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Background: Amino acid (AA) metabolism plays a crucial role in cancer.

However, its role in acute myeloid leukemia (AML) is still unavailable. We

screened out AA metabolic genes, which related to prognosis, and analyzed

their correlation with tumor immune microenvironment in AML.

Methods: We evaluated 472 amino acid metabolism-related genes in 132 AML

patients. The predictive risk model was developed according to differentially

expressed genes, univariate Cox and LASSO analyses. We validated the risk

signature by survival analysis and independence tests. Single-sample gene

set enrichment analysis (ssGSEA), tumor immune microenvironment (TME),

tumor mutation burden (TMB), functional enrichment, and the IC50 of drugs

were assessed to explore the correlations among the risk model, immunity,

and drug sensitivity of AML.

Results: Six amino acid metabolism-related genes were confirmed to develop

the risk model, including TRH, HNMT, TFEB, SDSL, SLC43A2, and SFXN3. The

high-risk subgroup had an immune “hot” phenotype and was related to a

poor prognosis. The high-risk group was also associated with more activity

of immune cells, such as Tregs, had higher expression of some immune

checkpoints, including PD1 and CTLA4, and might be more susceptible to

immunotherapy. Xenobiotic metabolism, the reactive oxygen species (ROS)

pathway, fatty acid metabolism, JAK/STAT3, and the inflammatory response

were active in the high-risk subgroup. Furthermore, the high-risk subgroup

was sensitive to sorafenib, selumetinib, and entospletinib. ssGSEA discovered

that the processes of glutamine, arginine, tryptophan, cysteine, histidine,

L-serine, isoleucine, threonine, tyrosine, and L-phenylalanine metabolism

were more active in the high-risk subgroup.

Conclusion: This study revealed that AA metabolism-related genes were

correlated with the immune microenvironment of AML patients and could

predict the prognosis and immunotherapy response of AML patients.
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Introduction

Acute myeloid leukemia (AML) is one of hematologic
malignancies. The myeloid blasts clonally expand in the
peripheral blood, bone marrow (BM), and, or other tissues.
AML is the most common in adults with acute leukemia.
In recent years, the incidence of leukemia has gradually
increased (1). In the United States, 20,050 people are
estimated to have AML in 2022, and 11,540 patients will
die of the disease (1). The global incidence of leukemia
increased by 26% from 2006 to 2016 (2). The prognosis
of AML was poor, and only 29.5% of patients survived
from 2011 to 2017 (3). AML often occurs in elder adults,
and approximately 60% of patients are ≥65 years old
(3), with a median age at diagnosis between 68 and
71 years (4).

Chemotherapy and allogeneic stem cell transplantation
are still the primary therapies for AML (5). However,
drug resistance, refractory diseases, and relapse are still
challenge in traditional treatment (6). Over the past
few years, immunotherapies for AML have undergone
considerable development, such as CD33- or CLL-1-specific
chimeric antigen receptor (CAR)-T-cell therapy (7, 8) and
immune checkpoint inhibitors, including TIM3, CD47,
and anti-CD70 (9–11). However, the immunosuppressive
tumor microenvironment (TME) reduces the efficacy of
immunotherapy (6, 12, 13).

The TME in hematopoietic malignancies, also recognized
as the BM microenvironment, lacks of energy sources and
biosynthetic materials (14). Amino acids (AAs) is one of the
most important energy sources and biosynthetic materials for
tumor and immune effector cells (15, 16). Tumor cells usually
obtain more AAs from the TME to maintain survival and
proliferation (15, 16). However, AA absence in the TME inhibits
the proliferation and differentiation of immune effector cells,
decreasing their antitumor effects (17, 18). Moreover, tumor-
mediated AA metabolism takes part in the formation of the
immunosuppressive TME, which includes immunosuppressive
cells, such as regulatory T cells (Tregs), myeloid-derived
suppressor cells (MDSCs), and M2 macrophages (19–21).

Increasing evidence has discovered that amino acid
metabolism participates in the development and progression of
AML, and therapies targeting tumor AA metabolism not only
inhibit hematological malignancies but can also overcome drug
resistance and enhance the efficacy of immunotherapy (22–25).
However, present studies are mostly confined to single gene
or single amino acid. The comprehensive analysis of multi-
amino acid metabolism in AML remains unknown. Therefore,
we comprehensively evaluated the association between
amino acid metabolism-related genes and the prognosis and
immunity of AML.

Materials and methods

Data acquisition

We get the RNA-seq and clinic data of 151 AML patient
samples from The Cancer Genome Atlas (TCGA) database.1

We finally included 132 TCGA-LAML samples when excluded
samples without survival time. Moreover, we downloaded the
RNA-seq data and clinical data of 91 AML patients from the
GSE10358 database as a validation cohort. Additionally, somatic
mutation data were also downloaded from the TCGA database.

Consensus clustering based on amino
acid metabolism-related genes

A total of 447 AA metabolism-related genes were
retrieved from the Molecular Signature Database (MsigDB2)
(Supplementary Table 1). A total of 91 AA metabolism-
related genes were correlated with the prognosis of AML
by univariate Cox regression analysis (Supplementary
Table 1). Consensus clustering was performed based on the
expression data of the 91 genes by the “ConsensusClusterPlus”
package. The number of clusters was identified by the
K-means method, and calculated 1,000 iterations (26).
We underwent principal component analysis (PCA) and
t-distributed stochastic neighbor embedding (t-SNE)
analysis to evaluate the distribution of various groups in
the constructed model.

Construction and validation of the
predictive risk model

The differentially expressed genes (DEGs) between clusters
1 and 2 were identified by the limma package and filtered
by P-value < 0.001 and |logFC| > 1. Univariate Cox analysis
was used to select prognosis-related genes based on the DEGs.
The least absolute shrinkage and selection operator (LASSO)
analysis was conducted by the “glmnet” package. The risk score

was calculated: Risk score =
n∑

i=1

(
Expi∗Coefi

)
. Coefi and Expi

represent the risk coefficient and gene expression, respectively.
According to the median risk score, patients were divided
into low-risk and high-risk groups, respectively. Kaplan–Meier
survival analysis and receiver operating characteristic (ROC)
curves were conducted by risk score.

1 https://portal.gdc.cancer.gov/

2 http://www.gsea-msigdb.org/gsea/msigdb/index.jsp
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FIGURE 1

Construction of distinct amino acid metabolism-related clusters. (A) The consensus clustering matrix divided 132 acute myeloid leukemia (AML)
patients into two clusters (k = 2). (B) Principal component analysis (PCA) analysis and (C) t-distributed stochastic neighbor embedding (t-SNE)
analysis showed distribution difference between the two clusters. (D) Heatmap of the 91 amino acid metabolism genes in the two clusters.
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Development of the prognostic
nomogram

We performed univariate and multivariate Cox regression
analyses to recognize independent prognostic factors. We built
a prognostic nomogram and calculated the concordance index
(C-index) of the risk model. The predictive values of 1-, 3-, and
5-year overall survival (OS) rates and the actual results were
assessed by the calibration plot. Time-dependent ROC curves
were used to predict 1-, 3-, and 5-year OS by the nomogram.

Tumor immune environment

The ESTIMATE algorithm was applied to conduct the
stromal, immune, and ESTIMATE scores (27). Additionally,
we performed the CIBERSORT algorithm to quantify the
proportions of immune cells in AML samples. The gene
expression of AML samples was used to generate scores of

29-type immune cell-, human leukocyte antigen (HLA)-, and
checkpoint-related genes for these samples were conducted
by single sample gene set enrichment analysis (ssGSEA) with
the gsva package.

Functional enrichment analysis

The enrichment analysis was performed using the R
package clusterProfilert. we used R package “org.Hs.eg.db”
for gene ontology (GO) annotations and we obtain the
latest kyoto encyclopedia of genes and genomes (KEGG)
annotations from KEGG rest API.3 For Gene set enrichment
analysis (GSEA), we downloaded the GSEA software (version
3.0) from GSEA,4 and the samples were divided into high-
risk and low-risk groups, to evaluate the related pathways

3 https://www.kegg.jp/kegg/rest/keggapi.html

4 http://software.broadinstitute.org/gsea/index.jsp

FIGURE 2

Differences in prognosis, immunity, and pathway enrichment between the two clusters. (A) overall survival (OS) of the two clusters. (B) The
ESTIMATE algorithm calculated stromal, immune, and ESTIMATE scores between the two clusters. (C,D) The differences in immune cells and
immune responses between the two clusters by the CIBERSORT and single-sample gene set enrichment analysis (ssGSEA) algorithms. (E,F)
Heatmaps of hallmark analysis in the two clusters by gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) enrichment
analyses. * p < 0.05, ** p < 0.01, *** p < 0.001, ns, no significant.
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and molecular mechanisms. The heterogeneity of various
biological processes was explored by Gene Set Variation Analysis
(GSVA) enrichment with the “GSVA” package. Hallmark gene
sets “h.all.v7.4.symbols.gmt” were acquired from the MSigDB
database and were evaluated by GSVA.

Single-sample gene set enrichment analysis was also
conducted to assess the amino acid metabolism-related pathway
activity between the two risk subgroups. The genes in the
amino acid metabolism-related pathways were acquired from
the MSigDB (Supplementary Tables 2, 3).

Tumor mutation burden and drug
sensitivity analysis

The mutation annotation format (MAF) was downloaded
from the TCGA database and assessed by the R package

“maftools.” The tumor mutation burden (TMB) of each patient
was also calculated.

The drug sensitivity data containing 198 compounds were
acquired from the Drug Sensitivity in Cancer (GDSC2) website5

(28). We predicted the half-maximal inhibitory concentration
(IC50) of these drugs by using the “oncoPredict” package (29).
A parliament plot was plotted to exhibit the drug sensitivity of
low- and high-risk groups using the R package “ggpol.”

Statistical analysis

R software (version 4.2.1) was used to calculated all
statistical analyses. The quantitative and qualitative variables
are displayed in the mean ± standard deviation and number

5 https://www.cancerrxgene.org/

TABLE 1 The characteristics of 132 acute myeloid leukemia (AML) patients between two clusters.

Characteristics C1 (N = 67) C2 (N = 65) Total (N = 132) P-value

Age 57.90± 15.34 48.51± 16.05 53.27± 16.33 0.0008

WBC 38.42± 38.64 30.16± 45.77 34.38± 42.31 0.02

Blast cell (%) 66.79± 22.19 64.51± 24.29 65.67± 23.19 0.73

BM blast cell (%) 34.90± 29.94 41.43± 32.53 38.11± 31.29 0.34

Sex 0.61

Female 29 (21.97%) 32 (24.24%) 61 (46.21%)

Male 38 (28.79%) 33 (25.00%) 71 (53.79%)

FAB 8.00E-06

M0 3 (2.27%) 9 (6.82%) 12 (9.09%)

M1 13 (9.85%) 19 (14.39%) 32 (24.24%)

M2 15 (11.36%) 17 (12.88%) 32 (24.24%)

M3 1 (0.76%) 13 (9.85%) 14 (10.61%)

M4 20 (15.15%) 7 (5.30%) 27 (20.45%)

M5 12 (9.09%) 0 (0.0e + 0%) 12 (9.09%)

M6 2 (1.52%) 0 (0.0e + 0%) 2 (1.52%)

M7 1 (0.76%) 0 (0.0e + 0%) 1 (0.76%)

Cytogenetics risk 4.50E-06

Favorable 3 (2.27%) 27 (20.45%) 30 (22.73%)

Intermediate 47 (35.61%) 26 (19.70%) 73 (55.30%)

Poor 15 (11.36%) 12 (9.09%) 27 (20.45%)

FLT3 0.28

Negative 42 (31.82%) 49 (37.12%) 91 (68.94%)

Positive 23 (17.42%) 15 (11.36%) 38 (28.79%)

NPMc 9.90E-05

Negative 41 (31.06%) 59 (44.70%) 100 (75.76%)

Positive 26 (19.70%) 5 (3.79%) 31 (23.48%)
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(ratio%) format, respectively. The Spearman correlation test
was used to calculate association coefficients. Log-rank tests
were used to plot Kaplan–Meier analysis curves. T-tests or
Wilcoxon tests were calculated to compare the normally or
non-normally distributed quantitative variables between the two
subgroups, respectively. To compare the qualitative variables
between the two subgroups, chi-square analysis and Fisher’s
test were used. P-values < 0.05 were considered statistically
significant. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001, ∗∗∗∗

p < 0.0001, ns, no significant.

Results

Construction of two distinct clusters

We obtained a total of 471 amino acid metabolism
related genes from MSigDB. Ninety-one survival-related
amino acid metabolism genes were further assessed based
on univariate Cox regression analysis of 132 AML patients
(Supplementary Table 4). A consensus clustering algorithm
was used to divide the patients into two clusters according

FIGURE 3

Construction of a 6-gene risk model. (A) The 6 survival-related amino acid metabolism differentially expressed genes (DEGs) were developed by
a Venn diagram. (B) The univariate Cox analysis of OS for 6 survival-related amino acid metabolism DEGs. (C) Least absolute shrinkage and
selection operator (LASSO) regression of the 6 survival-related amino acid metabolism DEGs. (D) Cross-validation for all the 6 survival-related
amino acid metabolism DEGs. (E) Alluvial diagram of subgroup distributions with different clusters, risk scores, survival status, cytogenetic risk,
and age. (F) The distribution of risk scores in different clusters.
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to the 91-gene expression data (Figure 1A). The result was
confirmed by the consensus CDF curve, delta area, and
optimal number in Nbclust (Supplementary Figures 1A–C).
PCA and t-SNE showed different distributions of amino
acid metabolism genes between the 2 clusters (Figures 1B,
C). Most of the amino acid metabolism genes were
significantly upregulated in cluster C1, which indicated
relatively active amino acid metabolism in cluster C1. However,
cluster C2 showed low expression of most amino acid
metabolism-related genes, suggesting decreased amino acid
metabolism (Figure 1D).

Differences in clinical, immunity, and
pathway between the two clusters

Survival analysis suggested that cluster C2 had an improved
prognosis, while poor overall survival was observed in cluster C1
(Figure 2A). Clinical characteristics, such as age, recurrent gene
mutations such as FLT3-ITD, and cytogenetic risk, can cause
pathogenesis and progression and impact outcomes. Therefore,
we explored the differences in clinical characteristics in the two
clusters. We found that patients in cluster C1 showed older age,
higher white blood cells (WBC) counts, higher percentages of

FIGURE 4

Prognostic study of the cancer genome atlas (TCGA) database in the 6-gene risk model. (A) Risk scores, (B) survival status, and (C) heatmap of
the 6 survival-related amino acid metabolism differentially expressed genes (DEGs). (D) Principal component analysis (PCA) and (E) t-distributed
stochastic neighbor embedding (t-SNE) analysis of the six amino acid metabolism-related genes exhibited the differential distribution.
(F) Kaplan–Meier analysis of OS between the two groups. (G) The predictive capability with area under curve (AUCs) at 1-, 3-, and 5-years.
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M4, M5, M6, and M7, advanced cytogenetic risk, and higher
frequencies of NPM1 mutations (Table 1).

The infiltrating immune cells in different clusters were
evaluated. The ESTIMATE algorithm showed that AML patients
in cluster 1 had significantly higher stromal, immune, and
ESTIMATE scores (Figure 2B). The CIBERSORT algorithm
showed that cluster C1 was full of monocytes, M1 macrophages,
Tregs, active CD4+ memory T cells, and neutrophils but lacked
naïve B cells, plasma cells, resting memory CD4+ T cells, resting
NK cells, activated mast cells, and resting mast cells (Figure 2C).
Additionally, the ssGSEA algorithm compared 29 immune
signatures and suggested that tumor-infiltrating cells, Tregs,
checkpoints, inflammation-promoting cells, and APC, HLA,
and IFN responses were highly active in cluster C1 (Figure 2D).
These results indicated higher immune infiltration among
cluster C1, which was consistent the amino acid metabolic
activity. However, cluster C2 can be defined as having an
immune “cold” phenotype.

We performed GSEA and GSVA of hallmark pathways.
GSEA found INFγ, JAK/STAT3, and TNFα inhibition in cluster
C2 (Figure 2E). Similarly, signaling pathways such as KRAS,
JAK/STAT3, INFγ, and TNFα in cluster C2 were downregulated
(Figure 2F).

Construction and validation of a
6-gene risk model

Differentially expressed gene (DEG) analysis between the
two clusters was performed, and 639 DEGs were identified (P-
value < 0.001, | logFC| > 1), including 431 upregulated genes
and 208 downregulated genes. We identified six survival-related
amino acid metabolism DEGs (Figure 3A). In addition, HNMT,
TFEB, SDSL, SLC43A2, and SFXN3 acted as risk factors, while
TRH was a favorable factor (Figure 3B). Furthermore, LASSO
analysis was conducted to construct the risk signature. Finally,

TABLE 2 The characteristics of 132 acute myeloid leukemia (AML) patients between different risk group.

Characteristics High risk (N = 66) Low risk (N = 66) Total (N = 132) P-value

Age 56.89± 15.71 49.65± 16.25 53.27± 16.33 0.01

WBC 39.94± 39.50 28.74± 44.58 34.38± 42.31 0.01

Blast cell (%) 68.50± 22.10 62.83± 24.06 65.67± 23.19 0.2

BM blast cell (%) 35.55± 29.79 40.68± 32.75 38.11± 31.29 0.44

Status 1.80E-04

Alive 15 (11.36%) 37 (28.03%) 52 (39.39%)

Dead 51 (38.64%) 29 (21.97%) 80 (60.61%)

FAB 1.60E-05

M0 4 (3.03%) 8 (6.06%) 12 (9.09%)

M1 16 (12.12%) 16 (12.12%) 32 (24.24%)

M2 10 (7.58%) 22 (16.67%) 32 (24.24%)

M3 2 (1.52%) 12 (9.09%) 14 (10.61%)

M4 20 (15.15%) 7 (5.30%) 27 (20.45%)

M5 12 (9.09%) 0 (0.0e + 0%) 12 (9.09%)

M6 2 (1.52%) 0 (0.0e + 0%) 2 (1.52%)

M7 0 (0.0e + 0%) 1 (0.76%) 1 (0.76%)

Cytogenetics risk 2.30E-05

Favorable 4 (3.03%) 26 (19.70%) 30 (22.73%)

Intermediate 46 (34.85%) 27 (20.45%) 73 (55.30%)

Poor 16 (12.12%) 13 (9.85%) 29 (21.97%)

FLT3 0.09

Negative 41 (31.78%) 50 (38.76%) 91 (70.54%)

Positive 24 (18.60%) 14 (10.85%) 38 (29.46%)

NPMc 5.50E-04

Negative 41 (31.06%) 59 (44.70%) 100 (75.76%)

Positive 25 (18.94%) 7 (5.30%) 32 (24.24%)
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all six genes were included to develop the risk model based on
the optimum λ (Figures 3C,D). The risk score was listed in
Supplementary Table 5. In addition, to visualize variations in
the clusters, risk scores, survival status, cytogenetic risk, and age
of AML patients, an alluvial diagram was plotted (Figure 3E).
Patients in cluster C1 exhibited higher risk scores; in contrast,
cluster C2 had lower risk scores (Figure 3F).

According to the median value, patients were divided
into high-risk (n = 66) and low-risk (n = 66) subgroups
(Figure 4A). We indicated that more patients were dead in
the high-risk group than the low-risk group (Figure 4B).
Additionally, the expression levels of HNMT, TFEB, SDSL,
SLC43A2, and SFXN3 were increased, while TRH expression
was lower in the high-risk group (Figure 4C). PCA and
t-SNE analyses exhibited recognizable distribution between the
two groups (Figures 4D,E). In addition, patients in the low-
risk group had superior OS than those with high-risk scores
(Figure 4F). Moreover, the risk model demonstrated a well-
predictive capability with area under curve (AUCs) of 0.81, 0.79,
and 0.86 at 1, 3, and 5 years, respectively (Figure 4G).

We used the GSE10358 dataset to validate the capability
of the 6-gene risk model. Patients were divided into high-
risk (n = 44) and low-risk (n = 47) groups (Supplementary
Figures 2A,B). In addition, the expression levels of HNMT,
TFEB, SDSL, SLC43A2, and SFXN3 were increased, while TRH
expression was lower in the high-risk group (Supplementary
Figure 2C). Similarly, the PCA and t-SNE analyses distributed
patients in the two groups of the GSE10358 cohort in various
directions (Supplementary Figures 2D,E). Patients in the low-
risk group had a well-predictive value (p = 0.02) in the validation
database (Supplementary Figure 2F). Additionally, the AUCs
were 0.68, 0.66, and 0.77 at 1, 3, and 5 years, respectively,
suggesting that the risk model had a good predictive capability
for AML patient survival (Supplementary Figure 2G).

Differences in clinical characteristics
between the risk groups

To explore the correlation between the risk score and clinical
characteristics, we assessed the differences in characteristics
between the two risk subgroups. Patients in the high-risk group
had older age, higher WBC counts, more patients who died, a
higher percentage of M4, M5, and M6, advanced cytogenetic
risk, and higher frequencies of NPM1 mutations (Table 2).

Additionally, low-risk patients also had a better prognosis
than high-risk patients and were still statistically significant in
the following subgroups: age (<60 years: p = 5.8e-4; ≥60 years:
p = 9.6e-4), sex (male: p = 8.0e-4; female: p = 1.3e-5), WBC
counts (<100 × 109/L: p = 1.3e-8), French-American-British
(FAB) classification (M0: p = 2.0e-3; M2: p = 5.7e-4; M4:
p = 5.4e-4), FLT3 mutation (positive: p = 0.04; negative: p = 6.9e-
7), NPM1 mutation (positive: p = 0.03; negative: p = 4.4e-8),
and cytogenetic risk (intermediate: p = 1.8e-4; poor: p = 0.03)
(Figures 5A–N).

Construction of a nomogram to
predict survival

We performed a multivariate Cox regression analysis with
the following variables: risk score, age, FAB, WBC counts, blast
cell (%), cytogenetic risk, FLT3 mutation, and NPMc mutation.
The risk score, age, and cytogenetic risk were independent
impact factors for OS (Figure 6A). Furthermore, the risk model,
age, and cytogenetic risk were integrated by a nomogram to
predict the 1-, 3-, and 5-year OS rates of the AML patients more
precisely (Figure 6B). Additionally, the nomogram displayed
favorable prognostic capability, with AUCs of 0.81, 0.83, and
0.93 at 1, 3, and 5 years, respectively (Figure 6C). The calibration
plot demonstrated that the nomogram was consistent with an
ideal model (Figure 6D).

Functions and pathways of the risk
model

The DEGs between the high-risk and low-risk groups
were assessed to perform GO and KEGG analyses to explore
the potential functions and pathways of the AA metabolism-
related gene risk model. In addition, GSEA and GSVA of
hallmark pathways were used to investigate the potential
mechanisms. The DEGs of the risk subgroup participated
in biological processes, such as immune system processes,
immune responses, and defense responses, were mainly
located in vesicles, plasma membrane parts, and granules
and played roles in molecular transducer activity, signaling
receptor activity, peptide binding, cytokine binding, and so
on (Figures 7A–C). KEGG analysis revealed enrichment of
phagosomes, transcriptional misregulation in cancer, osteoclast
differentiation, hematopoietic cell lineage, and viral protein
interactions with cytokines, and cytokine receptors (Figure 7D).
GSEA found that the P53 pathway, complement, fatty acid
metabolism, and inflammatory response were top enriched in
the high-risk group (Figure 7E). Similarly, signaling pathways
such as xenobiotic metabolism, reactive oxygen species
pathway, fatty acid metabolism, peroxisome, JAK/STAT3, and
inflammatory response were upregulated in the high-risk group
(Figure 7F). These outcomes indicated that the AA metabolism-
related 6-gene risk model was significantly concerned with
cancer and the immunoregulation of the TME.

Tumor immune microenvironment
analysis of the risk model

We compared differences in the infiltrating immune cells
and immune-related functions in the two groups. AML patients
in the high-risk group had significantly higher stromal, immune,
and ESTIMATE scores according to the ESTIMATE algorithm
(Figure 8A). The association between the six genes in the risk
model and the abundance of immune cells was also evaluated,
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FIGURE 5

Kaplan–Meier analysis of OS in different groups. (A,B) Age (<60 years and ≥60 years). (C,D) Sex (female and male). (E) WBC counts
(<100 × 109/L). (F–H) French-American-British (FAB) classification (M0, M2, and M4). (I,J) FLT3 mutation (positive and negative). (K,L) NPMc
mutation (positive and negative). (M,N) Cytogenetic risk (intermediate and poor).

and partial immune cells were found to be related to the six
genes (Figure 8B). Moreover, the CIBERSORT algorithm found
that the high-risk group had a more abundance of infiltrating
immune cells in monocytes and active CD4+ memory T cells
but inferior infiltration of naïve B cells, plasma cells, resting
memory CD4+ T cells, follicular helper T cells, activated mast
cells, and resting mast cells (Figure 8C). Additionally, the
ssGSEA algorithm suggested that tumor-infiltrating cells, Tregs,
checkpoint, inflammation-promoting, APC, HLA, and IFN
responses were highly active in the high-risk group (Figure 8D).
These results revealed that the high-risk group had higher
immune infiltration and can be recognized as an immune “hot”
phenotype.

The expression of HLA-related genes and immune
checkpoint-related genes between two subgroups were also
evaluated. We showed that most HLA-related genes were
upregulated in the high-risk group (Figure 8E). In addition,
patients in the high-risk group possessed significantly higher
expression of PDCD1 (PD1), CTLA4, CD200R1, CD276, CD80,

LILRB4, KIR3DL1, LGALS9, TNFSF14, TNFSF18, and TNFSF9.
The expression levels of CD160, CD244, CD44, CD47, NRP1,
and TMIGD2 was lower in high-risk patients than in low-risk
patients (Figure 8F).

Tumor mutation burden and drug
sensitivity analyses of the risk model

We did not find significantly different between the two risk
groups in the level of TMB (Figure 9A). The patients’ survival of
different TMB levels was no significant difference (Figure 9B).
According to risk scores and TMB scores, patients were
divided into four groups. We exhibited that the low-mutation-
low-risk group had the highest survival, while the high-
mutation-high-risk group had the lowest survival (Figure 9C).
The results indicated that our model’s prediction ability was
more substantial than the TBM’s. We explored the different
distribution of somatic mutations in the two risk groups.

Frontiers in Nutrition 10 frontiersin.org

https://doi.org/10.3389/fnut.2022.1056648
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-09-1056648 December 16, 2022 Time: 15:9 # 11

Zhou et al. 10.3389/fnut.2022.1056648

FIGURE 6

Development of a predictive nomogram in the cancer genome atlas (TCGA) datasets. (A) The multivariate cox regression analysis validated
independent prognostic factors in TCGA database. (B) Development of nomogram based on risk score, age, and cytogenetic risk in TCGA
database. (C) The performance of the nomogram was assessed by receiver operating characteristic (ROC) curves for 1, 3, and 5 years.
(D) Calibration curves for 1-, 3-, and 5-year prediction. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001, ns, no significant.

Patients in the high-risk group showed more somatic mutations
in NPM1, FLT3, KRAS, and TP53 than those in the low-risk
group and lower mutations in DNMT3A (Figures 9D,E).

Additionally, we propagated predictions from GDSC2 data
into TCGA samples, and the IC50 values of 198 chemotherapy
drugs were calculated (Figure 9F). We suggested that 64
drugs had lower IC50 values in the high-risk group, and 18
drugs in the low-risk group. Moreover, we selected commonly
used medications in AML to evaluate the sensitivity of these
drugs. We discovered that patients in the low-risk group had
significantly lower IC50 values of cytarabine and vorinostat
than those in the high-risk group, and had higher IC50 values
of vinorelbine, epirubicin, gemcitabine, and sorafenib in the
low-risk group (Figure 9G). We also found that patients in
the low-risk group had lower IC50 values of venetoclax, but
without statistical significance, which consistent with the result
where the expression of BCL2 was higher in the low-risk group
than in the high-risk group (Supplementary Figure 3) and the
apoptosis was more active in the low-risk group than in the

high-risk group (Figure 7F). These results offer evidence for the
treatment stratification of patients with AML.

Distribution of amino acid pathways
between the two risk groups

The differences in amino acid pathway activity between
the two risk subgroups were exhibited based on ssGSEA.
We demonstrated that the processes of glutamine transport,
L-lysine transmembrane transport, L-histidine transmembrane
transport, and proline transmembrane transport were more
active in the patients with low-risk scores. In contrast,
the processes of L-aspartate transmembrane transport, sulfur
amino acid transport and L-glutamate transmembrane transport
were more active in the high-risk group (Figure 10A).
Furthermore, the aspartate family amino acid catabolic, arginine
metabolic, glutamate catabolic, glutamate metabolic, histidine
catabolic, isoleucine metabolic, L-phenylalanine metabolic,
L-serine metabolic, threonine metabolic, tryptophan catabolic
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FIGURE 7

Pathway enrichment analysis between risk groups. (A–C) gene ontology (GO) analysis for differentially expressed genes (DEGs) between the
two risk groups. (D) kyoto encyclopedia of genes and genomes (KEGG) pathway analysis for DEGs between the two risk groups. (E) The top five
activated hallmark pathways by gene set enrichment analysis (GSEA). (F) Heatmaps of hallmark analysis in the risk groups by gene set variation
analysis (GSVA) enrichment analyses.

and metabolic, tyrosine catabolic and metabolic processes were
more active in the high-risk subgroup. In contrast, the aspartate
metabolic, glutamine metabolic, leucine catabolic, leucine
metabolic, lysine metabolic and proline metabolic processes
were more active in the low-risk subgroup (Figure 10B). In
conclusion, some amino acid metabolism pathways and risk
scores were positively associated with the malignant progression
of AML.

Discussion

Although targeting cancer metabolism to increase
immunotherapy efficacy and overcome drug resistance is highly
promising, targeting cancer metabolism may disrupt normal
metabolic pathways in immune cells in the TME (30). Therefore,
targeting the appropriate metabolic pathways and molecules
to kill tumor cells without damaging antitumor immunity is
critical. Studies have reported that the concentration of all 20
amino acids is higher in the BM than in peripheral blood, and
plays a positive role in the proliferation and maintenance of

hemopoietic stem cells (HSCs) (31). In addition, leukemia stem
cells (LSCs) in newly diagnosed AML patients, are dependent
on amino acid metabolism for OXPHOS to survival (15).
Moreover, therapies targeting several amino acid metabolisms
can kill AML blast and LSCs, including the glutaminase (GLS)
inhibitor CB-839 (32). Glutaminase inhibition can promote
leukemia cells to overcome drug resistance, and to be sensitive
to BCL2 inhibitors, FMS-like tyrosine kinase 3 and other
tyrosine kinase inhibitors (25, 32, 33). Moreover, tryptophan
metabolic enzyme and IDO inhibitor potentiate the effects of
CD33/CD3-bispecific T-cell engage (BiTE R©) antibodies (34).
IDO1 inhibitors combined with CD19 CAR-T immunotherapy
improved the efficacy of CD19 CAR-T–cell therapy in mouse
lymphoma xenograft models (35). The polyethylene glycol–
conjugated (PEGylated) forms of arginine deiminase (ADI)
(ADI-PEG 20) combined with cytarabine to treat AML (25),
and PEG-ARGase I (arginase-1) (36). These studies indicated
that AA metabolism was an ideal target to improve cancer
immunotherapy, but there are still few related multi-omics
comprehensive studies about AML and even other tumors.
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FIGURE 8

Immune cells and immune-related genes between risk groups.
(A) Stromal score, immune score, and ESTIMATE score between
the risk groups. (B) The abundance of immune cells between
the risk groups. (C,D) Immune cells and immune responses
between the risk groups by the CIBERSORT and single-sample
gene set enrichment analysis (ssGSEA) algorithms. (E,F) Boxplots
of HLA-related genes and checkpoint-related genes in the risk
groups. * p < 0.05, ** p < 0.01, *** p < 0.001, ns, no significant.

We first identified two clusters based on prognosis-related
genes of AA metabolism. The two clusters showed significantly
different clinical characteristics, AA metabolism, TME, and
pathways. The immune phenotype changed from “hot” to “cold”

from clusters C1 to C2, accompanied by low expression of
most AA metabolism-related genes and inhibition of tumor
signaling pathways. In addition, the “hot” immune phenotype
in cluster C1 is usually correlated with poor survival, older age,
and poor cytogenetic risk. Increasing evidence indicates that
heterogeneity in the immune environment and its interaction
with AML blasts cause different outcomes and responses to
therapy. Our results found that cluster C1 possessed more
monocytes, Tregs, and neutrophils, which are related to
immune suppression. However, cluster C1 possessed fewer
naïve B cells, plasma cells, resting memory CD4+ T cells,
resting NK cells, activated mast cells, and resting mast cells,
which are acknowledged as antitumor immune cells (21).
Immunologically hot or cold tumor microenvironments may
have various prognostic effects for checkpoint inhibitor (CPI)
therapy in solid tumors. However, the heterogeneity of the AML
microenvironment was little known (37). AML BM samples
had two types of immune microenvironments, one type was
an immune-enriched and IFN-γ dominant type, which had
elevated expression of lymphocyte-associated genes, IFN-γ, and
immune checkpoint molecules; the other type was an immune-
depleted type, which had low expression of T-cell and B-cell
genes, while had elevated expression of mast cell function–
and T-cell exhaustion–associated genes (38, 39). Similarly, we
demonstrated that checkpoint-related and tumor-infiltrating
lymphocyte-associated genes were highly active in cluster C1,
suggesting that patients in cluster C1 were immune-enriched
and might be more susceptible to CPIs.

We filtered six essential genes to develop the risk model via
LASSO analyses based on the results of univariate Cox analysis
and DEGs, including TRH, HNMT, TFEB, SDSL, SLC43A2,
and SFXN3. Based on the risk model, we calculated risk scores
and divided patients into low- and high-risk groups. The
patients with high-risk scores had a poor prognosis, older age,
poor cytogenetic risk, and high AUC. We displayed that the
risk model was an independent prognostic factor for AML
by multivariate Cox analysis and clinical characteristics and
even in the nomogram, which integrated the risk score with
clinical characteristics. These results revealed that our model
was firm and accomplished favorable in predicting the survival
of AML patients.

The functions of six genes in the model and their related
proteins were explored. Thyrotropin Releasing Hormone (TRH)
encodes a member of the thyrotropin-releasing hormone
family. A study showed that high TRH expression was related
to favorable survival in t (8; 21) (q22; q22) AML (40),
which was consistent with our results. HNMT (Histamine
N-Methyltransferase) encodes histamine N-methyltransferase,
which is found in the cytosol and uses S-adenosyl-L-methionine
as the methyl donor and participates in histamine metabolism.
HNMT significantly upregulated in human non-small cell lung
cancer (NSCLC) tissues, conferred a worse prognosis, and was
co-expressed with HER2 (41). In addition, HNMT upregulation
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FIGURE 9

Tumor mutation burden (TMB) and drug sensitivity analysis. (A) Difference in TBM between the two risk groups. (B) OS of patients with different
TMB levels. (C) Kaplan–Meier analysis of OS with TMB and risk score. (D,E) Waterfall plot of the top twenty genes’ TMB status in the two risk
groups. (F) Drug sensitivity analyses between the two risk groups. Green, sensitive drugs in low-risk group; Red, sensitive drugs high-risk group;
Blue, no sense. (G) Comparison of drug sensitivity between the two risk groups. * p < 0.05, ** p < 0.01, *** p < 0.001, ns, no significant.

causes cancer stem cell formation and protect it from oxidative
stress by interaction with HER2 in NSCLC (41). TFEB
(Transcription Factor EB) enables DNA-binding transcription
factor activity. A study reported that homocysteine suppresses
autophagy through AMPK-mTOR-TFEB signaling in human
THP-1 macrophages (42). Moreover, disrupting the MYC-TFEB
circuit affects amino acid homeostasis and provokes metabolic
energy (43). SDSL (Serine Dehydratase Like) is predicted to
be involved in isoleucine biosynthetic and threonine catabolic
processes. SLC43A2 (Solute Carrier Family 43 Member 2)
encodes a member of the L-amino acid transporter-3 or SLC43
family of transporters. It mediates transport of L-isomers of

neutral amino acids, including leucine, phenylalanine, valine,
and methionine, and don’t depend on sodium, chloride, and pH
(44). Cancer SLC43A2 can alter T-cell methionine metabolism
and histone methylation (45). SFXN3 (Sideroflexin 3) enables
serine transmembrane transporter activity and is involved in
serine import into mitochondria. Serum SFXN3 autoantibody is
a novel tumor marker for oral squamous cell carcinoma (46).
The function of TRH in AML has been verified by previous
studies. However, there are no direct reports of HNMT, TFEB,
SDSL, SLC43A2, and SFXN3 in AML, and this study was
the first to report that HNMT, TFEB, SDSL, SLC43A2, and
SFXN3 were related to the prognosis of AML. Our results
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FIGURE 10

Distribution of amino acid pathways. (A) The single-sample gene set enrichment analysis (ssGSEA) analysis of the amino acid synthetic and
transport pathways. (B) The ssGSEA analysis of the amino acid catabolic and metabolic pathways. * p < 0.05, ** p < 0.01, *** p < 0.001, ns, no
significant.

might define new biomarkers of AML to be explored for
further research.

GO and KEGG enrichment analyses suggested that the
genes in the high-risk group mainly participated in immune
system processes and played roles in molecular transducer
activity and signaling receptor activity. Combining the results
of GSVA and GSEA of hallmark pathways, the xenobiotic
metabolism, reactive oxygen species (ROS) pathway, fatty
acid metabolism, JAK/STAT3, and inflammatory response
were upregulated in the high-risk group. Study showed that
polymorphic variants in xenobiotic metabolism genes may
increase the risk of adult AML (47). Cancer cells need high
ROS levels to promote tumor development and progression

(48). AML is usually under oxidative stress because of impaired
ROS homeostasis (49, 50). BM adipocytes were often been
observed to remodeling and lipolysis in elderly AML patients,
and AML cell survival through metabolic activation of fatty
acid oxidation (FAO). This can cause dormancy and drug
resistance in LSCs (51). The JAK/STAT pathway is abnormally
activated or suppressed in LSCs, and plays a vital role
in AML survival, proliferation, and self-renewal properties
(52). The inflammatory population is associated with poor
prognosis in AML patients (53). These results indicated the
interference of nutrient metabolism of patients in the high-
risk group, and proliferation and survival activity of tumor
cells were more active in the high-risk group. These pathways
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might be critical antitumor ways for targeting amino acid
metabolic therapy.

Similarly, the high-risk group was recognized as having a
“hot” immunophenotype related to poor survival, while the
low-risk group exhibited the opposite effect. Our results found
that the high-risk group possessed more monocytes, Tregs.
and neutrophils and higher expression of PD1 and CTLA4,
which were related to immune suppression (37). The low-
risk group exhibited infiltration of naïve B cells, plasma cells,
resting memory CD4+ T cells, activated mast cells, and resting
mast cells, which are acknowledged as antitumor immune cells
(21). Meanwhile, checkpoint-related and HLA-related genes
were also highly active in the high-risk group, which indicated
that more recognition of tumor-associated antigens with more
HLA presentation, and more success of immune checkpoint
inhibitor therapy (54). Furthermore, TMB is the total load of
somatic mutations in tumor cells, which may cause specific
tumor neoantigens. Therefore, patients with a high TMB are
likely to be more responsive to immunotherapy (54–57). Our
results observed that the risk score was not associated with
TBM, suggesting that the predictive ability of the risk model is
independent of TMB and that the risk score can replenish the
potential patients. They can benefit from the current conditions.
Additionally, the NPM1 gene is the most common genetic lesion
in adult AML, occurring in approximately one-third of patients
(58), and NPM1 mutation leads to an abnormal cytoplasmic
expression that leads to more efficient HLA presentation (59).
Our results demonstrated that NPM1 was the most mutated
in the high-risk group and that HLA-related genes were highly
active in the high-risk group. Thus, patients in the high-risk
group might benefit more from immunotherapy. The results of
drug sensitivity prediction demonstrated that the patients in the
high-risk group were more sensitive to sorafenib, selumetinib,
and entospletinib. Sorafenib, a multitargeted FLT3 kinase
inhibitor, either alone or in combination with conventional
chemotherapy, plays a crucial role in AML therapy (60, 61).
Selumetinib is an oral MAP-ERK kinase (MEK)-1/2 inhibitor
and it has modest antileukemic activity in advanced AML
in a phase II study (62). Entospletinib was an inhibitor of
SYK, and AML patients with higher HOXA9/MEIS1 expression
had improved overall survival than lower HOXA9/MEIS1
expression, when patients received entospletinib in combination
with intensive chemotherapy in a phase Ib/II study (63). The
correlation between amino acid metabolism and the efficacy
of sorafenib, selumitinib and entospletinib requires further
investigation. We also found that patients in the high-risk group
had higher IC50 values of venetoclax (the BCL-2 inhibitor),
which consistent with the result where the expression of BCL2
was higher in the low-risk group than in the high-risk group
and the apoptosis was more active in the low-risk group than
in the high-risk group. These results suggested that although in
the presence of apoptosis, AML cells could dependent on amino

acid metabolism to survival. However, the potential mechanism
of this phenomenon needed to further explored.

Abnormal AA metabolism can induce immune escape
and drug resistance (64, 65). First, glutaminase is upregulated
expression in AML (25), and glutamine metabolism is important
for the maintenance, relapse, and refractory of leukemia (15, 32,
66, 67). Furthermore, glutamine is also essential for immune
cells, such as T cells and macrophages (68, 69). Glutamine
restriction disturbs the balance between the generation of
Th1 cells and Treg cells, and promotes producing more Treg
phenotype (70, 71). Glutamate is a glutamine-derived substance,
and we demonstrated that glutamate metabolism was active in
the high-risk group. Targeting glutamine metabolism may be
effective in leukemia (24). Furthermore, metabolic adaptation
can cause several tyrosine kinase inhibitors (TKIs) resistance,
so targeting glutaminolysis combined with TKIs in specific
leukemias can be effective (25). Second, AML blasts depend
on arginine for proliferation (36), and they have deficiencies
in arginine-recycling pathway enzymes, which means that
they are arginine auxotrophic (36). In addition, activated T
cells increase the metabolic requirement for arginine (72,
73). In our results, arginine metabolism was active in the
high-risk group. ADI and ARGase are two crucial enzymes
of the arginine metabolism/urea cycle, could be targeted for
potential therapy, such as ADI-PEG 20 (25) and PEG-ARGase
I (36). Third, indoleamine-2,3-dioxygenase (IDO) 1, IDO2,
and tryptophan-2,3-dioxygenase are the limiting enzymes for
tryptophan metabolism (74). AML patients express IDO, which
is related to significantly poor survival (34). AML cells and
leukemic DCs directly convert T cells into Treg cells and inhibit
T-cell proliferation by an IDO-dependent mechanism (75, 76).
The mesenchymal stromal cells (MSCs) upregulated IDO to
suppress T-cell function when response to inflammation (77).
Our results showed that tryptophan metabolism was active
in the high-risk group. Moreover, an IDO inhibitor enhances
the effects of CD33/CD3-bispecific T-cell engage (BiTE R©)
antibodies (34). Additionally, cysteine metabolism is vital for
LSC maintenance, and consumption of cysteine canuses the
death of AML stem and progenitor cells (78). AAs are necessary
for the development of hematological malignancies by supplying
energy, promoting biosynthesis, and assisting immune escape.
Hematological malignancies usually depend on specific amino
acids for their survival, and targeting AA metabolism may be a
promising option that has been clinically validated (15).

Undeniably, there were some limitations in our study.
First, we downloaded data from public databases. The AA
metabolism-related gene risk model and its association with
immunotherapy response need to be explored and validated by
more experimental and clinical studies. Second, the results of
amino acid metabolism in AML patients need to be verified.
More practical and clinical studies should be performed to
explore further the potential effect of amino acid metabolism on
the prognosis and immune therapy response of AML.
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In conclusion, this article finally developed an AA
metabolism-related risk signature to predict the prognosis
of patients with AML and explored its essential role in
TME. Our results could offer novel perspectives for individual
precision medical options. Meanwhile, the risk model can
supplement identifying potential patients who can benefit from
immunotherapy. Furthermore, related targeted drugs could
be explored according to new tumor-associated biomarkers
and changes in amino acid metabolic pathways, and based
on different amino acid metabolism in AML patients, and
individual precision medical options could be carried out.
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