEOHP 0.99± 0.03 0.99± 0.03 1.04± 0.08 0.552

MEHHP 1.44± 0.03 1.44± 0.03 1.49± 0.09 0.537

MCiNP 0.16± 0.02 0.15± 0.02 0.24± 0.06 0.204

MCiOP 1.51± 0.04 1.51± 0.04 1.50± 0.07 0.881

MOiNP 0.19± 0.03 0.19± 0.03 0.25± 0.08 0.543

P values are bolded when P < 0.05.

of race/ethnicity and physical activity existed between these

two groups.

Table 2 showed the clinical characteristics of the patients,

stratified by liver fibrosis (defined by the cut-off LSM of≥8 Kpa,

weighted prevalence 6.7%). Significant fibrosis was found in 116

patients. Similarly, participants with liver fibrosis were older, and

commonly had higher BMI. They showed a higher prevalence

of diabetes and did not achieve the physical activity guidelines.

As for serum indexes, patients with liver fibrosis had a higher

fasting blood glucose, HbA1c and worst liver conditions with

higher ALT, AST, and GGT levels.

Associations of urinary phthalate
metabolites with NAFLD and liver fibrosis

The associations between the higher levels of phthalates

and the prevalence of NAFLD (defined as CAP ≥274 dB/m)

were reported in Table 3. The logistics regression analysis

was adjusted for age, gender, race, BMI, total cholesterol

level, systolic blood pressure, educational level, smoking status,

diabetes status and physical activity. The logistics regression

analysis showed that individuals in the higher quartile of

MECPP had higher prevalence of NAFLD (Q4 vs. Q1: OR =

2.719, 95%CI: 1.296, 5.700, P = 0.016; Q2 vs. Q1: OR = 2.277,

95%CI: 1.277, 4.060, P = 0.016) compared to the first quartile.

The prevalence of NAFLD was also significantly associated with

elevated MEHHP levels (Q4 vs. Q1: OR = 2.073, 95%CI: 1.111,

3.867, P = 0.037; Q3 vs. Q1: OR= 1.816, 95%CI: 1.106, 2.981, P

= 0.037; Q2 vs. Q1: OR= 2.110, 95%CI: 1.009, 4.409, P= 0.047).

When the association was analyzed by general linear regression,

the similar results were found that MECPP was still significantly

associated with Ln CAP (Q4 vs. Q1: β = 0.06, 95%CI: 0.017,

0.118, P = 0.027; Q2 vs. Q1: β = 0.044, 95%CI: 0.008, 0.079,

P = 0.027). When NAFLD was defined as HSI >36 or US FLI

≥30, no significant association was found between phthalates

and NAFLD (Supplementary Table S2). Participants did not

show a significant increase in the prevalence of liver fibrosis

when considering the increasing urinary phthalate metabolites

concentrations. The third quartile of MCiNP and MCiOP were

correlated with LSM in the results of the linear regression tests

(P = 0.009, 0.006, respectively) (Table 4).

Discussion

In the current study, the results showed that higher urinary

concentrations of phthalate metabolites that metabolized from

DEHP, were positively related to NAFLD. No significant

association was observed between phthalates and liver fibrosis

defined as LSM ≥8 Kpa. As far as we know, this is the first

study to investigate the relationships of phthalate exposure with

NAFLD and liver fibrosis assessed by VCTE.

Fewer epidemiologic studies explored the relationship

of phthalates with NAFLD diagnosed by serum biomarkers

in different races. An earlier study including 5,800 Korea

adults indicated that the higher quartiles of MEHHP showed

significant higher ORs of NAFLD defined by HSI (12).

Recently, another cross-sectional study with 4,206 American
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TABLE 3 The associations between phthalates and NAFLD in US adults.

Phthalate NAFLD Ln CAP

metabolites (CAP ≥ 274 dB/m)

OR (95%CI) P FDR β (95%CI) P FDR

MECPP

Q1 Ref. Ref.

Q2 2.277 (1.277, 4.06) 0.016 0.044 (0.008, 0.079) 0.027

Q3 1.435 (0.663, 3.107) 0.335 0.007 (−0.043, 0.057) 0.777

Q4 2.719 (1.296, 5.700) 0.016 0.067 (0.017, 0.118) 0.027

MEOHP

Q1 Ref. Ref.

Q2 1.662 (0.999, 2.764) 0.068 0.021 (−0.025, 0.067) 0.510

Q3 1.452 (0.967, 2.179) 0.068 0.006 (−0.049, 0.060) 0.826

Q4 2.016 (1.102, 3.687) 0.068 0.036 (−0.005, 0.076) 0.243

MEHHP

Q1 Ref. Ref.

Q2 2.110 (1.009, 4.409) 0.047 0.020 (−0.049, 0.089) 0.552

Q3 1.816 (1.106, 2.981) 0.037 0.051 (0.008, 0.094) 0.072

Q4 2.073 (1.111, 3.867) 0.037 0.046 (−0.002, 0.094) 0.085

MCiNP

Q1 Ref. Ref.

Q2 1.662 (1.013, 2.728) 0.134 0.034 (−0.025, 0.093) 0.415

Q3 1.558 (0.788, 3.081) 0.185 0.024 (−0.040, 0.089) 0.433

Q4 1.618 (0.917, 2.854) 0.136 0.031 (−0.027, 0.089) 0.415

MCiOP

Q1 Ref. Ref.

Q2 0.976 (0.567, 1.678) 0.925 −0.027 (−0.078, 0.023) 0.403

Q3 2.409 (1.028, 5.643) 0.108 0.070 (0.011, 0.130) 0.072

Q4 1.645 (0.950, 2.847) 0.108 0.022 (−0.033, 0.077) 0.408

MOiNP

Q1 Ref. Ref.

Q2 1.266 (0.485, 3.299) 0.607 0.003 (−0.053, 0.058) 0.923

Q3 1.901 (0.871, 4.146) 0.298 0.045 (−0.002, 0.092) 0.177

Q4 1.556 (0.643, 3.766) 0.454 0.022 (−0.025, 0.069) 0.499

Data are expressed as odds ratio (95% Confidence interval [CI]) or β (95% Confidence

interval [CI]). Odds ratios (95% CIs) were adjusted for age, gender, race.

BMI, total cholesterol level, systolic blood pressure, educational level, smoking status,

diabetes status and physical activity.

NHANES, National Health and Nutrition Examination Survey. All P-values were

corrected by FDR (the same in Table 4).

subjects demonstrated that DEHP metabolites exposure was

independently associated with NAFLD defined by HSI and

results maintained when defined as US FLI (13). In accordance

with the two above studies, our research showed similar positive

associations of MECPP and MEHHP with NAFLD measured

by VCTE. Moreover, MECPP exposure was still significant

associated with Ln CAP, which suggests the metabolite may be

associated with the severity of NAFLD. Inconsistent with above

studies, the present study showed that no significant association

TABLE 4 The associations between phthalates and liver fibrosis in US

adults.

Phthalate Fibrosis (LSM ≥ 8 Kpa) Ln LSM

metabolites

OR (95%CI) P FDR β (95%CI) P FDR

MECPP

Q1 Ref. Ref.

Q2 1.316 (0.304, 5.692) 0.695 −0.006 (−0.115, 0.103) 0.903

Q3 3.284 (0.995, 10.841) 0.153 0.072 (−0.054, 0.197) 0.531

Q4 0.697 (0.220, 2.214) 0.695 −0.033 (−0.106, 0.04) 0.531

MEOHP

Q1 Ref. Ref.

Q2 0.971 (0.442, 2.131) 0.938 −0.025 (−0.105, 0.054) 0.760

Q3 1.130 (0.390, 3.273) 0.938 0.001 (−0.112, 0.114) 0.981

Q4 0.536 (0.129, 2.218) 0.938 −0.068 (−0.145, 0.008) 0.228

MEHHP

Q1 Ref. Ref.

Q2 1.679 (0.592, 4.758) 0.458 0.006 (−0.071, 0.084) 0.864

Q3 1.660 (0.670, 4.115) 0.458 −0.032 (−0.128, 0.064) 0.864

Q4 0.595 (0.110, 3.207) 0.521 −0.028 (−0.151, 0.095) 0.864

MCiNP

Q1 Ref. Ref.

Q2 0.784 (0.262, 2.350) 0.645 0.048 (−0.045, 0.141) 0.429

Q3 1.871 (0.576, 6.074) 0.411 0.109 (0.042, 0.176) 0.009

Q4 1.654 (0.700, 3.905) 0.411 0.042 (−0.081, 0.165) 0.476

MCiOP

Q1 Ref. Ref.

Q2 0.602 (0.149, 2.418) 0.673 0.046 (−0.065, 0.157) 0.392

Q3 1.987 (0.764, 5.167) 0.438 0.11 (0.046, 0.174) 0.006

Q4 0.949 (0.254, 3.541) 0.935 0.036 (−0.05, 0.122) 0.392

MOiNP

Q1 Ref. Ref.

Q2 2.861 (0.587, 13.93) 0.265 0.099 (0.005, 0.193) 0.123

Q3 3.611 (0.793, 16.42) 0.265 0.067 (−0.036, 0.17) 0.277

Q4 1.589 (0.588, 4.291) 0.336 0.047 (−0.058, 0.151) 0.357

was found between phthalates and NAFLD when NAFLD was

defined as HSI >36 or US FLI ≥30 in our study. This may

be accounted for AST levels are similar between patients with

NAFLD or without NAFLD and these indexes are not sensitive

enough, whereas liver VCTE are potentially more sensitive (23).

What’s more, the different covariates in these studies may be

partially attributed to the inconsistent results. Laboratory studies

indicated that DEHP and its metabolite MEHP may interfere

liver lipid metabolism to induce NAFLD (24, 25). Analysis of

underlying mechanisms showed that DEHP may cause lipid

metabolism disorder through hepatic PPAR, the main protein of

metabolic homeostasis regulation, and upregulate DGAT1, the
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key enzyme responsible for synthesis and storage of TGs in the

liver (26–28).

Another potential mechanism needs our attention is that

thyroid function may mediate the relationship of DEHP and

NAFLD. Thyroid hormones’ role of mediator in the associations

between phthalate exposure and lipid metabolism has been

reported (29). A recent study demonstrated that positive

association between the urine levels of phthalate metabolites and

NAFLDwas observed in adults with subclinical hypothyroidism,

but not in those with euthyroidism (30). In fact, evidence of a

higher prevalence of NAFLD in patients with hypothyroidism

has been detailed recorded in previous literature (23, 31).

Thyroid hormones mainly activate TH-Receptor β , a potential

target in NAFLD therapy, and thus may improve liver steatosis

(32, 33). DEHP may lead to thyroid function disorder since

DEHP possessed thyroid receptor (TR) antagonist activity (34).

Therefore, DEHP may interfere thyroid function and further

induce NAFLD. However, the associations between DEHP and

thyroid hormones were seen not in all studies (35). Thus, the

complex relationships between DEHP, thyroid hormones and

NAFLD should be further investigated.

Compared with the major phthalate DEHP, the associations

of the alternative compounds DINP and DIDP with NAFLD

have not been studied yet. Our research showed no significant

relationship between NAFLD and DIDP or DINP. Although

some studies demonstrated that DINP and DIDP could disturb

lipid metabolism in fish, which raised the concern about the

environmental exposure to these alternatives as a possible

contributor (36, 37). Furthermore, Yang et al. reported that

DINP induced a greater alteration of lipidomic markers for

hepatic steatosis than DEHP in post-weaning mice, which

may contribute to the etiology of NAFLD (38). Further study

is needed.

Nonetheless, the results about a positive association of

DEHP, but not the alternative compounds, with NAFLD may be

accounted for higher energy intake in patients with NAFLD, data

of which were not collected in our dataset. Patients with NAFLD

have larger BMI in our study, who may have higher energy

intake. Phthalates exposure, especially DEHP but not DiNP, was

contributed from food to some extent (39). Thus, patients with

NAFLD may have higher energy intake and a higher intake of

DEHP rather than DINP. Therefore, further studies are required

to investigate the possibility.

Meanwhile, our study found significant relationship between

phthalates and the prevalence of liver fibrosis was not clearly

observed. In fact, some experimental studies had tried to explore

the relationship between phthalates and liver fibrosis, and found

the liver toxicity of phthalates in animals through oxidative

stress pathways, whichmay drive liver inflammation and fibrosis

(40–42). Lee et al. also illustrated that long-term exposure to

DEHP may perturb the cholesterol metabolism in HSCs and

thus accelerate liver damage and fibrosis (43). More studies

are warranted to reveal the association of phthalates and liver

fibrosis. Although our data showed that risk of liver fibrosis

may not increase in individuals with higher phthalate exposure,

caution is required due to the small number of participants with

fibrosis in our dataset.

There are some limitations in our study. Firstly, since

this is a cross-sectional study, we cannot confirm the causal

relationship between phthalates and NAFLD. Therefore, cohort

studies or case-control studies should be done to overcome

this methodological limitation. Secondly, regardless of the many

benefits, VCTE is not a gold standard technique. Although

liver biopsy is the gold standard for diagnosing fatty liver,

it is hard to include adequate patients in population studies.

Other non-invasive measures to define NAFLD such as HSI

or plasma biochemical indicators is easy to gain but may

be insufficient sensitive in NAFLD diagnosis. VCTE has its

flaws, which includes operator dependent accuracy and limited

by body habitus/ascites. However, VCTE were conducted by

trained NHANES health technicians to ensure results as accurate

as possible. Finally, urinary phthalates were measured only

in a one third subsample of participants and thus a number

of participants were excluded from this analysis. In a recent

study using data from the NHANES 2017–2018, the prevalence

of NAFLD was 37%, which is comparable to the findings in

this study (44). In addition, the prevalence of liver fibrosis

reported here is lower than the prevalence estimates of a

recent research, which may be accounted for the different target

populations (45).

Conclusions

An independent association of the prevalence of NAFLD

with DEHP metabolites exposure, but not the alternative

phthalates, was found in American adults. Further case-control

studies or longitudinal cohort studies are needed to reveal their

causal relationship.
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