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Introduction: Linear programming (LP) is often used within diet optimization

to find, from a set of available food commodities, the most a�ordable diet that

meets the nutritional requirements of an individual or (sub)population. It is,

however, not always possible to create a feasible diet, as certain nutritional

requirements are di�cult to meet. In that case, goal programming (GP) can

be used to minimize deviations from the nutritional requirements in order to

obtain a near feasible diet. With GP the cost of the diet is often overlooked

or taken into account using the ε-constraint method. This method does

not guarantee to find all possible trade-o�s between costs and nutritional

deficiency without solving many uninformative LPs.

Methods: We present a method to find all trade-o�s between any two linear

objectives in a dietary LP context that is simple, does not solve uninformative

LPs and does not need prior input from the decision maker (DM). This method

is a bi-objective algorithm based on the NonInferior Set Estimation (NISE)

method that finds all e�cient trade-o�s between two linear objectives.

Results: In order to show what type of insights can be gained from this

approach, two analyses are presented that investigate the relation between

cost and nutritional adequacy. In the first analysis a diet with a restriction

on the exact energy intake is considered where all nutrient intakes except

energy are allowed to deviate from their prescription. This analysis is especially

helpful in case of a restrictive budget or when a nutritionally adequate diet is

either una�ordable or unattainable. The second analysis only relaxes the exact

energy intake, where the other nutrients are kept within their requirements, to

investigate how the energy intake a�ects the cost of a diet. Here, we describe

in what situations the so-called more-for-less paradox takes place, which can

be induced by requiring an exact energy intake.

Conclusion: To the best of our knowledge, we are the first to address how

to obtain all e�cient trade-o�s of two linear objectives in a dietary LP context

and how this can be used for analyses.

KEYWORDS

diet optimization, goal programming, bi-objective, nutritional adequacy, linear

programming
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1. Introduction

The importance of a nutritionally adequate diet has been

widely studied and acknowledged (1, 2). The adverse effects

of malnutrition can result in acute and/or lifelong problems

affecting the health and well-being of an individual. A

micronutrient deficiency indicates a lack of essential vitamins

andminerals, and is highly prevalent among young children and

pregnant females in low- and middle-income countries (3). It

is estimated that in 2004 the deficiencies of vitamin A and zinc

were responsible for the deaths of 0.6 million and 0.4 million

children, respectively, and the deficiency of iron was responsible

for 0.1 million maternal deaths (4). These detrimental effects

of nutritional deficiencies are caused by a combination of

insufficient availability of affordable and nutritious foods (5)

and a relatively high micronutrient demand of young children,

adolescent girls and pregnant females.

Optimization techniques such as linear programming (LP)

can help to find a nutritionally adequate diet. In a dietary context

LP is often applied to find the most affordable diet for an

individual, subpopulation or population given a set of available

food commodities and nutritional requirements (6–9). We focus

on dietary optimization in a humanitarian context, where diet

optimization is used to determine the absolute minimum cost

of a nutritious diet. This can then be compared to a household

income to assess whether the inhabitants of a certain region can

afford a healthy diet and which (governmental) interventions

are necessary (5). While menu planning is beyond the scope

of this paper, the discussed methods and analyses can readily

be extended.

The key factor of the described LP is that the resulting

diet is the cheapest diet that is nutritionally adequate. However,

it is not always possible to construct a nutritionally adequate

diet. For example, in low- and middle-income countries it is

challenging to meet the nutritional requirements with the foods

available, as there often is a shortage of (affordable) nutrient-

dense foods. This is even more problematic when diseases are

prevalent that impact the intake and absorption of nutrients

(10). An additional challenge is the inclusion of dietary and

cultural preferences, which further limits the diet composition.

It is for example difficult to compose a vegan nutrient adequate

diet, as the primary source of vitamin B12 is found nearly only

in animal source foods such as meat and dairy (1).

When it is not possible to obtain a feasible diet, there

is a need to find a diet that is “somewhat close” to

feasible while still taking costs into consideration. As an

example, a nutritious diet may be unaffordable due to an

insufficient household budget. This is a real-life constraint:

before COVID-19 already 70% of the people in low- and

middle-income countries could not afford a healthy diet (11).

A most recent report (12) estimates that in 2020 almost

3.1 billion people worldwide could not afford a healthy

meal. In this case it is still necessary to find a diet that

is as nutritious as possible within the budgetary restrictions.

This is particularly useful for individuals whose nutritional

requirements are challenging. For example, for adolescent girls

it is difficult to obtain a nutritious and affordable diet as they

require more iron while their energy intake is lower than

for boys of the same age (13). Thus, adolescent girls need

more (relatively expensive) nutrient-dense foods which might

be unavailable.

The question is how to define what “somewhat close” and

“second best” entails. Goal programming (GP) is an often used

approach (14–16) for finding solutions that are somewhat close

to feasible, where additional decision variables are introduced

to measure the deviation from minimum and maximum

requirements for each nutritional constraint. The (weighted)

summed deviation of all (relevant) nutrients is minimized.

In case a nutritionally adequate diet is possible, the summed

deviation will be zero. Otherwise, it will present a “second best”

diet with minimal summed deviation.

Althoughmost GP approaches entirely omit the original cost

objective (14, 16), the costs are included in the model in (15)

through both a cost constraint and extending the GP objective

to minimize a deviation of the cost from the optimal cost.

The trade-off between the cost and the nutritional adequacy—

which hinges on the fact that a healthier diet costs more,

discussed in much detail in the overview paper of (17)—is

reflected by weights assigned to the nutritional deviations and

the cost. The disadvantage of this approach is that the decision

maker (DM) has to specify weights for each of the objectives

indicating their preference. These weights are generally difficult

to interpret and even more difficult to set a priori. Instead, it

is more beneficial to supply the DM with several solutions that

each represent a different trade-off between cost and nutritional

adequacy such that they can select the solution that suites them

best. Furthermore, the complete overview of possible trade-offs

allows the DM to analyze and understand how these objectives

affect each other. The most accurate description of the relation

between the objectives is obtained when all possible trade-offs

are found.

In order to obtain all trade-offs one could progressively

tighten the cost constraint (18). This method is known as the

ε-constraint method (19), where ε denotes the increment that

tightens the constraint. Various papers in the current literature

use the ε-constraintmethod to find trade-offs between two linear

objectives in a dietary context (18, 20–24). With the ε-constraint

method one has to make a selection for ε. Unless the increments

for ε are sufficiently small, one cannot obtain all trade-offs. To

determine how small the increments of ε should be to obtain

all trade-offs, one needs to know all trade-offs, which brings

us back to the issue of how to find all trade-offs. Of course,

simply decreasing the size of ε usually results in a more accurate

representation of the trade-offs, but it also implies that many

uninformative LPs that do not result in a new trade-off point

have to be solved.
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An alternative method is weighted sum scalarization (25),

where each of the objectives gets assigned a certain weight within

the combined objective. Selecting different weights potentially

yields different trade-offs. Similar to the problem of the ε-

constraint method, one needs to select these weights. There are

ways to make reasonable selections for these weights, e.g., (26),

but they do not necessarily result in all trade-offs. Selecting only

sufficiently small changes in the weights again results in a more

accurate representation of the trade-offs, but it also implies that

many uninformative LPs are solved.

Therefore, in this paper we focus on finding all trade-offs

between two linear objectives in a dietary LP context, where

the method should be simple, does not solve uninformative LPs

and does not need prior input from the DM. To the best of our

knowledge, we are the first to address how to obtain all efficient

trade-offs of two linear objectives in a dietary LP context. Our

contributions are threefold. First, we illustrate multi-objective

optimization concepts such as efficiency and Pareto curve in

a dietary context. We point out the importance of finding all

efficient trade-offs, as they help to make decisions when there

is a restrictive budget, or when a nutritionally adequate diet is

either unaffordable or unattainable. Second, we present a bi-

objective algorithm which is able to obtain all efficient trade-

offs of two linear objectives. This method is based on the

principles of the NISE (NonInferior Set Estimation) method

(27). Here, we do not need an a priori preference of the DM

for how to trade off the objectives. Third, we explain what types

of insights can be gained using the bi-objective approach by

performing two analyses that are relevant when studying the

nutritional adequacy and cost of a diet. In the first analysis an

exact amount for energy intake is considered, where all nutrients

except energy are allowed to deviate. The analysis shows whether

a nutritious diet is attainable and what the nutritional content

of a diet is given a particular budget. In the second analysis we

investigate how the energy intake impacts the cost of a diet by

relaxing the energy intake and keeping all other nutrients within

their requirements.

Our paper is structured in the following way: in Section

2 we formally introduce the linear diet optimization

problem (LDOP). In Section 3.1 we explain how to apply

GP to measure nutritional inadequacies. In Section 3.2

we describe multi-objective concepts in a dietary context

and we show the bi-objective algorithm that obtains all

efficient trade-offs. In Section 4 we explain what types of

insights can be obtained from this procedure by presenting

the two described analyses. Finally, Section 5 provides

a discussion.

2. Preliminaries

In this section we describe the LDOP, which is modeled

using LP. We use this formulation as a starting point for the

remainder of this work. The reader is referred to (28) for more

information regarding general LP optimization.

The LDOP is a traditional LP problem (29, 30), which aims

to find the most affordable diet for an individual given a set

of available food commodities and the individual’s nutritional

requirements. The decision variable xi states the amount of

food commodity i included in the diet, given a set of available

food commodities I. The total cost of a diet is determined

by summing over the cost of each included food commodity,

where the cost ci per unit of food commodity i is known. As

the diet should adhere to nutritional requirements, lower and

upper limits are provided for each nutrient n ∈ N indicated by

bn and bn, respectively. Note that in practice not all nutrients

have an upper bound. The amount of nutrient n per unit of food

commodity i is represented by ani . The LDOP is then formally

described as

(LDOP) = min
∑

i∈I

ci xi (2.1)

s.t.
∑

i∈I

ani xi ≥ bn ∀n ∈ N (2.2)

∑

i∈I

ani xi ≤ bn ∀n ∈ N (2.3)

xi ≥ 0 ∀i ∈ I, (2.4)

where the Equation (2.1) minimizes the cost of the diet,

Equations (2.2), (2.3) ensure the nutritional feasibility and

constraints Equation (2.4) makes sure that only non-negative

amounts are included in the diet.

In the LDOP the energy intake of an individual is

considered a nutrient which has to adhere to certain

requirements. Originally, the energy intake was modeled

as a minimum requirement only (31–33). However, this can

lead to unacceptable diets consisting of too many calories, as

energy-dense foods are relatively cheap compared to nutrient-

dense foods. Additionally, this may lead to diets which consist of

too large amounts of food to consume. This can be overcome by

either including a range for the energy constraint (34–36), or by

setting the energy intake to an exact amount (6–9, 16, 18, 37, 38).

In line with recent literature we will initially consider an exact

energy intake. In Section 4.2 however we relax this assumption

to investigate how the energy intake influences the cost of

a diet.

Besides these nutritional constraints that define the core of

the LDOP, often additional constraints are included to increase

the diversity and palatability of a diet, e.g., food commodity

constraints (28, 35), palatability constraints (35) or food group

constraints (28). As this is not the main focus of this work, we

only include food commodity constraints to impose a minimum

and maximum intake on each food commodity. These are

structured as follows

xi ≥ di ∀i ∈ I (2.5)
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xi ≤ di ∀i ∈ I, (2.6)

where di and di denote the minimum and maximum intake of

food commodity i, respectively.

3. Modeling trade-o� costs vs.
nutritional adequacy

This section is organized as follows. In Section 3.1 we show

how GP can be used to model nutritional inadequacy with

the LDOP as example. In case it is impossible to obtain a

nutritionally adequate diet, GP can help to find a diet which is

“somewhat close” to a nutritionally adequate diet. We present

three so-called achievement functions (objectives) which are

commonly used in the literature. As GP models often focus

on the satisficing side of a problem [“only [. . . ] minimizing

the non-achievement of several goals” (39)], we will initially

ignore the cost objective in Section 3.1. Next, in Section 3.2

we extend the GP approach by reintroducing the diet’s cost.

This inherently leads to a bi-objective optimization problem,

where one needs to trade off cost vs. nutritional adequacy. We

present a procedure based on the NISE method (27), which

efficiently computes all Pareto efficient trade-offs between cost

and nutritional adequacy.

3.1. Minimizing nutritional inadequacy
through goal programming

In order to allow for deviations of the nutritional Equations

(2.2), (2.3), two additional types of variables zn and zn, ∀n ∈ N

are introduced that reflect the under- and overconsumption of

a nutrient, respectively. There are two cases possible: either no

relaxation of a nutritional constraint is needed — implying that

both zn and zn are set to 0 — or relaxation is needed for either

the lower or the upper limit. Summarized,



































zn = zn = 0 if no limit of n is relaxed; nutrient adequacy,

zn > 0, zn = 0 if the lower limit of n is relaxed;

nutrient deficiency,

zn = 0, zn > 0 if the upper limit of n is relaxed;

nutrient excess.

Directly comparing the absolute nutrient excess or

deficiency of one nutrient with another would lead to a larger

emphasis on nutrients with a larger order of magnitude,

therefore we use the absolute percentage difference for each

nutrient relative to its limits. That is, for differences with regard

to the upper limit we consider

∣

∣

∣

∣

zn
bn

∣

∣

∣

∣

=
zn
bn
, given that there is an

upper limit for this specific nutrient. For differences with regard

to the lower limit we consider
∣

∣

∣

−zn
bn

∣

∣

∣
=

zn
bn
. Note that deviations

from the lower limit are penalized more heavily than deviations

from the upper limit as bn > bn.

In GP convention the objectives are referred to as

achievement functions. Here, they aim to minimize nutrient

deficiency and excess. We consider the following three

commonly used achievement functions:

1. Summed deviation of all nutrients (15, 16, 32, 39);

2. MinMax or worst-case deviation over all nutrients

(15, 16, 32, 39);

3. Number of unmet nutritional constraints (40).

Below we describe how to model these three options where

at this stage we only include constraints for the nutrients.

Additional non-relaxed constraints such as food commodity

constraints can be added upon preference of the user.

3.1.1. Summed deviation

The summed deviation, or Archimedean GP, minimizes the

sum of all deviations. The model is described as:

(GP-SD) = min
∑

n∈N

(

zn
bn
+

zn

bn

)

(3.1)

s.t.
∑

i∈I

ani xi ≥ bn − zn ∀n ∈ N (3.2)

∑

i∈I

ani xi ≤ bn + zn ∀n ∈ N (3.3)

zn, zn ≥ 0 ∀n ∈ N (3.4)

xi ≥ 0 ∀i ∈ I, (3.5)

where the objective contains the minimization of both zn and

zn as both under- and overconsumption are undesirable. For

nutrients where only underconsumption (overconsumption) is

considered, e.g., by recommendations of EFSA, FAO/WHO or

IOM, only zn (zn) has to be included in the objective. Note that

one can include weights in the objective to indicate the relative

importance of a nutrient.

3.1.2. MinMax

The MinMax or Chebyshev achievement function

minimizes the deviation of the worst performing nutrient

and is modeled as follows:

(GP-MinMax) = min zMM

s.t. (3.2)− (3.5)

zMM ≥
zn
bn

∀n ∈ N

zMM ≥
zn

bn
∀n ∈ N,
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where an additional decision variable zMM is introduced which

denotes the percentage difference of the worst performing

nutrient. Note that zMM ≥ 0, as zn, zn, bn, bn ≥ 0,∀n ∈ N.

3.1.3. Number of unmet constraints

The third achievement function is to minimize the number

of unmet constraints. For this a binary decision variable needs

to be introduced for each nutrient which makes it a mixed-

integer linear programming model. Let p
n
be 1 in case there

is a deficiency of nutrient n and 0 otherwise. A similar

binary variable is introduced for a nutrient excess, pn. The

corresponding model is:

(GP-Unmet) = min
∑

n∈N

(

p
n
+ pn

)

s.t. (3.2)− (3.5)

mn pn
≥ zn ∀n ∈ N

Mn pn ≥ zn ∀n ∈ N

p
n
, pn ∈ B ∀n ∈ N,

where mn and Mn are large coefficients (Big-M Method). Note

here that if zn > 0 (zn > 0), p
n
(pn) is forced to be one, and will

be minimized to be 0 otherwise. Although a safe choice can be

made for mn = bn, choosing a sufficiently big number for Mn

is less straightforward. Depending on user preference, a possible

safe choice for Mn could be 2–3× the maximum intake. Again,

weights can be included to indicate the relative importance of

a nutrient.

3.2. Computing the trade-o� between
costs and nutritional adequacy

The original cost objective, which was not included in the

previous section, will be re-introduced here. As we now have two

objectives over which we want to optimize, we are dealing with a

bi-objective optimization problem. In general for amulti-criteria

optimization it holds that one cannot minimize all objectives

to their individual minima1. In other words, there are trade-

offs between the objectives, which is especially challenging when

they are conflicting. In the bi-objective LDOP this means that

lowering the cost of a given solution is only possible while

worsening the nutritional adequacy of the diet. Similar, one

cannot improve the nutritional adequacy without raising the

cost. In particular, it is not evident to what extent improving one

of the objectives will worsen the other objective. This problem

1 Here, we assume that the ideal point is not attainable, which in our

case is a diet whichminimizes both the single cost objective and the single

achievement function to their individual minima.

can be solved by finding all possible trade-offs between cost and

nutritional adequacy.

Given a maximum allowed cost it is possible to determine

the diet that achieves minimum nutritional inadequacy

without exceeding the maximum cost. This can be modeled

by including a cost constraint (15), while minimizing the

nutritional inadequacy. Changing the maximum cost in this

constraint allows to obtain different combinations of cost vs.

nutritional adequacy. This procedure, commonly known as

the ε-constraint method (19), does not guarantee to find all

possible trade-offs unless the increments in the maximum cost

are sufficiently small: it is simply impossible to know upfront

what sufficiently small entails, unless all trade-offs are already

known. Furthermore, this procedure can lead to “inefficient”

or infeasible solutions. That is, if the chosen maximum cost

is too low, it might be impossible to create a diet that meets

the remaining non-relaxed constraints such as the exact energy

constraint (infeasible). On the other hand, for a given cost there

may exist a less expensive diet with the same nutritional content

as was found by the LP2 (inefficient). This last consideration

brings us to an understanding of solutions which are (in some

sense) better than others: a solution is considered “good” or

efficient if there exists no solution which performs strictly better

in one objective without worsening the other.

Finding all these possible efficient trade-offs ensures that

well-considered choices can be made without needing an a

priori preference for one of the objectives and it helps to

make decisions when a limiting budget is present, or when

a nutritionally adequate diet is unaffordable or unattainable.

Before we introduce a method that can find all possible trade-

offs, we first have to formalize some concepts regarding efficient

solutions (25). For ease of notation, let C(x) =
∑

i∈I ci xi be

the cost of a diet and let Z(x) be a measure for the nutritional

inadequacy as defined by one of the achievement functions in

Section 3.1, where x represents all decision variables in the

model3. A solution x is then called efficient if there is no other

diet which performs strictly better in one objective without

worsening the other. The corresponding solution, or criterion

value, y =
(

C(x),Z(x)
)

is referred to as a nondominated point.

The set consisting of all feasible solutions, referred to as

decision space, is often denoted with X. Here, x ∈ X consists

of all possible values of the decision variables within the model.

The criterion space Y consists of all feasible combinations of

C(x) and Z(x) such that x ∈ X. The set containing all efficient

solutions is known as XE and the set of nondominated points as

YN
4. Plotting all nondominated points generates a Pareto curve.

2 This is referred to as a weakly e�cient solution.

3 As an example, for the summed deviation as described in Section

3.1.1, it holds that x has length |I| + 2|N|.

4 This notation is not unique; an overview of di�erent notations can be

found in (25).

Frontiers inNutrition 05 frontiersin.org

https://doi.org/10.3389/fnut.2022.1056205
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Koenen et al. 10.3389/fnut.2022.1056205

FIGURE 1

Example of a Pareto Frontier, where C(x) represents the cost of a

diet and Z(x) the nutritional inadequacy. Y is the criterion space,

which represents all feasible combinations of C(x) and Z(x). YN

only contains nondominated points.

In Figure 1 an example of a Pareto curve for a minimization

problem is shown, where both objectives are linear. Note that

an inefficient point can be improved in both objectives.

In the case of two linear objectives for which we can always

find a feasible solution5, we can obtain all nondominated points

using weighted sum scalarization (25). This technique gives a

non-negative weight to each objective to indicate their relative

importance. The combined objective can be written as a convex

combination (non-negative weights summing up to 1) of C(x)

and Z(x), that is

min λC(x)+ (1− λ)Z(x) (3.6)

where λ ∈ [0, 1] is a weight which indicates the importance

of C(x) relative to Z(x). Here, the required constraints depend

on the chosen achievement function and the added dietary

constraints. Note that the weighted sum scalarization only

works for linear objectives with continuous variables and

is thus suitable for the summed deviation and MinMax

achievement function of Section 3.1, but not for the number of

unmet constraints.

For a given λ ∈ (0, 1) the obtained solution x of

Equation (3.6) is efficient and its corresponding criterion value

nondominated. One could potentially solve for different values

of λ to obtain efficient solutions and plot the corresponding

5 See (25) for all conditions. In short, it is relevant that the decision space

and the criterion space are both convex and closed, which holds in our

case sincewe have linear functions and reasonable lower and upper limits

for each food commodity. Furthermore, it should hold that the criterion

space is bounded from below, which holds for the LDOP as the cost

and the nutritional achievement function are both trivially bounded from

below by 0.

nondominated points. In case one solves for λ = 0 or λ = 1,

i.e., including only C(x) or Z(x), the solution can be weakly

efficient. For λ = 0 this means that there are multiple possible

diets which result in the same minimal nutritional inadequacy

but have a different cost. We are of course only interested

in the diet with the lowest cost, which is again an efficient

point. This weak efficiency is resolved by using a lexicographic

ordering. Here, we first optimize over one objective, after

which we add the obtained objective value as a constraint and

optimize over the other objective. For example, for λ = 0 we

first optimize over the achievement function Z and obtain the

objective value Z(x∗) where x∗ is our optimal solution. We then

add the constraint Z(x) ≤ Z(x∗) to the model and optimize

over C.

Solving for some set of λs does not necessarily result in

the complete set YN . Furthermore, as nicely stated by Das

(41) “an even spread of weights [λ] does not produce an even

spread of points on the Pareto curve.” Instead, it is possible to

obtain the entire set YN using the NISE method (27), as we

are dealing with a bi-objective LP. The NISE method is able to

obtain the entire Pareto curve while only solving for “smart”

choices of λ, i.e., λs that result in vertices/corner points of the

YN front. In short, NISE uses the slope between already found

efficient points to obtain a new λ which results in new efficient

points as represented in Figure 2. These efficient points are either

guaranteed to be vertices, or a linear combination of two other

vertices. In case the latter happens, one has obtained a guarantee

that there is no corner point in between the two earlier found

corner points and can simply remove these non-corner points at

the end.

In Algorithm 1 a method is described to find the complete

YN front based on the NISE principles. Let x(λ) denote

the optimal solution for a given λ. The corresponding non-

dominated point is then y(λ) =
(

C(x(λ)),Z(x(λ))
)

, which for

ease of notation we denote with y(λ) =
(

p(λ), q(λ)
)

.

Solving Equation (3.6) in Line 3 always results in vertices in

XE and in YN . However, Line 8 may result in a non-vertex non-

dominated point, which can happen when the new found point

is a linear combination of two corner points. Loosely speaking,

this happens when the blue dashed line is parallel to an edge

of the YN front as portrayed in Figure 2. Thus, in order to

have non-dominated vertices only, the non-vertices have to be

removed from S in Line 16.

There are some great advantages of using this procedure to

determine YN :

1. As mentioned in (42), it is easy to integrate this procedure

into an existing LP solver, as the method iteratively calls the

LP solver;

2. An alternative method to obtain the complete YN front

uses simplex base changes (25). Our described procedure,

however, is less prone to numerical issues as we do not heavily

rely on solving and mutating linear inequalities;
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FIGURE 2

Representation of NISE with linear inequalities. As explained in Algorithm 1, the slope of already found e�cient points is used to determine new

e�cient points. Here, when we refer to a “Line” we refer to a specific Line in Algorithm 1. (A) Based on the start solutions found in Line 3, a λ

related to their slope is determined in Line 7. With λ = λ∗ a new e�cient point is found in Line 8. (B) Based on the found point, the area is split in

(y(λi), y(λ
∗)) and

(

y(λ∗), y(λj)
)

, hence Line 13, and for both sides the same procedure can be repeated. That is, a new λ is determined resulting in a

new e�cient point. (C) Procedure is repeated until no new points are added to the existing YN approximation.

Result: Set S consisting of all vertex points of

YN.

1 U ← ∅;

2 S← ∅;

3 Solve Equation (3.6) lexicographically for

λ = 1 and λ = 0 and obtain y(1) and y(0);

4 Add
(

y(1), y(0)
)

to U;

5 while U 6= ∅ do

6 Obtain and remove element
(

y(λi), y(λj)
)

from U;

7 λ∗ ←
q(λj)− q(λi)

p(λi)− p(λj)+ q(λj)− q(λi)
;

8 Solve Equation (3.6) for λ∗ and obtain y(λ∗);

9 if y(λ∗) is on the line y(λi)− y(λj) then

10 Both y(λi) and y(λj) are efficient points;

11 Add
(

y(λi), y(λj)
)

to S;

12 else

13 Add
(

y(λi), y(λ∗)
)

and
(

y(λ∗), y(λj)
)

to U;

14 end

15 end

16 Remove non-vertices of S.

Algorithm 1. Obtain YN front (see Figure 2).

3. As already stated, a well-known bi-objective approach is the

ε-constraint method (19), where one of the two objectives

is added as a constraint. In each iteration this constraint

is further tightened to observe the impact on the (sole)

objective. This, however, does not guarantee to find the

complete YN front, unless ε is sufficiently small which

normally results in many more calls to the LP solver than our

described procedure;

4. The worst-case performance of this procedure is linear

in the number of vertices k of YN , that is a maximum

of 4k − 5 LPs have to be solved for k ≥ 3.

In Supplementary material Section 1 we briefly explain its

interpretation;

5. The NISE algorithm can be extended in various ways in case

the available solution time is limited (43), for example by

limiting the solving time or the number of LPs it can solve, or

by solving multiple LPs in parallel. It is also possible to obtain

outer and inner approximations of YN , which give insights

in how the points found so far might deviate from the full

set of non-dominated points. An example of obtaining these

approximations is shown in Figure 3.

4. Analyses

In this section we present two applications in which

the presented bi-objective approach can be used to analyze

nutritional trade-offs in a dietary context. In Section 4.1 all

efficient trade-offs between the cost and the nutritional adequacy

of a diet are obtained. Based on the analysis we show the

relevant insights that DMs can gain. In Section 4.2 the bi-

objective approach is used to investigate how changes in energy

intake affect the cost of a diet. This is done by only relaxing

the exact energy intake and keeping all other nutrients within

their bounds. Here, we show that a counterintuitive result where

the cost of a diet decreases when increasing the energy intake

can occur.

4.1. Relevant insights of trade-o� costs
vs. nutritional adequacy

In this section we describe an example where the bi-

objective optimization procedure is used to obtain all efficient

trade-offs between the cost and the nutritional adequacy of
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FIGURE 3

Obtaining inner and outer approximations (approximately). (A) Initial approximations based on the starting points. (B) After one iteration, the

approximations are improved. (C) Approximations are further improved in second iteration.

a diet. Based on this example we show several visualizations

that can be acquired and how they benefit a DM. The

summed deviation is selected as our achievement function as

it is a linear objective, where the intake requirements for all

nutrients are relaxed except the energy intake. Additionally,

non-relaxed food commodity constraints are included. In

the Supplementary material Sections 2, 3 a similar analysis for

MinMax and the number of unmet constraints is reported. This

leads to the following model:

min λ
∑

i∈I

ci xi + (1− λ)
∑

n∈N

(

zn
bn
+

zn

bn

)

s.t. (2.5)− (2.6)

(3.2)− (3.5)
∑

i∈I

ei xi = E,

where ei denotes the energy content of food commodity i ∈ I

and E the estimated average requirement (EAR). A new value

for λ is determined in each iteration of Algorithm 1.

The list of available food commodities and food prices is

obtained for the region Ebonyi, Nigeria6. We are particularly

interested in the diet of a young adolescent female of 16–17

years, as it is often more challenging to meet her nutritional

requirements than those of a male. This is because adolescent

females need in general more iron than adolescent males

of the same age while requiring less energy (44). Table 1

reports the nutritional requirements of the female, Table 2

contains the available food commodities in Ebonyi and their

corresponding nutritional values and Table 3 states the cost

per 100g and the reasonable minimum and maximum daily

intake of the adolescent female for each food commodity in

grams. We consider four diet types: omnivore, pescatarian,

6 Food prices are obtained from the World Food Programme Nigeria

country o�ce.

TABLE 1 Daily nutritional requirements of an adolescent male and

female.

Source Requirements

Female of

16–17 years

Male of

16–17 years

Energy (kcal) (45) 2,503 3,322

Protein (g) (46) ≥ 46.34 ≥ 54.2

Fat (g) (47) 69.53–97.34 92.28–129.19

Calcium (mg) (1, 48) 1,300–2,603 1,300–2,603

FolicAcid (Âµg DFE) (1) ≥ 400 ≥ 400

Iron Absorbed (mg) (1, 49) ≥ 3.1 ≥ 1.88

Iron (mg) ∗∗ ≤ 120 ≤ 120

Magnesium (mg) (1) ≥ 220 ≥ 230

Niacin (mg NE) (1, 50) 16–607 16–607

PantothenicAcid (mg) (1) ≥ 5 ≥ 5

Vitamin A (Âµg RE) (1, 49) 600–2,637 600–2,637

Vitamin B1 (mg) (1) ≥ 1.1 ≥ 1.2

Vitamin B2 (mg) (1) ≥ 1.0 ≥ 1.3

Vitamin B6 (mg) (1) ≥ 1.2 ≥ 1.3

Vitamin B12(Âµg) (1) ≥ 2.4 ≥ 2.4

Vitamin C (mg) (1, 48) 40–868 40–868

Zinc (mg) (1) ≥ 7.2 ≥ 8.6

The range reflects the recommended minimum intake and the upper limit of each

nutrient.

In case only a lower or an upper limit is recommended, this is indicated with ≤ or ≥,

respectively. Only the energy intake is assumed to be exact. Note that we do not model

an upper limit on zinc, as in the time Cost of the Diet∗ was compiled there was no

evidence yet which linked excess intake of zinc to harmful effects. ∗Cost of the Diet is

a software tool conceptualized and developed by Save the Children, from which the list of

requirements was obtained. For more information we refer the reader to Deptford et al.

(9, 51). ∗∗Based on conversations with the World Food Programme, we decided to raise

the upper limit from 45 mg (49) to 120 mg to allow for both dietary and supplemental

intake of iron.

vegetarian and vegan. Here, the number of available food

commodities decreases over the aforementioned diet types.

We refer to a diet with fewer available food commodities as
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TABLE 2 Nutritional properties reported per 100 g of food commodities available in Ebonyi.

Name Source Energy Protein Fat Ca FA Iron Abs. Iron Mg Niacin PA Vit. A Vit. B1 Vit. B2 Vit. B6 Vit. B12 Vit. C Zinc

(kcal) (g) (g) (mg) (Âµg

DFE)

(mg) (mg) (mg) (mg

NE)

(mg) (Âµg

RE)

(mg) (mg) (mg) (Âµg) (mg) (mg)

Bambara groundnut, dried, raw (52) 376 20.06 5.87 65.32 0 0.16 3.3 199.38 1.9 0.82 1.67 0.38 0.12 0 0 0 3.38

Bean, white, dried (52) 335 22.13 1.48 73.98 395 0.29 5.72 185.84 1.64 0.5 14.92 0.89 0.11 0.51 0 0 3.77

Beans, green, raw (52) 40 3.1 0.25 47.17 61.67 0.05 1.09 25 0.7 0.45 23.85 0.1 0.1 0.2 0 17.5 0.27

Beets, raw (53) 43 1.61 0.17 16 109 0.04 0.8 23 0.33 0.16 2 0.03 0.04 0.07 0 4.9 0.35

Cabbage, raw (52) 28 1.58 0.1 41 48.39 0.03 0.55 12 0.33 0.45 8.29 0.05 0.04 0.1 0 54 0.2

Carrot, raw (52) 35 0.95 0.28 35 31.4 0.03 0.7 12.33 0.67 0.29 713.33 0.06 0.05 0.23 0 7 0.26

Chicken, clean, ready to cook CotD∗ 143 13.5 9.5 7 3 0.18 0.7 10 5.42 0.38 20 0.05 0.12 0.13 0.12 0 0.9

Cocoyam, tuber, raw (52) 129 2.4 0.2 10.64 22 0.03 0.6 13.15 0.8 0.37 0 0.1 0.03 0.24 0 8 0.38

Cowpea, black, dried, raw (52) 301 21.08 1.6 69.28 412.29 0.28 5.54 202.07 3.03 0.5 0 0.7 0.15 0.35 0 0.79 3.89

Cowpea, brown, dried, raw (52) 318 21.22 1.65 75.52 413.15 0.43 8.67 202 3.04 0.5 0 0.7 0.15 0.35 0 0.79 4.37

Cucumber, raw (52) 15 0.7 0.1 13 6 0.02 0.45 12 0.3 0.45 2.92 0.02 0.01 0.04 0 14 0.17

Dikanut, kernel, dried, raw (52) 704 7.9 66.87 164 0 0.17 3.4 0 0.7 0.82 0 0.18 0.09 0 0 0 0.28

Egg, chicken, raw (52) 139 12.6 9.5 56 47 0.45 1.8 12 0.08 1.4 160 0.04 0.46 0.17 0.9 0 1.29

Eggplant, white, raw CotD∗ 28 0.8 0.2 6 14 0.02 0.4 13 0.73 0.08 3 0.08 0.02 0.09 0 1 0.2

Fish, cod, atlantic, raw (53) 82 17.81 0.67 16 7 0.1 0.38 32 2.06 0.15 12 0.08 0.06 0.24 0.91 1 0.45

Fish, dried, CotD CotD∗ 290.32 56.56 5.44 647.8 28.32 0.45 1.8 115.52 17.66 0.83 5.52 0.11 0.18 0.59 6.27 0.24 2.92

Fish, mackerel, raw (52) 124 19.7 5.03 28 1 0.2 0.8 33 5.3 0.6 39 0.14 0.14 0.4 2.4 0 0.49

Fish, tilapia, raw (52) 99 18.8 2.7 17 24 0.32 1.3 36 3.5 0.6 26 0.04 0.06 0.24 1.58 0 0.83

Goat, feet CotD∗ 70 6.5 4.7 1 2 0.1 0.4 6 2.02 0.1 0 0.02 0.04 0.09 0.49 0 1.1

Goat, meat, raw (52) 165 17.5 10.58 10.75 5 0.59 2.37 27 6.12 0.55 0 0.18 0.29 0.4 1.13 0 3.45

Groundnut, shelled, dried, raw (52) 578 22.4 45.87 46.68 110 0.2 3.9 190.91 15.46 0.82 0 0.87 0.14 0.59 0 0 2.52

Guava, fruit (52) 57 1 0.41 23 7 0.04 0.7 13 1.22 0.18 35 0.05 0.04 0.14 0 261 0.32

Lamb, liver, raw (52) 131 20.18 4.5 9 230 2.17 8.7 19 13 1.84 4970 0.32 3.07 0.9 90.1 4 4.66

Leaf, amaranth, raw (52) 39 3.8 0.27 380 79 0.31 6.2 93 0.94 0.16 240.72 0.04 0.33 0.19 0 45 0.72

Leaf, eggplant, raw (52) 45 4.38 0.74 331.5 118 0.22 4.3 58 1.35 0.16 295.74 0.15 0.4 0.3 0 79 0.73

Leaf, roselle, raw (52) 40 2.81 0.24 212.33 117 0.2 4.1 58 1.2 0.16 215.32 0.17 0.45 0.3 0 33 0.9

Macaroni, dried (52) 359 12.47 1.51 23 17 0.06 1.15 53.26 1.2 0.39 0 0.16 0.03 0.13 0 0 1.41

Maize, white, whole kernel,

dried, raw

(52) 349 9.15 4.11 18.73 26 0.15 3.06 81.84 2.05 0.56 0 0.35 0.1 0.2 0 0 1.55

Maize, yellow, whole kernel,

dried, raw

CotD∗ 353 9.04 4.45 12.37 26 0.18 3.54 120.5 2.2 0.56 50 0.33 0.15 0.4 0 0 1.7

Melon, seeds, slightly salted, raw (52) 593 27.47 47.93 111.5 58 0.31 6.13 510 2.83 0.42 0 0.1 0.12 0.09 0 0 7.12

Milk, powder, fortified CotD∗ 490 26.3 2.6 0 0 0 0 0 0.6 0 35 0.3 1 0 0 10 0

Millet, pearl, whole grain, raw (52) 364 8.8 5.8 13.57 29.53 0.38 7.6 97.37 2.4 0.45 0.27 0.32 0.27 0.74 0 0 2.83

(Continued)
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TABLE 2 (Continued)

Name Source Energy Protein Fat Ca FA Iron Abs. Iron Mg Niacin PA Vit. A Vit. B1 Vit. B2 Vit. B6 Vit. B12 Vit. C Zinc

(kcal) (g) (g) (mg) (Âµg

DFE)

(mg) (mg) (mg) (mg

NE)

(mg) (Âµg

RE)

(mg) (mg) (mg) (Âµg) (mg) (mg)

Mushroom, CotD CotD∗ 27 2.2 0.5 6 18 0.08 1.7 12 5.4 2.16 0 0.07 0.3 0.1 0 4 0.9

Noodle, dried CotD∗ 325 9.6 6.4 14 14 0.05 1 36 2.83 0.22 0 0.04 0.04 0.08 0 0 1

Oats (53) 389 16.89 6.9 54 56 0.24 4.72 177 0.96 1.35 0 0.76 0.14 0.12 0 0 3.97

Oil, groundnut (52) 900 0 100 0 0 0 0.03 0 0 0.01 0 0 0 0 0 0 0

Oil, palm, red (52) 900 0 100 0 0 0 0.01 0 0 0.01 5720 0 0 0 0 0 0

Okra, raw (52) 33 1.7 0.24 83.65 88 0.04 0.82 13 0.7 0.45 26.08 0.04 0.08 0.22 0 27.77 0.6

Onion, red CotD∗ 44 1.4 0.2 22 15 0.01 0.2 11 0.53 0.11 0 0.04 0.02 0.13 0 5 0.2

Palm nuts, pulp (52) 527 1.83 50.67 53.33 0 0.24 4.83 0 1.4 0.18 0 0.2 0.1 0 0 12 0

Peanut, with shell CotD∗ 414 18.8 35.9 67 92 0.17 3.4 123 13.45 1.01 0 0.18 0.08 0.19 0 0 2.4

Peas, raw CotD∗ 91 6.95 0.35 43.08 65 0.08 1.56 47.12 2.82 0.45 37.88 0.4 0.14 0.17 0 7.64 1.24

Pepper, sweet, red, raw (52) 33 1.3 0.3 12 45 0.02 0.4 12 1.16 0.29 191 0.07 0.09 0.32 0 161.2 0.33

Pineapple, pulp (52) 54 0.44 0.24 20.4 12 0.03 0.51 11.67 0.15 0.18 5.12 0.07 0.03 0.09 0 29.75 0.11

Plantain, ripe, raw (52) 140 1.2 0.25 7.33 22 0.04 0.9 37 0.67 0.45 43 0.07 0.05 0.3 0 18.4 0.12

Potato, raw (52) 80 1.88 0.11 10.65 17.5 0.04 0.87 27.33 1.22 0.37 1.13 0.08 0.12 0.27 0 17.25 0.34

Pumpkin, squash, raw (52) 29 1 0.1 19.33 8 0.06 1.2 14 0.5 0.29 100 0.05 0.02 0.1 0 8 0.32

Rice, white, long grain,

parboiled, unenriched, dry

(53) 374 7.51 1.03 71 8 0.04 0.74 27 5.05 0.67 0 0.22 0.05 0.45 0 0 1.02

Rice, white, raw (52) 349 6.85 0.6 12 20 0.07 1.4 35 1.3 1.08 0 0.07 0.04 0.2 0 0 1.16

Sesame, seeds, whole, dried, raw (52) 577 18.2 48.9 983 97 0.59 11.8 351 3.4 0.42 2.5 0.68 0.19 0.79 0 0 7.75

Sheep, tripe CotD∗ 83 14.5 2.4 3 4 0.25 1 14 4.62 0.23 0 0.05 0.09 0.19 1.09 0 2.4

Shrimp, dried CotD∗ 306 66.4 2.5 41 35 0.35 1.4 122 19.72 0.47 0 0.1 0.11 0.82 3.05 0 1.7

Sorghum, whole grain, raw (52) 344 10.5 3.33 24.11 29.29 0.18 3.7 310.59 3.3 0.73 1.39 0.36 0.16 0.25 0 0 1.79

Soybean, dried, raw (52) 410 31.97 16.98 231.56 375 0.39 7.77 245.26 2 0.5 1 0.7 0.28 0.82 0 0 4.73

Spaghetti, dry, unenriched (53) 371 13.04 1.51 21 18 0.06 1.3 53 1.7 0.43 0 0.09 0.06 0.14 0 0 1.41

Sweet potato, pale yellow, raw (52) 115 1.45 0.18 27.33 52 0.06 1.1 16 0.63 0.37 3.21 0.09 0.04 0.27 0 22.33 0.38

Tapioca, pearl, dry (52) 358 0.19 0.02 20 4 0.08 1.58 1 0 0.14 0 0 0 0.01 0 0 0.12

Tomato paste, concentrated (52) 89 4.3 0.5 64.3 10 0.15 2.98 60 3.08 0.45 75.1 0.06 0.15 0.22 0 17.8 0.4

Tomato, red, ripe, raw (52) 22 1.01 0.18 12.97 21.25 0.03 0.6 13 0.56 0.45 51.97 0.06 0.04 0.08 0 29.64 0.7

Tomato, sundried (53) 258 14.11 2.97 110 68 0.45 9.09 194 9.05 2.09 44 0.53 0.49 0.33 0 39.2 1.99

Watermelon, fruit (52) 29 0.52 0.2 7 3.83 0.01 0.25 9.55 0.14 0.17 41.88 0.04 0.04 0.07 0 7.2 0.1

Wheat, whole grain, raw (52) 326 12.35 2.2 30.34 45 0.24 4.7 140 5.55 1.13 0.25 0.46 0.1 0.28 0 0 1.7

The nutrient abbreviations are: Ca for Calcium, FA for FolicAcid, Abs. for Absorbed, Mg for Magnesium, PA for PanthothenicAcid and Vit. for Vitamin.
∗CotD stands for the Cost of the Diet, which is a software tool conceptualized and developed by Save the Children. For more information we refer the reader to Deptford et al. (9, 51).
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TABLE 3 Cost per 100 g* in Nigerian naira (NGN) and daily allowed intake in grams for food commodities available in Ebonyi.

Cost Diet type Female of 16–17 years Male of 16–17 years

(NGN) Min (g) Max (g) Min (g) Max (g)

Bambara groundnut, dried, raw 69.41 VG 0 45 0 60

Bean, white, dried 78.26 VG 0 180 0 240

Beans, green, raw 115.89 VG 0 585 0 780

Beets, raw 310.70 VG 0 855 0 1,140

Cabbage, raw 40.90 VG 0 585 0 780

Carrot, raw 57.99 VG 0 900 0 1,200

Chicken, clean, ready to cook 227.60 OM 0 135 0 180

Cocoyam, tuber, raw 55.37 VG 0 540 0 720

Cowpea, black, dried, raw 40.30 VG 0 180 0 240

Cowpea, brown, dried, raw 94.02 VG 0 180 0 240

Cucumber, raw 15.91 VG 0 585 0 780

Dikanut, kernel, dried, raw 281.69 VG 0 45 0 60

Egg, chicken, raw 98.24 VE 0 360 0 480

Eggplant, white, raw 32.67 VG 0 585 0 780

Fish, cod, atlantic, raw 792.82 PC 0 225 0 300

Fish, dried, CotD 111.34 PC 0 225 0 300

Fish, mackerel, raw 128.80 PC 0 225 0 300

Fish, tilapia, raw 245.05 PC 0 225 0 300

Goat, feet 157.00 OM 0 135 0 180

Goat, meat, raw 325.68 OM 0 135 0 180

Groundnut, shelled, dried, raw 84.88 VG 0 45 0 60

Guava, fruit 20.62 VG 0 495 0 660

Lamb, liver, raw 40.48 OM 0 225 0 300

Leaf, amaranth, raw 10.73 VG 0 855 0 1,140

Leaf, eggplant, raw 23.74 VG 0 855 0 1,140

Leaf, roselle, raw 135.34 VG 0 855 0 1,140

Macaroni, dried 55.80 VG 0 540 0 720

Maize, white, whole kernel, dried, raw 48.13 VG 0 585 0 780

Maize, yellow, whole kernel, dried, raw 55.05 VG 0 585 0 780

Melon, seeds, slightly salted, raw 304.19 VG 0 90 0 120

Milk, powder, fortified 355.07 VE 0 117 0 156

Millet, pearl, whole grain, raw 37.10 VG 0 495 0 660

Mushroom, CotD 73.54 VG 0 585 0 780

Noodle, dried 100.00 VG 0 585 0 780

Oats 82.54 VG 0 585 0 780

Oil, groundnut 144.33 VG 0 90 0 120

Oil, palm, red 142.92 VG 0 90 0 120

Okra, raw 61.24 VG 0 585 0 780

Onion, red 45.45 VG 0 585 0 780

Palm nuts, pulp 92.05 VG 0 495 0 660

Peanut, with shell 107.15 VG 0 45 0 60

Peas, raw 363.21 VG 0 585 0 780

Pepper, sweet, red, raw 217.42 VG 0 855 0 1,140

Pineapple, pulp 187.04 VG 0 495 0 660

Plantain, ripe, raw 38.03 VG 0 585 0 780

(Continued)
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TABLE 3 (Continued)

Cost Diet type Female of 16–17 years Male of 16–17 years

(NGN) Min (g) Max (g) Min (g) Max (g)

Potato, raw 37.50 VG 0 540 0 720

Pumpkin, squash, raw 43.64 VG 0 900 0 1,200

Rice, white, long grain, parboiled, unenriched, dry 55.09 VG 0 540 0 720

Rice, white, raw 50.12 VG 0 540 0 720

Sesame, seeds, whole, dried, raw 96.12 VG 0 90 0 120

Sheep, tripe 180.00 OM 0 225 0 300

Shrimp, dried 466.29 PC 0 270 0 360

Sorghum, whole grain, raw 37.43 VG 0 540 0 720

Soybean, dried, raw 59.94 VG 0 180 0 240

Spaghetti, dry, unenriched 54.52 VG 0 540 0 720

Sweet potato, pale yellow, raw 23.57 VG 0 540 0 720

Tapioca, pearl, dry 62.01 VG 0 540 0 720

Tomato paste, concentrated 142.86 VG 0 9 0 12

Tomato, red, ripe, raw 64.34 VG 0 270 0 360

Tomato, sundried 135.75 VG 0 270 0 360

Watermelon, fruit 29.21 VG 0 270 0 360

Wheat, whole grain, raw 83.41 VG 0 495 0 660

The minimum (Min) and maximum (Max) daily intake are specified for an adolescent male and female in grams. For each food commodity it is specified if it is allowed within a diet type,

which reflects the most restrictive diet in which the food can be included. The diet types are abbreviated as follows: OM for omnivore, PC for pescatarian, VE for vegetarian and VG for

vegan. Note that the minimum intake for all specified food commodities is zero. For completeness we mention it explicitly in the table.
*Cost are obtained from the World Food Programme Nigeria country office.

a more restrictive diet, e.g., vegan is more restrictive than

pescatarian.

In Figure 4A the Pareto curves of all four diet types are

shown. The y-axis represents the daily cost of a diet and the

x-axis describes the summed deviation of all nutrients. Each

dot is a corner point found in the bi-objective algorithm, and

each point on the line can be translated to a particular diet

with corresponding cost and summed deviation. The leftmost

and rightmost dots are the starting points of the algorithm.

The leftmost dot of each diet type represents the diet with

the least summed deviation possible, whereas the rightmost

dot represents the cheapest diet adhering to all non-relaxed

constraints, i.e., the exact energy intake and the food commodity

constraints.

Figure 4A allows for comparing diets on both a cost and a

nutritional adequacy level. First of all, the leftmost dot on the

curve shows whether it is possible to create a nutritious diet. In

this example for all diet types except vegan a nutritious diet is

possible, as the summed deviation is 0%. For the vegan diet, the

leftmost dot has a summed deviation of 100%7, which indicates

that a nutritious diet is not possible.

Second, the figure shows how the different diet types relate to

each other. Here, the omnivore diet is overall the least expensive

7 This is caused by a complete vitamin B12 deficiency, as there is no

possibility to include vitamin B12 with the available food commodities.

diet, as its Pareto curve is below the other curves. After the

omnivore diet the most affordable diets are in order: pescatarian,

vegetarian and vegan. This is a trivial result as each successive

diet contains fewer food commodities than its predecessor,

e.g., every vegan food commodity is vegetarian but not vice

versa. In this case restricting food commodities results in more

expensive diets, which indicates that the nutrients within these

commodities are relevant for creating a both nutritious and

affordable diet. Note that in general progressively excluding food

commodities does not always lead tomore expensive diets, as the

excluded commodities might not be relevant when composing

diets. Furthermore, we observe that the right-hand sides of

the Pareto curves coincide when allowing for more nutritional

deviation. This indicates that, in order to adhere to the exact

energy intake and the food commodity constraints, only food

commodities need to be included which are allowed in all diet

types. Again, this is understandable asmostly foods that are good

sources of energy are included (e.g., sorghum and millet) and

these are not restricted within our chosen diet types.

Third, the curve shows what level of nutritional adequacy

can be obtained when individuals have a restrictive budget. For

example, if the female has a limited daily budget of 350 NGN,

she can afford a nutritious omnivore diet with 0% deviation and

30 NGN left, a pescatarian diet with 10% deviation and 0 NGN

left, a vegetarian diet with 85% deviation and 0 NGN left or a

vegan diet with 100% deviation and 10 NGN left.
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A B

FIGURE 4

Trade-o� analysis of the daily diet cost in Nigerian naira (NGN/d) vs. the nutritional deviation measured as summed deviation for an adolescent

female of 16–17 years. in Ebonyi. (A) Pareto curve of the daily diet cost vs. the nutritional deviation. Four diet types are considered: omnivore,

pescatarian, vegetarian and vegan. Each dot is an e�cient solution representing a trade-o� between cost and nutritional adequacy. The yellow

highlighted area indicates a price level around 280 NGN. (B) Daily diet composition corresponding to the trade-o�s of cost vs. nutritional

deviation for the omnivore diet. The left y-axis shows the total amount of a food commodity included in a particular diet in grams and the right

y-axis shows the cost of the diet that corresponds to the y-axis of (A). The solutions in (B) correspond to the solutions of the omnivore diet in

(A). The food commodities included in a particular diet are indicated with letters on the corresponding bar, where the length of the bar indicates

the total daily grams of a food commodity included in the diet. The yellow highlighted area indicates a price level around 280 NGN.

The Pareto curve gives an overview of all diet types together,

but does not show the diet composition and nutritional content

of an individual diet. Therefore, we show what additional

information can be gained by investigating a diet type in more

detail. For illustration purposes, we have selected the omnivore

diet. As each point on the Pareto curve translates to a diet, we

can pick the points on the curve and show their corresponding

diet compositions. In Figure 4B a bar chart is presented which

shows the diet composition of the omnivore diet given a certain

cost. The x-axis represents the solution numbers, which are

the vertices found from left to right in the Pareto curve, e.g.,

solutions 1 and 13 are the starting points. The left y-axis

describes the cumulative number of gram included in a diet of a

particular food commodity and the right y-axis shows the cost of

a diet. The food commodities included in a solution are indicated

with letters on the corresponding bar. Note that the right y-axis

of Figure 4B translates to the y-axis of Figure 4A, and thus for

each solution number its summed deviation is known as well.

Figure 4B shows that when allowing for more nutritional

deviation, and thereby lowering the cost of the diet, the variety

within the diet composition decreases. That is, fewer nutrient-

dense foods are included, and the diet converges to a diet

including only millet and sorghum, as they are good sources of

energy. Furthermore, the figure shows the gradual change of the

diet composition when allowing for more nutritional deviation.

As an example, the “second-best” diet in terms of nutritional

adequacy, solution 2, still contains the same food commodities

as solution 1, though in different quantities.

For each solution we can also show the nutrient content

of each nutrient w.r.t. its bounds. In Figure 5 the nutritional

content for each nutrient is shown given a particular cost. The

x-axis represents the nutritional adequacy of a given nutrient

relative to its lower limit, 100%, which is indicated with a red

dotted line. In case applicable, the upper limit is indicated with a

dark red dotted line. Thus, all values above the 100% and below

the dark red dotted line indicate nutritional adequacy of that

nutrient. The y-axis describes the daily cost and corresponds

with the cost in Figure 4A. The dots correspond to the corner

points found on the Pareto curve.

Figure 5 shows which nutrients are problematic when

faced with a restrictive budget. Before we found that with a

maximum budget of 350 NGN, the female has no nutritional

inadequacies if she chooses an omnivore diet. However,

if her maximum budget is lowered to 280 NGN, which

is highlighted in Figures 4, 5 with a yellow bar, then no

nutritionally adequate diet can be composed. Figure 5 depicts

that in that case the problematic nutrients in an omnivore

diet are fat, calcium and panthothenic acid. Moreover, the

figure shows that some nutrients are never problematic,

such as protein, magnesium, niacin, vitamin B1, vitamin B2,

vitamin B6 and zinc, as apparently enough of these nutrients

are provided in the main sources of energy, sorghum and

millet.

Concluding, this example shows how DMs can use a

complete trade-off analysis to answer relevant questions, such

as i) Is a nutritious diet possible given a certain diet type? If not,

what are the nutritional deviations and costs of a “second-best”

solution? ii) How does the level of nutritional inadequacy and

the diet composition change when the budget changes? What

level of nutritional adequacy is attainable when there is a strict
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FIGURE 5

Nutritional adequacy per nutrient corresponding to the trade-o�s of the daily diet cost in Nigerian naira (NGN/d) vs. nutritional deviation

measured as summed deviation for the omnivore diet for an adolescent female of 16–17 years. in Ebonyi. For all nutrients, except iron, the

adequacy is measured relative to their lower limit (100%). As iron only has an explicit upper limit, we measure its adequacy relative to its upper

limit (100%). The daily cost of each dot corresponds to the daily cost on the Pareto curve. The lower limit of each nutrient is indicated with a red

dotted line. If applicable, the upper limit is indicated with a dark red dotted line. The yellow highlighted area indicates a price level around 280

NGN.

budget? Which nutrients are problematic given this budget?

iii) What are the differences in cost and nutritional adequacy

between different diet types? How do these differences influence

the diet composition and nutritional content of a diet?

4.2. Relaxing the energy constraint

Up until nowwe have regarded an exact energy intake, which

is in line with current literature. In this section we question

whether modeling the energy with an exact intake always makes

sense. From an optimization point of view modeling an equality

constraint is very restrictive and loosening it enables a larger

feasible region, which gives more flexibility in finding solutions.

Therefore, we use the bi-objective approach to show how the

cost of a diet is affected by the energy intake. As in general using

an equality constraint can result in the more-for-less paradox,

we first have to explain in Section 4.2.1 what this paradox

entails before we can understand the results. Several examples

are illustrated in Section 4.2.2 to show the trade-offs between the

energy intake and the cost of a diet and to demonstrate in which

scenarios the aforementioned paradox may take place.
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4.2.1. More-for-less paradox energy intake

A common pitfall of having an equality constraint within an

LP is the more-for-less paradox (54), where the minimization

of a (seemingly!) more restrictive model is less costly than its

less restrictive counterpart. This is aside from the fact that

an equality constraint is very restrictive from an optimization

standpoint, as all solutions are limited to a single plane in space.

We illustrate this paradox by means of a toy example, where we

consider two food commodities; item 1 is spinach and item 2

is flour which cost 40 and 3 cents per gram, respectively. Item 1

provides 0.25 kcal energy and 1.4µg folic acid per gram, whereas

item 2 provides 3.4 kcal energy and 0.3 µg folic acid per gram.

The individual for whom we want to compose a diet is a female

between 30 and 59 years with an energy requirement of 2,400

kcal. Additionally, a minimum of 400µg of folic acid is required.

These requirements translate to the following LP:

min z = 40 x1 + 3 x2 (4.1)

s.t. 0.25 x1 + 3.4 x2 = 2,400 (4.2)

1.4 x1 + 0.3 x2 ≥ 400 (4.3)

x1, x2 ≥ 0. (4.4)

Here, the optimal solution is given by x∗1 ≈ 137 g and x∗2 ≈ 696

g with cost z∗ ≈ 7, 552 cents. Equation (4.2) is binding by

definition. Equation (4.3) is also binding, which indicates that

the folic acid requirement is met exactly.

In Figure 6A a graphical representation of the feasible area

is shown in which the optimal solution is highlighted. As there

are only two commodities in our example, it is possible to

illustrate the feasible area in a 2D-plane. On the x-axis the

number of grams of item 1 are shown, whereas the y-axis

represents the number of grams of item 2. The green solid line

represents the energy equality constraint and shows all possible

combinations of food commodities 1 and 2 that adhere to this

equality. Similarly, the red solid line represents where the folic

acid inequality is exactly the minimum required intake (400µg).

All possible combinations that result in a higher intake of folic

acid are to the right side of this line. The further onemoves to the

right and upwards of the red line, the higher the folic acid intake

of the diet will be as more of both commodities are added to the

diet. So, the feasible region from which diets can be constructed

is represented by the bold green line, as on this line both the

energy constraint and the folic acid inequality hold. Now that

we have identified the feasible area of this example, the optimal

solution still has to be located. The black dashed line indicates

the cost objective, and all combinations on this line result in the

same cost for the diet. Moving to the left from the line reduces

the cost, as less of each commodity is included. Thus, the optimal

solution is at the leftmost part within the feasible area, which is

at the intersection of the green and red solid lines.

We now assume that the female’s energy intake is increased

to 2,600 kcal. One would expect that a higher energy intake leads

to higher costs, as the requirements increase. The increase in

energy intake is graphically represented in Figure 6B by the blue

solid line. Note that the position of the blue line has moved

upward relatively to the green line. In order to adhere to the

increased energy intake, more grams of x2 are required when

keeping the amount of x1 fixed and vice versa. The feasible area

has been completely altered and the previous optimal solution is

no longer feasible. The black dashed line of the cost objective can

move even further to the left, which represents a decrease in the

optimal cost. The optimal solution is given by x∗1 ≈ 124 g and

x∗2 ≈ 756 g with cost z∗ ≈ 7, 219 cents, which is cheaper than

the previous diet that had a lower energy intake.

Again, we adjust the female’s requirements. On top of the

increased energy intake, her required folic acid intake increases

to 410 µg. The optimal solution is in this case given by x∗1 ≈ 131

g and x∗2 ≈ 755 g with cost z∗ ≈ 7, 507 cents. In Figure 6C

the increase in the folic acid requirement is represented by the

orange solid line. Note that as the line is to the right of the red

line (original folic acid requirement) the folic acid requirement

has indeed increased. This decreases the size of the feasible

region, and thus increases the cost with respect to the situation

as presented in Figure 6B. However, this solution is still less

expensive than the initial diet presented in Figure 6A. Thus,

although all the requirements have strictly increased, this new

optimal solution is still less expensive.

In the above example, while more nutrients are required

the cost of the diet is lowered. This seems contradictory, as

tightening the constraints usually results in a smaller feasible

space and thus higher costs. The crucial aspect in this example,

however, is that adjusting the equality constraint changes the

feasible space instead of tightening it, which is shown in

Figure 6B. This counterintuitive result is explained by the more-

for-less paradox (54), where the right-hand side of an equality

(or multiple equalities) can be increased while simultaneously

improving on the objective function. Only under certain

conditions related to the dual of this problem the paradox

is induced. In Supplementary material Section 4 we provide a

more in-depth explanation for the interested reader.

The counterintuitive result that occurred within our small

example also occurs in larger datasets. We elaborate on two

instances where the more-for-less paradox can take place.

In the first instance the conclusions are straightforward

and widely accepted, whereas the second instance may

seem contradictory.

The first instance concerns the dietary requirements of

adolescent females. For most micronutrients they require a

higher intake, e.g., iron, than their male counterparts, while their

energy intake is lower. Therefore, adolescent females require

a relatively large amount of nutrient-dense foods in order

to satisfy their nutritional requirements. In order to obtain

the same amount of micronutrients with energy-dense foods

as with nutrient-dense foods, one would have to consume

many more calories. As energy-dense foods are usually less
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A B C

FIGURE 6

LP representations of the more-for-less paradox example. Opt. Sol. is optimal solution, former sol. is former solution, eq. is equality, ineq. is

inequality, obj. is objective and FA folic acid. (A) Start situation. (B) Increased energy requirement. (C) Increased energy and FA requirements.

expensive than nutrient-dense foods, it is cheap to consume

more calories to obtain the same amount of micronutrients.

Thus, increasing the energy intake for adolescent females can

reduce the cost of their diet, which corresponds to the more-for-

less paradox.

The second instance extends the argument presented in

our example and explains why the dietary cost of a non-

pregnant female can be higher than those of a pregnant

female of the same age and physique. During a pregnancy,

a female requires strictly more energy, fat, protein and

micronutrients than a non-pregnant female. Increasing the

nutritional requirements normally tightens the feasible area and

(potentially) increases the cost of a diet. In case the more-

for-less paradox occurs, the increased energy intake induces

a stronger decrease in cost than the increase in cost caused

by the tightened nutritional requirements, hence the overall

cost decreases.

4.2.2. Bi-objective optimization for analyzing
the e�ects of energy intake

In this section the bi-objective approach is used to detect

whether the more-for-less paradox takes place, to find the

minimum amount of calories needed to create a nutritious diet

similar to one of the questions raised in (6), and to understand

how the energy intake influences the cost of a nutritious diet. In

our example two adolescent individuals of the Ebonyi region are

considered: a male and female aged 16–17 years. Their respective

nutritional requirements are reported in Table 1, where the

nutritional requirements of the female relative to her energy

requirement are high compared to those of the male. Here, we

make use of the same data as provided in Section 4.1.

In our previous example all nutrients were included in the

GP achievement function, while the energy constraint and other

constraints were non-relaxed. This allowed us to obtain all

trade-offs between cost and nutritional adequacy. In a similar

fashion we now only relax the exact energy intake—and keep

all other constraints non-relaxed—in order to obtain trade-

offs between the energy intake and the cost of a diet. We

relax the energy constraint such that it can have a negative

and a positive deviation from its original intake. Note that

the corresponding diets are nutritionally adequate; they only

allow for an inadequacy in energy intake. This leads to the

following model:

min λ
∑

i∈I

ci xi + (1− λ)

(

zenergy

E
+

zenergy

E

)

s.t. (2.2)− (2.6)
∑

i∈I

ei xi = E− zenergy

∑

i∈I

ei xi = E+ zenergy

zenergy, zenergy ≥ 0,

where zenergy and zenergy are decision variables that reflect

the under- and overconsumption of energy, respectively, see

Section 3.1. A new value for λ is determined in each iteration

of Algorithm 1.
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FIGURE 7

Trade-o�s of the daily diet cost in Nigerian naira (NGN) vs. energy deviation (dev.) for the omnivore and adjusted omnivore diet. The adjusted

omnivore considers the same food commodities as omnivore, but excludes “Lamb, liver, raw,” “Leaf, amaranth, raw” and “Sesame, seeds, whole,

dried, raw.” EAR denotes the estimated average requirement. (A) Pareto curve for the omnivore diet of the daily diet cost vs. absolute value of

the deviation of energy w.r.t. EAR. (B) Energy deviation w.r.t. EAR of the omnivore diet. This is di�erent from (A), as (A) shows the model’s

objective value which is the absolute value of the deviation in (B). (C) Pareto curve for the adjusted omnivore diet of the daily diet cost vs.

absolute value of the deviation of energy w.r.t. EAR. (D) Energy deviation w.r.t. EAR of the adjusted omnivore. This is di�erent from (C), as (C)

shows the model’s objective value which is the absolute value of the deviation in (D).

We first consider an omnivore diet. In Figure 7A the

trade-off is shown between cost and energy deviation for

both individuals. Here, the leftmost solution of the female

corresponds with the leftmost solution of the omnivore diet

in Figure 4A, as the energy and nutritional inadequacy for

both problems are minimized to 0. Figure 7B reports whether

the energy deviation is below or above the EAR. This differs

from Figure 7A, as Figure 7A shows the total deviation, i.e.,

the model’s objective value, which is the absolute value of the

deviation in Figure 7B. From these figures it is observed that it

is still possible to create a nutritionally adequate diet with only

37% and 52% of the original required energy intake for the male

and female, respectively. Apparently there are enough affordable

nutrient-dense commodities available to create nutritionally

adequate diets.

In these diets the more-for-less paradox does not take place:

the cost decreases when the energy intake decreases. This seems

in line with the previous observation about the availability

of nutrient-dense commodities. That is, we argued that the

more-for-less paradox most likely takes place when there is a

lack of nutrient-dense foods and for the omnivore diet there

seems to be enough nutrient-dense food. To further support

this reasoning, a diet is considered where some nutrient-dense

commodities are omitted. We exclude three nutrient-dense

foods which were present in the nutrient and energy adequate

diet of the female: “Lamb, liver, raw,” “Leaf, amaranth, raw”
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and “Sesame, seeds, whole, dried, raw”8. This diet is referred to

as “adjusted-omnivore.”

Figure 7C shows the trade-off between cost and energy

deviation for both individuals of the adjusted-omnivore diet and

Figure 7D reports whether the deviation is above or below the

EAR. For themale, it is possible to create a nutritionally adequate

diet with less energy; at least 58% of the EAR is required. The

more-for-less paradox does not take place, as more calories are

needed to create a nutritionally adequate diet. For the female,

it is more cost-effective to increase the energy intake up to

12% to lower the cost. In this case, the more-for-less paradox

takes place. These observations are in line with our expectations

as not only the adjusted-omnivore diet has fewer nutrient-

dense commodities than the omnivore diet, but the female has

higher nutritional requirements per kcal intake than the male

as well.

5. Discussion

Finding the complete Pareto curve for two linear objectives

has not been considered before in the current diet optimization

literature. Finding all possible trade-offs is relevant as it

accurately shows how the objectives impact each other. In

the current literature the ε-constraint method is used to

approximate the trade-off curve (19) for example to investigate

the nutritional adequacy vs. cost (18, 55), cost vs. environmental

impact (21) and environmental impact vs. deviations from

the current dietary pattern (22–24). The ε-constraint method,

however, does not guarantee to find the complete trade-off

curve without solving many uninformative LPs. Therefore,

we presented a bi-objective algorithm based on the NISE

procedure (27) that is guaranteed to find all efficient trade-

offs between any two linear objectives in an LP context

without solving uninformative LPs, and of which the worst-case

performance is linear in the number of vertices on the Pareto

curve. For this algorithm no a priori preference is needed of

the DM.

As an application for this algorithm we particularly focused

on how to balance costs and nutritional adequacy in a dietary

context. In our first analysis we modeled the nutritional

inadequacy using GP with a summed deviation. We explained

relevant insights that can be obtained for organizations such

as the United Nations World Food Programme, as they make

use of diet optimization to understand the cost of an affordable

and nutritious diet (5). At the World Food Programme diet

optimization is part of an analysis known as Fill the Nutrient

Gap, which “aims to support identification of strategies to increase

availability, access, and choice of nutritious foods, to ultimately

improve nutrient intake” (5). Our analysis contributes to their

8 As the leftmost solution in Figure 4A equals the leftmost solution in

Figure 7, their diet composition is the same, see Figure 4B.

current research practice, as the bi-objective algorithm provides

insights in the relation between costs and nutritional adequacy

of a diet.

The second analysis focused on the effects of relaxing

the energy intake requirement while all other nutritional

requirements had to be met. This analysis is an extension to

(6) where the energy intake of a nutritious diet is minimized.

We showed when the more-for-less paradox takes place

(54). By understanding the paradox, one can better grasp

seemingly counter-intuitive situations, e.g., a nutritious diet

of a pregnant female is less expensive than that of a non-

pregnant female despite the pregnant female having strictly

higher nutritional needs. We argued that the more-for-less

paradox is most likely to occur when insufficient affordable

nutrient-dense foods are available. In our example of the

Ebonyi region all considered food commodities are minimally

processed or even unprocessed, which make them relatively

nutrient-dense. However, in general in middle- and high-

income countries there is a rise of ultra processed foods (56),

which are less nutrient rich. Hence, we suspect that the more-

for-less paradox is likely to occur in countries experiencing this

nutrition transition. This emphasizes the relevance of this topic

as it shows whether enough affordable nutrient-dense foods

are available.

Within our main analyses we used the summed deviation

as our GP achievement function to measure nutritional

inadequacy. The main advantage of this measure is that it

considers all nutrients simultaneously, and that the combined

deviation determines the objective value. A disadvantage is

that it is unknown beforehand how the summed deviation is

distributed among the nutrients. That is, a summed deviation

of 100% could indicate that all 15 nutrients are deviating

with 6.7%, or that only one nutrient deviates with 100%

while the others remain within their requirements. One might

prefer the former over the latter situation. The MinMax

achievement function can circumvent this problem as it

minimizes the worst-case performance over all nutrients. The

downside of the MinMax achievement function is that it

is unknown beforehand to what extent all nutrients other

than the worst performing nutrient deviate. For the interested

reader we have included the trade-off analysis of cost vs.

MinMax deviation in Supplementary material Section 2. The

proposed algorithm can be applied to the MinMax objective

function as this is a linear objective function. In order to

combine the strengths of both achievement functions, one

could also consider both achievement functions simultaneously

(16). In this case a new objective is constructed that

measures the nutritional inadequacy of a diet, where one

has to specify the weights of the summed deviation and

MinMax beforehand.

In our GP formulation it is possible that for some

nutrients the amount of deficiency or excess is unacceptable

from a health perspective. To avoid an undesired outcome
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where the nutrient intake is below or above a certain

level, one can include additional constraints that require

an absolute lower or upper limit (16). This can still lead

to nutritional infeasibilities. A solution would be the use

of piecewise linear penalties (48) where excessive deviations

above the lower limit and upper limit are punished more

severely within the objective. This is beyond the scope of our

research.

Throughout the paper we mainly focused on the cost

and the nutritional adequacy of a diet, but it is also

possible to apply this algorithm to other relevant (linear)

objectives. Recent literature overviews (57, 58) show the

increased interest in and importance of including environmental

aspects within diet optimization. Therefore, one could also

consider the minimization of greenhouse gas emission, water

footprint or land usage related to a diet. Another relevant

application relates to the healthcare sector: (59) describes how

to minimize the distance between an existing diet pattern

and an advised pattern to make the diet more nutritious

without rigorous diet adjustments in order to prevent cancer.

Here, one could investigate the trade-off between nutritional

adequacy and deviation from the existing diet pattern to help

select a diet that is more nutritious and still acceptable for

the patient.

The presented algorithm focuses on finding the trade-offs

between two linear objectives. One might be interested in

finding all trade-offs between more than two objectives, e.g.,

cost, nutritional adequacy, deviation from the current food

pattern and environmental impact. Although it is possible to

extend the algorithm to more than two dimensions, there

are some important caveats. As explained in (60) using

more than two dimensions can result in (partly) negative

weights for the weighted sum method. Thus, not every

solution is guaranteed to be (weakly) efficient, and many

LPs will be solved that give solutions that are not on

the trade-off curve. In the context of radiotherapy, (42)

suggest an approximation technique where they construct a

positive weight in case the actual weight is (partly) negative.

This however does not guarantee that the complete trade-

off curve is obtained. In our current research we are

working toward a way to minimize the number of LPs that

solve inefficient points, while still obtaining the complete

trade-off curve.

Note that the overall purpose of this paper is to show how

one can analyse the trade-offs between conflicting objectives

in a dietary context and to illustrate what types of insights

can be gained. We do not necessarily recommend the diets

which are obtained when allowing some form of nutritional

inadequacy during the trade-off analyses. Depending on the

goal and preferences of the DM, different constraints can be

added or nutrients can be included or excluded when measuring

nutritional deviations.
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