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Optimization of the extraction
process and metabonomics
analysis of uric acid-reducing
active substances from
Gymnadenia R.Br. and its
protective effect on
hyperuricemia zebrafish
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Cuicui Yu, Xiaoqing Yin, Jiale Liu and Yuhong Zhang*

Institute of Food Science and Technology, Tibet Academy of Agricultural and Animal Husbandry
Sciences, Lhasa, China

Background: As Gymnadenia R.Br. (Gym) has an obvious uric acid-lowering

effect, but its specific bioactive substances and mechanism are still unclear.

The key metabolites and pathways used by Gym to reduce uric acid (UA) were

identify.

Methods: An optimized extraction process for urate-lowering active

substances from Gym was firstly been carried out based on the xanthine

oxidase (XOD) inhibition model in vitro; then, the Ultra-high-performance

liquid chromatography and Q-Exactive mass spectrometry (UHPLC-QE-

MS) based on non-targeted metabolomics analysis of Traditional Chinese

Medicine were performed for comparison of Gym with ethanol concentration

of 95% (low extraction rate but high XOD inhibition rate) and 75% (high

extraction rate but low XOD inhibition rate), respectively; finally, the protective

effect of ethanolic extract of Gym on zebrafish with Hyperuricemia (referred

to as HUA zebrafish) was explored.

Results: We found that the inhibition rate of Gym extract with 95% ethanol

concentration on XOD was 84.02%, and the extraction rate was 4.32%.

Interestingly, when the other conditions were the same, the XOD inhibition

rate of the Gym extract with 75% ethanol concentration was 76.84%, and

the extraction rate was 14.68%. A total of 539 metabolites were identified,

among them, 162 different metabolites were screened, of which 123 were

up-regulated and 39 were down-regulated. Besides significantly reducing the

contents of UA, BUN, CRE, ROS, MDA, and XOD activity in HUA zebrafish by

Gym and acutely reduce the activity of SOD.
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Conclusion: Along with the flavonoids, polyphenols, alkaloids, terpenoids, and

phenylpropanoids, the ethanolic extract of Gym may be related to reduce the

UA level of Gym.

KEYWORDS

Gymnadenia R.Br., uric acid-reducing active substances, metabolites, antioxidant,
alkaloids

Introduction

Known as Gymnadenia conopsea (L.) R.Br. (Gym,
Orchidaceae), it grows widely in temperate and subtropical
regions of Asia as well as throughout Europe. Traditionally,
its tuber is applied to Traditional Chinese Medicine, Tibetan
Medicine, Mongol Medicine, and other medicines to treat
numerous symptoms of health problems in China (1, 2).
Various research has been carried out on composition
analysis to pharmacological analysis. So far, regarding
the composition analysis side, hundreds of compounds
have been identified, mainly glucosides, dihydrostilbenes,
phenanthrenes, and aromatic compounds (3–9). Among them,
high-performance liquid chromatography (HPLC) analysis is
commonly performed. An HPLC-diode array detection-tandem
mass spectrometry method (HPLC-DAD-MSn) was initially
established for the analysis of chemical fingerprints of Gym
rhizomes and the rapid identification of major compounds (10).
Lin et al. (11) developed a sensitive ultra-high performance
liquid chromatography (UPLC)-HRMS/MS method for the
rapid screening and identification of compositions in bioactive
fractions. Forty-six compounds were identified from the
ethanolic extract of Gym by extraction ion chromatography
(EIC). Besides, a fast and precise system based on the
combination of UPLC and Orbitrap MS/MS was established by
Wang et al. (7) finally, 91 compounds were identified by using
both positive and negative ion modes in Gym tubers for the first
time. The bioactive substances and biological efficacy of Gym
have attracted extensive attention, and more and more methods
have been developed for screening and identification of their
metabolites.

Gym and its active constituents possess a wide range of
pharmacological properties, including tonification effect (12),
anti-oxidant properties (3, 13), immunoregulatory (14), anti-
anaphylaxis (15), anti-gastric ulcer (16), sedative, and hypnotic

Abbreviations: Gym, Gymnadenia conopsea (L.) R. Br.; UA, uric acid;
ROS, reactive oxygen species; BUN, blood urea nitrogen; CRE,
creatinine; XOD, xanthine oxidase; SOD, superoxide dismutase; MDA,
malondialdehyde; HUA, hyperuricemia; APL, allopurinol; PO, potassium
oxonate; XSS, xanthine sodium salt; UHPLC, Ultra-high performance
liquid chromatography; QE, Q-Exactive; MS, mass spectrometry; OPLS-
DA, orthogonal projections to latent structures discriminant analysis;
PCA, principal component analysis.

activities (17–21). Liang et al. (22) screened 20 main chemical
components of the Gym through network pharmacological
methods, with 304 potential anti-hypoxia targets. It was found
that the main active components play an anti-hypoxia role
by acting on H1F1α, TNF-α, mTOR, and other targets (22).
It has been verified that the ethanolic extract of Gym can
substantially reduce silica dust-induced lung coefficient in rats,
significantly reduce the synthesis of type I and III collagens,
and substantially inhibit pulmonary fibrosis in rats (23).
lncRNAs expression profiles in mice treated with Gym for
high-altitude hypoxia-induced brain injury were examined by
Wenhui Zhang et al. using microarray methods. They found
significant dysregulation of 126 mRNAs, differential expression
of 226 lncRNAs, and 23 circRNAs. The results also revealed
that the mRNAs co-expressed with lncRNAs mainly related to
stress, inflammatory reaction, and hypoxia, including the H1F1α

and PI3K-Akt signaling pathways (24). Additionally, Feng et al.
proved that the Gym polysaccharide has a therapeutic effect
on ionizing radiation-induced impairment of hematopoietic
and antioxidant function in mice (25). This indicates that it is
feasible to analyze the role of Gym in antioxidant and biological
metabolism, and the pathway research on specific diseases will
be more exciting.

Hyperuricemia (HUA) is caused by a disorder of uric acid
(UA) metabolism or abnormal purine metabolism. It occurs
when the serum UA level is higher than 420 µmol/L (26–
28). The prevalence of HUA is increasing rapidly, not only
in China but also worldwide (29, 30). The global prevalence
of HUA is 5–25%, another common metabolic disease after
diabetes (31, 32). As a key enzyme for the production of
UA, xanthine oxidase (XOD) can directly catalyze the gradual
oxidation of hypoxanthine and xanthine to form UA, and
can also convert the rich protein in food into purine to
finally form UA. Therefore, the inhibitors of XOD are widely
used in the treatment of HUA (33–39). As a purine analog
and hypoxanthine isomer, allopurinol (APL) is an important
inhibitor of urate reduction (40–42). Yan et al. established an
XOD inhibitor screening system by measuring XOD activity
in vitro using physical and chemical methods (43). Chen et al.
established an in vitro inhibitory model of XOD to understand
the inhibitory properties of quercetin, rutin, and gallic acid
and their combination with vitamin C on XOD (44). Park
et al. reported that the ethanolic extract of Aster glehni can
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effectively reduce the XOD activity and serum UA level of
HUA rats induced by potassium oxalate (PO) (45). Le et al.
(46) found that by inhibiting the mRNA expressions, AST
reduced UA synthesis and inhibited XOD and ADA enzyme
activities, thereby alleviating HUA (46). Science Gym has a
significant effect on lowering UA, and its correlation with the
XOD and underlying antioxidant stress protection mechanism
is deserved to be explored.

Therefore, whether the ethanolic extract of Gym can reduce
the production of UA by inhibiting XOD activity, thereby
alleviate HUA. In this work, we will focus on this hypothesis.
To this end, specific ethanolic extractions based on different
concentrations of Gym should be carried out first to ensure
the representativeness of the samples. First, we optimized the
extraction process of UA-reducing active substances of Gym
and analyzed the metabolomics of the ethanolic extract of
Gym by UHPLC-Q-Exactive mass spectrometry (UHPLC-QE-
MS). Finally, the protective effect of the ethanolic extract from
Gym on HUA zebrafish was explored. Consequently, it can
well explore the possible metabolic effect of ethanolic extract
of Gym on the reduction of UA and its protective effect
on HUA zebrafish.

Materials and methods

Together with bioinformatics, UHPLC-QE-MS was applied
for chemical identification, profiling, and quantitation. UHPLC-
QE-MS used a high pressure of more than 1,000 bars and
worked at a tolerable flow of up to 5 mL/min. These properties
allowed it to analyze slighter particles less than 2.2 mm. Besides
the traditional HPLC method, UHPLC-QE-MS detection was
an ideal estimating method for pharmaceutical formulations
or drugs in bulk and analyzing the metabolites in biological
fluids (47). The technology was widely used in the analysis of
Traditional Chinese Medicine (48, 49).

Chemical materials and the sources

Xanthine sodium salt (XSS, CAS:1196-43-6), bovine milk
XOD (CAS:9002-17-9), APL (CAS:315-30-6), and formic acid
(CAS:67-56-1, MS grade) were provided by Sigma Chemical
Co., LTD (Shanghai, China). Methanol (CAS:67-56-1) and
acetonitrile (CAS:75-05-8) (all MS grade) were offered by CNW
Technologies (Shanghai, China). The 2-chloro-L-phenylalanine
(CAS:103616-89-3, MS grade) was bought from Shanghai
Hengbai Biotechnology Co., LTD (Shanghai, China). Ethanol
absolute was purchased from Chengdu Jinshan Chemical
Reagent Co., LTD (Chengdu, China). 10 × PBS buffer (pH 7.4)
was offered by Shanghai Thermo Fisher (Shanghai, China). The
gym was obtained from the Tibet specialty warehouse naicang
supermarket (Tibet, Lhasa, China).

Establishment of xanthine oxidase
inhibition model in vitro

According to the study of Chen et al., the XOD inhibition
model in vitro was established and further optimized (44, 50).
As shown in Supplementary Figure 1, when XSS concentration
was 100 µM, XOD concentration was 5 U/L, and reaction time
was 15 min, the absorbance value of UA remained unchanged
and the enzymatic reaction was complete, indicating that the
XOD inhibition model was successfully established in vitro. The
IC50 value of APL was 0.773 µg/mL, the 95% confidence interval
was 0.449–1.331 µg/mL (Supplementary Figure 2).

Single-factor experiment design

The single-factor test was set according to Supplementary
Table 1. The sample extraction steps were as follows. First, 10 g
Gym powder was accurately weighed, and 75% ethanol was
added according to the solid–liquid ratio of 1:10, 1:20, 1:30,
1:40, and 1:50. The solutions were sonicated at 500 W at 50◦C
for 40 min, filtered, and concentrated at 50◦C with a rotary
evaporator, and the extraction rate was calculated after drying.
The solution was stored at room temperature for the next
experiments. Optimization experiments were conducted using
the one-way controlled variable method, and all experiments
were repeated three times (51–56).

Determination of xanthine oxidase
inhibition rate

The concentration of Gym was determined as 4 g/L
by pre-experiment to measure the inhibition rate of XOD
(Supplementary Figure 3). The Gym samples were extracted
under different factors and levels. First, PBS, and XSS were
added to the 96-well plates, then XOD (pre-incubated at 37◦C
in the dark for 30 min to stabilize the enzyme activity) was
added. Amounts are shown in Supplementary Table 2. The
mixture was evenly mixed, and the reaction was carried out at
37◦C for 15 min and finally measured at 295 nm (57–59). All
determinations were repeated three times. Inhibition rate = [1-
(Ai-Aj)/(A0-A1)] ∗ 100%, where A0, A1, Ai, and Aj represent the
absorbance of the negative control experimental group, negative
control blank group, sample/positive experimental group, and
sample/positive blank group at 295 nm, respectively.

Orthogonal experiment

The 4-factors and 3-levels orthogonal L9 (34) test design
was carried out according to Supplementary Table 3. Nine
experiments were performed in triplicate based on Section
“Determination of xanthine oxidase inhibition rate” (60, 61).

Frontiers in Nutrition 03 frontiersin.org

https://doi.org/10.3389/fnut.2022.1054294
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-09-1054294 November 29, 2022 Time: 14:57 # 4

Chen et al. 10.3389/fnut.2022.1054294

Ultra-high-performance liquid
chromatography and Q-Exactive mass
spectrometry analysis

The samples of Gym with 95 and 75% ethanol concentration
were extracted and analyzed by LC/MS. Briefly, the Waters
UPLC BEH C18 column was used on Agilent 1,290 UPLC
system (1.7 µm 2.1∗100 mm, Waters) for LC-MS/MS analysis
(62–64). The injection volume was 5 µL and the flow rate
was 0.4 mL/min. Next, 0.1% formic acid was added to the
water (A) and acetonitrile (B) phases (65, 66). The QE-
MS and Xcalibur software were applied to acquire the MS
and MS/MS data according to the IDA acquisition mode.
Corresponding parameters refer to Luo et al. (67, 68). These
experiments were carried out by Shanghai Biotree Biotech Co.,
Ltd. (Shanghai, China).

Assessment of uric acid-reducing
effect

In reference to Zhang et al. (69) and Xiong et al. (70), an
XOD model was established with PO combined with xanthine
sodium salt (XSS) on Zebrafish. A total of 660 embryos
with normal development in 5 dpf were selected and divided
randomly into 11 groups. Three parallel lines were set in each
group and placed in 12-well plates (n = 20/group), respectively,
and the volume of each well was 2 mL. Each culture dish was
marked with the group and treatment. Except for the blank
group, the other 10 groups were treated with PO and XSS, pre-
incubated at 28◦C for 1 h, and the corresponding dosages of APL
and Gym extraction aqueous solution were added. All treatment
groups were cultured in a 28◦C incubator for 24 h. The
contents of UA, Blood Urea Nitrogen (BUN), Creatinine (CRE),
Malondialdehyde (MDA), and the enzyme activity of XOD and

Superoxide Dismutase (SOD) were measured according to the
kit’s instructions. The content of Reactive Oxygen Species (ROS)
in 48 h was also determined by model reference in the meantime
(71–75).

Data statistics and analysis

The GraphPad Prism software (version 6.0, GraphPad
Software Inc., San Diego, CA, USA) was used to conduct one-
way ANOVA analysis through a post-hoc Dunnet T-test for
statistical analysis. Data were expressed as mean ± standard
deviation (SD). In all statistical comparisons, P < 0.05
was considered significant, and P < 0.01 was extremely
significant. Besides, principal component analysis (PCA) and
orthogonal partial least squares discriminant analysis (OPLS-
DA) was conducted to process the metabolomics analysis using
SIMCA software (V14.1, MKS Data Analytics Solutions, Umea,
Sweden). This was of importance when Variable Importance in
the Projection (VIP) > 1 while P-value < 0.05.

Results

Single-factor experimental analysis

Effect of liquid–solid ratio on xanthine oxidase
inhibition rate

The extraction rate of Gym ethanolic extract was greatly
affected by different liquid–solid ratios, and they were positively
correlated (Figure 1A). However, the difference in the XOD
inhibition rate affected by different liquid–solid ratios was
not obvious (Figure 1B). The liquid–solid ratio of 1:40 and
1:50 significantly inhibited XOD by about 50%, but with no
significant difference between the two groups. Therefore, three

FIGURE 1

The effect of liquid–solid ratio. (A) The effect of liquid–solid ratio on the extraction rate of ethanolic extract of Gym. (B) The effect of
liquid–solid ratio on xanthine oxidase (XOD) inhibition rate. The different letters indicate significant difference (P < 0.05).
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liquid–solid ratios of 1:10, 1:20, and 1:40 were selected as the
three levels of the orthogonal experiment.

Effect of ethanol concentration on xanthine
oxidase inhibition rate

Substances have different solubility and content in different
ethanol concentrations (76, 77). The extraction rate of
Gym decreased significantly with the increase in ethanol
concentration (Figure 2A). Interestingly, the XOD inhibition

rate remained insignificant, around 40%, when the ethanol
concentration ranged from 55 to 75%. But the XOD inhibition
rate increased significantly with the increase of ethanol
concentration to more than 75% (Figure 2B). When the ethanol
concentration was raised to 95%, the XOD inhibition rate
reached the highest, up to 80%. Therefore, considering the
factors such as extraction rate and practical application, two
ethanol concentrations of 95 and 75% were selected for the next
optimization experiment.

FIGURE 2

The effect of ethanol concentration. (A) The effect of ethanol concentration on the extraction rate of ethanolic extract of Gym. (B) The effect of
ethanol concentration on xanthine oxidase (XOD) inhibition rate. The different letters indicate significant difference (P < 0.05).

FIGURE 3

The effect of ethanol concentration. (A,C) The effect of ultrasonic power on the extraction rate of ethanolic extract of Gym [(A) 95% and (C)
75%]. (B,D) The effect of ultrasonic power on XOD inhibition rate [(B) 95% and (D) 75%]. The different letters indicate significant difference
(P < 0.05).
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Effect of ultrasonic power, extraction time, and
extraction temperature on xanthine oxidase
inhibition rate

Ultrasonic power is one of the main factors affecting the
extraction rate of effective components. If the power is not
selected properly, the components contained in the sample
will be extracted incompletely (78–80). With the increase in
ultrasonic power, the extraction rate of the Gym increased first,
then decreased, and then increased significantly (Figures 3A,C).
When the ultrasonic power was 500 W, the XOD inhibition
rates of the two ethanolic extracts reached the maximum
(Figures 3B,D). Therefore, according to Figure 3, three
ultrasonic powers of 200, 350, and 500 W were selected as
the three levels of the orthogonal experiment. The effect of
extraction time and temperature on XOD inhibition rate are
presented in Supplementary Figures 4, 5. So based on the
results, three times of 20, 40, and 80 min were selected as
the three levels of the orthogonal experiment, and 70◦C was
determined as the optimum extraction temperature.

Analysis of orthogonal experimental
results

The extraction rate and XOD inhibition rate of the two
ethanolic extracts of Gym from the orthogonal experiment were

listed in Supplementary Tables 4, 5. When the ultrasonic power
was 500 W, the liquid–solid ratio was 1:40, extraction time
was 80 min, the XOD inhibition rates of Gym with 95 and
75% ethanol concentration were 84.02 and 76.84%, respectively,
and the extraction rates were 4.32 and 14.68%, respectively.
Namely, the extraction conditions were a combination of
experimental factors called A3B3C3 (Supplementary Tables 6–
9 for the results of the analysis of variance). Under these
conditions, the XOD inhibitory activity of the two ethanolic
extracts was verified in vitro (Supplementary Figure 6). This
demonstrated that the two ethanolic extracts significantly
increased the inhibition rate of XOD and the difference was
statistically significant.

Ultra-high-performance liquid
chromatography and Q-Exactive mass
spectrometry detection results

Multivariate statistical analysis
We want to know why the XOD inhibition rate of 95%

ethanolic extract of Gym was significantly higher than that
of 75% ethanolic extract in vitro. In comparison, the 95%
ethanolic extract of Gym was far lower than that of the
75% ethanolic extract. What are the differences and common
substances between the two ethanolic extracts of different

FIGURE 4

Principal component analysis (PCA) score plot. (A) Score scatter plot of PCA model for group 95% ethanol vs. 75% ethanol. (B) Score scatter plot
for PCA model total with QC. (C) Score scatter plot of OPLS-DA model for group 95% ethanol versus 75% ethanol. (D) Permutation test of
OPLS-DA model for group 95% ethanol versus 75% ethanol.
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concentrations? Therefore, we detected the metabolomics of
UA reducing effectiveness for 95 and 75% ethanolic extracts
of Gym after process optimization by using an advanced
UHPLC-QE-MS method. First, we obtained the total ion current
(TIC) of QC and 95 and 75% ethanolic extract of Gym
under positive and negative ions (Supplementary Figures 7–9).
The experimental results showed that the sample quality,
experimental method, and system stability are convincing,
indicating reliable test results.

After data correction, the PCA and OPLS-DA models
were applied to Gym extract samples with different ethanol
concentrations. PCA reflects the overall variability within and
between samples and reveals distribution trends and discrete
dispersion points (81–83). Estimates of sample scores in the
plane containing the first and second principal components
(PC1 and PC2) are spatial coordinates. Intuitively, this
indicates the similarity or difference between samples (84–
87). Furthermore, the OPLS-DA model implements supervised
classification. It can distinguish between two or more groups
using multivariate data (88–90). The PCA scores plotted in
this study were all within the confidence intervals of 95%
(Figure 4A). The samples of ethanolic extract from Gym with
the proportion of 95 and 75% were separated and specifically
identified by PC1. The tight clustering of QC samples was
observed in the middle of the three groups (Figure 4B),
suggesting that the experiment was reproducible and stable. It
also can be seen from Figure 4C that the OPLS-DA score plots

showed a high distinction among sample groups, which were all
within the 95% confidence interval. In addition, excellent model
parameters [R2Y (cum) = (0, 0.95), Q2 (cum) = (0, −0.09)] were
detected in our experiment. Moreover, the OPLS-DA model was
not overfitted according to the cross-validation and response
permutation test (RPT) (Figure 4D). Therefore, the OPLS-DA
model was valid and performed well. This reveals that it can
be used to investigate metabolic differences among different
concentrations of Gym ethanolic extracts.

Overview of the metabolites

A total of 539 molecules comprising 13 classes were
identified in 6 ethanolic extract samples of Gym, which
included 129 terpenoids, 69 alkaloids, 57 polyphenols, 48
flavonoids, 3 quinones, 36 phenylpropanoid, 24 organic
acids, 16 amino acids, 13 sugar and alcohol, 42 lipids and
aromatics, 12 coumarins and lignans, 11 carboxylic acid and
organic oxygen, and 79 miscellaneous (Figure 5A). The VIP
value is often performed to assess the impact strength and
interpretability of the inter-group expression pattern as an
important parameter in OPLS-DA analysis. The higher the
VIP value, the greater the contribution of the variable to the
grouping. In essence, metabolites with VIP values greater than
1 are considered differential metabolites (91). Furthermore,
t-test is required to examine the characteristics of metabolites

FIGURE 5

(Continued)
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among groups. And the P-value is usually used to evaluate
the likelihood of differences between groups (92). When the
VIP value is greater than 1 and the P-value is less than 0.05,
it can be used as the condition for determining potential
biomarkers. Accordingly, 162 differential metabolites were

screened, of which 123 were upregulated, such as scoparone,
artemisinin, methyl jasmonate, benzoic acid, racanisodamine,
p-hydroxybenzaldehyde phenylpropanolamine, cholic
acid, meperidine, ligustilide, and 3,4,5-trihydroxystilbene.
Meanwhile, 39 metabolites showed a downregulation trend,

FIGURE 5

(Continued)
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FIGURE 5

(A) Classification of the 539 metabolites detected in ethanolic extract of Gym. (B) Classification of the 162 differential metabolites. (C) Volcano
plot for 95% ethanol versus 75% ethanol group. (D) Heat map of hierarchical clustering analysis for 95% ethanol versus 75% ethanol group. (E)
Matchstick analysis for 95% ethanol versus 75% ethanol group.

such as paracetamol, L-Proline, heptadecanoic acid, parishin E,
cinnamaldehyde, cinnamamide, notopterol, and D-Gluconic
acid (Figure 5C and Supplementary Table 10).

These differentiated metabolites have 13 species, including
29 polyphenols, 28 flavonoids, 17 phenylpropanoids, 16
alkaloids, 13 terpenoids, 11 lipids, 7 amino acid derivatives,
6 benzenes and derivatives, 4 organic and aromatics, 5
organic acids and derivatives, 4 coumarins and derivatives, 3
carbohydrates, and 19 miscellaneous (Figure 5B). Meanwhile,
hierarchical cluster analysis (HCA) also proclaimed that
different ethanolic extracts of Gym had different intensities
of different metabolites (Figure 5D). Furthermore, the top
10 elevated and reduced metabolites are shown in Figure 5E.
The elevated metabolites include Lasiocarpine, Viridiflorine,
Tulipinolide, Delphinidin, Neoandrographolide, Bullatine
G, and 3-Hydroxybenzaldehyd. And the top 10 reduced
metabolites, including Harpagoside, CITRATE, 4-Methyl-6,7-
dihydroxycoumarin, Arginine, Sibiricose A5, Asperuloside,
Chelidonic acid (not validated), and L-Tryptophan.

Kyoto encyclopedia of genes and
genomes enrichment analysis

In the present study, the metabolic pathway of differential
metabolites was enriched and analyzed according to the KEGG
database (Kyoto Encyclopedia of Genes and Genomes)1, which

1 http://www.kegg.jp/kegg/pathway.html

is one of the most commonly used biological information
databases in the world (93). About 20 metabolic pathways
were enriched and presented in an interactive visualization
(Supplementary Table 11). The results illustrated that the
UA reduction in Gym ethanolic extract mainly involved
aminoacyl-tRNA biosynthesis pathway, phenylalanine,
tyrosine and tryptophan biosynthesis pathway, glucosinolate
biosynthesis pathway, and phenylalanine metabolism pathway
(Figure 6).

The results of uric acid-lowering effect

Based on the HUA zebrafish model, the UA-lowering
effect of the Gym ethanolic extracts of two different ethanol
degree groups was evaluated. Correspondingly, the results are
presented in Figure 7. The UA content and the enzyme activity
of XOD were substantially increased in the model group. While
decreased significantly in the APL group, the middle, and
the high-concentration groups of the two ethanolic extracts
(Figures 7A,B). By comparison, the contents of BUN and CRE
were also markedly elevated in the model group. However,
the two ethanolic extracts of Gym could significantly reduce
the contents of BUN and CRE at different concentrations
(Figures 7C,D).

Additionally, we also measured the ROS content of
2 dpf zebrafish embryos stripped of the membrane after 1 h
of administration and the contents of MDA and SOD in
zebrafish at 5 dpf. It can be seen that the levels of ROS
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FIGURE 6

Pathway analysis for 95% ethanol versus 75% ethanol group.

and MDA were substantially increased in the model group.
Nevertheless, they could be significantly reduced by APL and
different dosages of two ethanolic extracts of Gym groups
(Figures 8A–C). However, by contrast, it was found that the
activity of SOD increased sharply in the model group, while
decreasing significantly in different concentrations of the two
ethanolic extracts of Gym groups (Figure 8D). This may be
related to the initiation of the antioxidant stress protection
mechanism.

Discussion

The abnormal activity of liver xanthine oxidase or
the decreased excretion of UA will lead to an increase
in UA accumulation, which is the main cause of HUA
(94–96). Therefore, regulating the contents of related
enzymes and the level of related UA anion transporters
is an important entry point to prevent and alleviate
HUA. As a key enzyme for UA production, it can

reduce the serum UA level by inhibiting XOD activity,
thereby relieving HUA.

In our study, through the XOD inhibition model in vitro,
the extraction process of UA-reducing active substances in
ethanolic extract of the Gym was optimized. When the ethanol
concentration was 95%, the ratio of solid to liquid was 1:40, the
ultrasonic power was 500 W, the extract time was 80 min, the
ultrasonic temperature was 70◦C, the inhibition rate of ethanolic
extracts of Gym on XOD was 84.02%, and the extraction
rate was 4.32%. Interestingly, we found that when the ethanol
concentration was 75%, and other conditions were the same, the
inhibition rate of Gym on XOD was 76.84% and the extraction
rate was 14.68%. In other words, the extraction rate of 75%
ethanol is much higher than that of 95% ethanol, and the
inhibition rate of 95% ethanolic extract on XOD is significantly
higher than that of 75% ethanolic extract.

To clarify this phenomenon, we further analyzed the
metabonomics of two ethanolic extracts of Gym based on
UHPLC-QE-MS. A total of 539 metabolites were detected,
including 129 terpenoids, 69 alkaloids, 57 polyphenols, 48
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FIGURE 7

The effects of ethanolic extracts of Gym on UA-related indexes of HUA zebrafish. (A) The effect of ethanolic extracts of Gym on UA content. (B)
The effect of ethanolic extracts of Gym on XOD content. (C) The effect of ethanolic extracts of Gym on the content of BUN. (D) The effects of
ethanolic extracts of Gym on CRE content. *P < 0.05, **P < 0.01, ***P < 0.001. #P < 0.05, ##P < 0.01, ###P < 0.001.

flavonoids, 3 quinones, 36 phenylpropanoid, 24 organic
acids, 16 amino acids, 13 sugar and alcohol, 42 lipids and
aromatics, 12 coumarins and lignans, 11 carboxylic acid and
organic oxygen, and 79 miscellaneous. Of the 162 different
metabolites screened, 123 were upregulated, such as Scopoletin,
Artemisinin, Methyl jasmonate, Benzoic acid, Racanisodamine,
P-hydroxybenzaldehyde Phenylpropanolamine, Cholic acid,
Meperidine, Ligustilide, and 3,4,5-trihydroxystyrene.
Meanwhile, 39 metabolites showed a downward trend, such
as Paracetamol, L-proline, Heptadecanoic acid, Paregoricin E,
Cinnamaldehyde, Cinnamamide, Nortriptyline, and D-gluconic
acid. These differential metabolites were classified into
13 species, including 29 polyphenols, 28 flavonoids, 17
phenylpropanoids, 16 alkaloids, 13 terpenoids, 11 lipids, 7
amino acid derivatives, 6 benzenes and derivatives, 4 organic
and aromatics, 5 organic acids and derivatives, 4 coumarins and
derivatives, 3 carbohydrates, and 19 miscellaneous. There are
also various metabolite pathways highlighted in the metabolite
pathway enrichment analysis. They are the aminoacyl-tRNA

biosynthesis pathway, phenylalanine, tyrosine and tryptophan
biosynthesis pathway, glucosinolate biosynthesis pathway, and
phenylalanine metabolism pathway. The study of Yao et al.
(97) also showed that 33 metabolites were closely related to the
improvement of HUA induced by PO by dioscin. Among the
33 metabolites, 5 were lipids. These metabolites were mainly
metabolized with arginine and proline; purine metabolism;
tyrosine, tryptophan and phenylalanine metabolism; Citric
acid cycle; serine, glycine, and threonine metabolism; leucine,
valine, and isoleucine metabolism; and glycerol phospholipid
metabolism (97–99). The multiple metabolic pathways in this
study are consistent with their studies. It is suggested that those
pathways are deserved to be studied in future to demonstrate
the mechanism of HUA and evaluate the efficiency of treatment.

In vivo, UA is proven to be the final product of
human purine metabolism. Adenosine is oxidized to inosine
by adenosine deaminase, which is further broken down to
hypoxanthine, then converted to xanthine by XO, and xanthine
is then converted to UA by XO. The whole process is catalyzed
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FIGURE 8

The effects of ethanolic extracts of Gym on oxidative stress-related indexes of HUA zebrafish. (A) Fluorescence diagram of ROS of ethanolic
extract of Gym. (B) Grayscale diagram of ROS content of ethanol extracts of Gym. (C) The effect of ethanolic extracts of Gym on MDA content.
(D) The effects of ethanolic extracts of Gym on SOD content. *P < 0.05, **P < 0.01, ***P < 0.001. #P < 0.05, ##P < 0.01, ###P < 0.001.

by xanthine oxidase (100, 101). The change in renal function
can be reflected in the level of BUN. When the BUN level is
increased, it may indicate impaired renal function, decreased
glomerular filtration rate, and increased CRE level (102). To
evaluate the hypouricemic effect of the two Gym ethanolic
extracts, we further constructed an acute HUA zebrafish model
by combining PO and XSS. The experiment showed that XOD
activity, UA, BUN, and CRE content in the positive drug group
and the ethanolic extract of the Gym group were significantly
lower than that of the model group (P < 0.05), which was
consistent with a study of Zhao et al. (103–107). It can be seen
that the ethanolic extract of Gym can inhibit the activity of XOD
of HUA zebrafish to a certain extent and then affect the entire
UA production pathway, thus reducing the production of UA.

The available evidence reveals that the formation of UA
is catalyzed by XOD, which is a purported source of ROS,
and the changes in XOD and UA are biomarkers of oxidative
stress. Additionally, XOD may provide an important source of
nitric oxide (NO) that quenches the injurious effects caused
by ROS (108–110). Li et al. have shown that febuxostat can
reduce the content of serum UA in rats, inhibit the occurrence

and development of inflammation, reduce oxidative stress, and
reduce damage to cerebral arteries and blood vessels (111).
Cao et al. (112) found that glycyrrhizin flavonol could reduce
the level of adenosine-induced cell UA, increase the activities
of SOD, CAT, and GSH content of cells after UA induction,
reduce the contents of H2O2 and MDA, and improve the
oxidative stress injury of renal tubular epithelial cells caused
by high UA. Its mechanism of reducing UA may be related to
XO (112). Wu et al. also showed that hirudin might reduce
apoptosis of renal tubular cells caused by UA by improving
cell antioxidant capacity, alleviating mitochondrial damage, and
reducing oxidative stress response (113). The results in the
present study showed that compared with the model group, the
levels of ROS and MDA (the lipid peroxidation production) in
the positive drug group and the ethanolic extract of the Gym
group were significantly reduced (P < 0.05), while the content
of SOD (the antioxidant enzyme) also decreased stress. This
suggests that the ethanolic extract of Gym can attenuate the
oxidative stress induced by hyper UA by promoting the activity
of antioxidant enzymes and inhibiting lipid peroxidation.
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In conclusion, the ethanolic extracts of Gym can
significantly improve the HUA of zebrafish. On the one
hand, it may be related to its reduction of UA production. On
the other hand, it may be related to its significant reduction of
BUN and CRE levels, reversing the damage of PO to the kidney,
thereby promoting UA excretion, and it may also be related to
its antioxidant protection by reducing the production of ROS
and MDA, reducing the oxidative stress response.

Conclusion

The ethanolic extract of Gym can effectively improve the
HUA of zebrafish. It can reduce the UA, BUN, CRE content, and
XOD level of the HUA zebrafish, suggesting that the ethanolic
extract of Gym causes a certain inhibitory effect on the XOD
activity of the HUA zebrafish, and then affects the entire UA
production pathway, thereby reducing the production of UA.
In addition, the ethanolic extract of Gym can substantially
reduce the levels of ROS and MDA of HUA zebrafish, and
could reduce the SOD level, indicating that the ethanolic extract
of Gym can alleviate the oxidative stress reaction caused by
hyper UA by improving the activity of related antioxidant
enzymes and inhibiting lipid peroxidation. The results of
metabonomics showed that its effect on reducing UA might be
related to its flavonoids, polyphenols, alkaloids, terpenoids, and
phenylpropanoids. And aminoacyl-tRNA biosynthesis pathway,
phenylalanine, tyrosine, and tryptophan biosynthesis pathway;
glucosinolate biosynthesis pathway, phenylalanine, and other
metabolic pathways deserve further study.
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